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Abstract. 2D CNN are main components for Partial Video Copy De-
tection (PVCD). 2D CNN features serve for the retrieval and matching of
videos. Robustness is a key property of these features. It is a well-known
problem in the computer vision field but little investigated for PVCD.
The contributions of this paper are twofold: (i) based on a public video
dataset, we provide large-scale experiments with 700 B of comparisons
of 4.4 M feature vectors. We report conclusions for PVCD consistent
with the state-of-the-art. (ii) the regular protocol for performance char-
acterization is misleading for PVCD as it is bounded to the video level.
A method for the characterization of key-frames with 2D CNN features
is proposed. It is based on a goodness criterion and a time series mod-
elling. It provides a fine categorization of key-frames and allows a deeper
characterization of a PVCD problem with 2D CNN features.
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1 Introduction

Partial Video Copy Detection (PVCD) finds segments of a reference video which
have transformed copies. It is a well-known topic in the computer vision field
[10,21]. 2D CNN are main components to design PVCD systems. The systems
extract 2D CNN features from frames for the retrieval and matching of videos.
The performance characterization of 2D CNN features is a known topic in the
computer vision field. However, it has been little investigated for PVCD.

The contributions of this paper are twofold: (i) based on a public video
dataset, we provide large-scale experiments with 700 B of comparisons of 4.4 M
feature vectors. These experiments report conclusions on the particular PVCD
problem consistent with the state-of-the-art of the computer vision field. (ii) the
regular protocol for performance characterization is misleading for PVCD as it
is bounded to the video level. For a deeper analysis, we propose a method for the
characterization of key-frames. This method applies a goodness criterion and a
time series modelling. It provides a fine categorization of key-frames and allows
a deeper characterization of a PVCD problem.

Section 2 provides a state-of-the-art. Section 3 details our performance char-
acterization work. Conclusions and perspectives are discussed in Section 4. Table
1 gives the main symbols and mathematical notations used in the paper.

https://lifat.univ-tours.fr/
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Table 1: Main symbols and mathematical notations used in the paper
Symbols Meaning

K, M, B, F, f thousand 103, million 106, billion 109, float and frame / feature vector
x, y, z scalar values
m,n or mi, nj sizes of sets / vectors with i, j = 1, 2, . . .
X = [x1, . . . , xn] , Y X is the feature vector of positive frame (x1, . . . , xn the elements), Y is negative

X̃,X∗ X̃ ≃ X is the near duplicate of X, X∗ ̸= X has a different reference
{X1, . . . , Xn} set of feature vectors

||X|| l2-norm of X with ||X|| =
√∑

∀i x
2
i

X · Y dot product between X and Y with X · Y =
∑

∀i xiyi

SC(X,Y ) Cosine similarity SC(X,Y ) = X · Y ∈ [−1, 1] with ||X|| = ||Y || = 1

F1 = 2P×R
P+R F1 score with P the precision and R the recall

ϕ(X) = SCmin(X, {X̃1, . . . , X̃m}) − SCmax(X, {Y1, . . . , Yn1
}, {X∗

1 , . . . , X
∗
n2

})
the goodness criterion characterizing the separability with X when ϕ(X) ≥ 0

t, [z1, . . . , zm+1] observation at t with [z1, z2, . . . , zm+1] the ϕ(X), ϕ(X̃1), . . . , ϕ(X̃m) criteria
zmin, z, zmax, σ, τ statistics of [z1, . . . , zm+1], with the minimum zmin, mean z and maximum zmax

values, σ the standard deviation and τ the rate of positive values zk > 0
α, β thresholds for categorization of frames

Z mean of indices with τ = 0 and σ ≤ α for a reference to fix the threshold β = Z

2 Related work

2D CNN process images into convolutional layers and classify them using fully
connected layers. When applied to PVCD, a pipeline embedding the 2D CNN
must be defined for video processing Table 2. A first step is to select key-frames
with sampling at fixed FPS. Closed key-frames in the temporal domain have
redundancy. Adaptive methods have been proposed for elimination of 2D CNN
features by K-means clustering or ranked inter-frame distances [1,19].

Table 2: Overview of PVCD systems using 2D CNN
Key-frame selection • Fixed FPS [4,6,7,9,10,11,12,13,15,17,18,21,22]

• Adaptive methods [1,19]
2D CNN • VGGNet [9,11,13,15,18,19,21,22] • ResNet [4,7,8,11,15]

• InceptionNet [1,11,12,17] • AlexNet[1,10,12,21]
Feature extraction • Fully connected layers [1,10,11,12,13,18,21]

• Convolutional layers [1,4,7,8,11,12,15,17,19,22]
• Low-dimensional [4,6,18,19] • RoI based features [8,22]

Video matching • Frame matching [7,13,15] • Global matching [1,4,6,7,8,15,21]

Key-frames are then processed with pre-trained 2D CNN such as AlexNet,
VGGNet (16 and 19), ResNet (50, 101 and 152) and InceptionNet. They process
input square matrixes ∈ [224; 299] in the RGB colour space. They have different
architectures and are delivered into different versions (1 to 4).

PVCD systems extract features from 2D CNN. These features serve for the
retrieval and matching of videos. The common approach is to extract the features
from the full frames even if a RoI based extraction can be applied [8,22]. The
features can be obtained from (i) the Fully Connected (FC) layers (ii) or the
convolutional ones. In the case (i), the Last FC is commonly used for extraction.



Performance characterization of 2D CNN features for PVCD 3

With convolutional layers (ii), standard methods have been established (e.g.
MAC and R-MAC1 [16]) used in several PVCD systems [8,22].

The videos are then matched from 2D CNN features. A first approach is to
detect the videos from the matching of individual frames [13,15]. The matching
can be made global with a frame-to-frame similarity matrix [1,4,6,8,15]. In both
cases, it is common to apply a l2 normalization to the features [9,11,12,15] and
to match with the cosine similarity or the Euclidean distance. Low-dimensional
approximations can be obtained with pooling [19] or PCA [1,6,18].

Robustness of 2D CNN features is a key property for the PVCD systems.
The performance characterization of 2D CNN features is a known topic in the
computer vision field. As a general trend, features extracted from recent 2D
CNN perform better [5]. The MAC and R-MAC feature extraction methods are
more adapted to the networks having large sizes of convolution layers [2]. The
impact of blurring noise has been characterized in [14]. The ability of 2D CNN
features to characterize particular images is highlighted in [20].

To the best of our knowledge, comparisons of 2D CNN for PVCD have been
addressed only in [11,12,15,17]. The characterization has been done for global
matching only. Datasets with a low-level of scalability (e.g. SVD [9]) [11,12,17]
or unbalanced (VCDB [10]) [15,17] have been used. The fine characterization of
2D CNN features for PVCD has never been investigated.

3 Performance characterization of 2D CNN features

PVCD systems extract and match 2D CNN features. These features serve for
the retrieval and matching of videos. Robustness is a key property of these
features. It is a well-known topic in the computer vision field, however, it has been
little investigated for PVCD. We provide in this section large-scale experiments
to address this problem. We will introduce the video dataset and performance
characterization protocol. Performance characterization results are discussed and
conclusions are compared to the state-of-the-art of the computer vision field. A
method for characterization of key-frames is then proposed for a deeper analysis.

3.1 Dataset and characterization protocol

For performance characterization, a dataset must be selected. Several main
PVCD datasets have been proposed, Table 3 gives a comparison. We have se-
lected the STVD2 dataset [13]. This dataset has several key properties (i) it is
captured from TV and is almost noise-free allowing a fine control of degradations
with synthetic methods (ii) it is the largest dataset of the literature with ten
thousand hours of video, 243 references and 1, 688 thousand positive pairs3 (iii)
it offers a balance distribution between the negative and positive videos (iv) it
is delivered with an accurate timestamping for video alignment.

1 Maximum Activations of Convolutions (MAC) and Regional-MAC (R-MAC)
2 http://mathieu.delalandre.free.fr/projects/stvd/pvcd/
3 A positive pair (vi, vj) is a combination of two partial video copies vi and vj [7,10].

http://mathieu.delalandre.free.fr/projects/stvd/pvcd/
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Table 3: Datasets for PVCD performance evaluation
The h, s and N/A stand for in hours, in seconds and not available.

Datasets VCDB SVD STVD VCSL

Paper [10] [9] [13] [7]
Degradation real synthetic synthetic real
Duration (h) 2,030 h 197 h 10,660 h 17,416 h
References 28 1,206 243 122

Positive pairs 9 K N/A 1,688 K 281 K
Timestamps (s) 1 s N/A 1

30 s 1 s

From the videos and groundtruth of the STVD dataset we have applied a
pipeline4 to extract 458, 750 frames Table 4. These frames have been sampled
from negative videos and copied segments and split into a training and a testing
set. We have processed these frames with the 2D CNN VGG-16, ResNet50-v1 and
Inception-v1 for characterization. These networks are typical for PVCD Table
2. The three common methods Last FC, MAC and R-MAC have been used for
extraction with a l2 normalization resulting in 9 databases for a total of 4.1 M
of feature vectors (of dimensions 512-F, 1,024-F, 2,048-F and 4,096-F).

Table 4: Dataset for performance characterization
Videos 60% 40% Total

training testing

Negative videos 259,050 f 172,700 f 431,750 f
Copied segments 16,200 f 10,800 f 27,000 f

458,750 f

For matching, we have compared the feature vectors with the cosine similarity
SC(X,Y ) (with two vectors X and Y ). It is a common measure for matching of
CNN features that is time-efficient and robust [3]. With a unit l2-norm, it can
obtained with a single dot product X · Y . Considering m and n the size of the
training and testing set, the brute-force comparison has a complexity O(mn)
(requiring 50.5 B of matching per feature database with total 455 B). This can
be achieved in some hours with a time-efficient implementation5.

We have applied the characterization protocol of [7,13,15] to evaluate the
individual performance of 2D CNN features. All the extracted frames from the
copied segments have been labelled with the references in the groundtruth. The
negative frames have no label. The performance evaluation has been computed
with the P , R and F1 scores. That is, the maximum cosine similarity will matter
and at least one detected frame is required to detect the video.

4 detailed in the Appendix . . .
5 experiments on a GPU RTX 2070 (7 GiB for the features / 1 GiB for the programs),
dataset fully loaded, matching with a fast vector multiplication on all the cores.
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3.2 Comparison of 2D CNN features

Based on the dataset and our protocol, we compare here the accuracy of 2D CNN
features. Fig. 1 (a) gives the F1 scores, over a threshold on the cosine similarity,
of the different 2D CNN with a common feature extraction method (Last FC).
For clarification, the top F1 scores are reported too in Table 5.

Fig. 1: Comparison of 2D CNN with the Last FC (a) F1 (b) P/R

The separability for the detection is not achieved even if strong scores are
obtained. A maximum of F1 ≃ 0.93 is performed with the ResNet50-v1 network.
The different networks present competitive results with a maximum gap of F1 ≃
0.03. These results are consistent with previous comparisons of 2D CNN in the
state-of-the-art [5]. For further analysis, Fig. 1 (b) provides the P/R plot. All
the 2D CNN maintain a strong precision at a high level of recall.

Table 5: Comparison of feature extraction methods with the top F1 scores
Last FC MAC R-MAC

ResNet50-v1 0.926 0.828 0.823
Inception-v1 0.923 0.738 0.782
VGG-16 0.894 0.922 0.918

For a comparison of the feature extraction methods, Table 5 gives the top
F1 scores of the different 2D CNN with the Last FC, MAC and R-MAC. For
VGG-16, MAC and R-MAC outperform the Last FC method with a slight gap
of F1 ≃ 0.03. These methods provide a performance degradation for ResNet50-
v1 and Inception-v1 up to a gap of F1 ≃ 0.18. This can be mainly explained
by the larger sizes of convolution layers in the VGG-16 network compared to
ResNet50-v1 and Inception-v1. This leads more accurate localizations with the
MAC and R-MAC features. An equivalent conclusion is also reported in [2].
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3.3 Characterization of key-frames with 2D CNN features

The selection of 2D CNN features has a performance impact. However, another
important aspect is the ability of video content to be characterized by these
features. Indeed, the characterization protocol for PVCD [7,13,15] looks for the
maximum cosine similarity between video frames where at least one “good” key-
frame is required to detect a video. However, key-frames Fig. 2 with a high-level
of noise (a), near-constant (b) or almost duplicate (c) could be difficult to detect.
A quantitative analysis of the goodness of key-frames must be established and
the regular metrics (P , R and F1) are misleading on the task. We will investigate
this aspect here by providing a characterization protocol of key-frames with 2D
CNN features. The goal is to evaluate the performance accuracy of 2D CNN
features when facing a large variability of key-frames for PVCD.

Fig. 2: Examples of key-frames
(a) blurred (b) near-constant (c) almost-duplicate

(d) foreground / background (e) symmetrical

For the needs of characterization, we propose the goodness criterion of Eq.
(1). This criterion maximizes the intra and interclass similarity.X is the 2D CNN
feature of a positive frame and {X̃1, . . . , X̃m} its corresponding near duplicate.
{Y1, . . . , Yn1} is the set of negative 2D CNN features and {X∗

1 , . . . , X
∗
n2
} the

positive ones obtained from the other references. SCmin and SCmax are operators
to get the minimum and maximum SC between the template X and feature sets.
That is, ϕ(X) is defined6 ∈ [−1, 1] and ϕ(X) > 0 guaranties a separability7.

ϕ(X) = SCmin(X, {X̃1, . . . , X̃m})− SCmax(X, {Y1, . . . , Yn1
}, {X∗

1 , . . . , X
∗
n2
}) (1)

Every frame X and its near-duplicates {X̃1, . . . , X̃m} are aligned with a
timestamp t having a precision of 1

30 second Table 3. The overall set of frames
can be modelled with time series Fig. 3. In these series, the z1, . . . , zm+1 values
are derived from ϕ(X). For a given frameX at t, we have z1 = ϕ(X), z2 = ϕ(X̃1),
. . . , zm+1 = ϕ(X̃m). These values can be characterized with statistics (the mini-
mum zmin, mean z and maximum zmax values of z1, . . . , zm+1 and their standard
deviation σ) and a rate τ accounting the amount of positive criteria.

6 The Eq. (1) is defined for SC(X,Y ) ∈ [0, 1] with 2D CNN using a RELU function.
7 No possibility for X to be classified as a false negative (X matched with a negative
frame or assigned to another video reference).
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Fig. 3: Modelling with time series

From statistics (zmin, z, zmax, σ) and rates τ , the frames can be categorized as
detailed in Table 6 and illustrated in Fig. 3. The statistics and rates are compared
to thresholds α, β obtained with automatic methods as detailed thereafter. The
large variably between the 2D CNN features of a given frame can be detected
when an outlier σ value appears greater than the threshold α. This constitutes
the set of not consistent frames labelled NC. The frames where the separability
cannot be obtained with the 2D CNN features are categorized when zmax < 0
then τ = 0. They are labelled NS. From the NS frames, some worst frames
labelled W can be filtered out such as zmax < β. The frames where a partial or
fully separability could be obtained with the 2D CNN features are categorized
when τ ∈]0, 1[ and τ = 1, respectively. They are labelled FS and PS.

Table 6: Categorization of frames
Category σ zmin zmax τ

Not Consistent (NC) > α ∈ [−1, 1] ∈ [0, 1]
Worst (W )

≤ α

∈ [−1, β[
= 0

Not Separable (NS) ∈ [β, 0[
Partially Separable (PS) < 0 ≥ 0 ∈]0, 1[
Fully Separable (FS) ≥ 0 = 1

Table 7 reports the results of categorization on the training set Table 3. We
have applied as thresholds α = 0.05 and β ∈ [−0.4, 0] obtained with automatic
methods detailed thereafter. For the experiments, we have extended the number
of positive frames from 16, 200 to 486, 000 with a sampling at the full FPS = 30.
We have used the VGG-16 with the MAC feature extraction method for tradeoff
between a strong detection score F1 ≃ 0.92 Table 5 and the memory constraint.
With m and n the numbers of positive and negative frames, the Eq. (1) has a
complexity8 O(m

(
m+1
2

)
+mn). This requires ≃ 244 B of matching.

8 With S(X,X∗) = S(X∗, X), the comparison number of m features is m
(
m+1

2

)
.
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Table 7: Categorization results of the training set at full FPS= 30
Total indices NC W NS PS FS

50,844 6,966 4,169 33,049 4,881 1,780
100 % 13.7 % 8.2 % 65 % 9.6 % 3.5 %

21.9 % 78.1 %

A total of 50, 844 timestamps / indices have been obtained Table 3. ≃ 22%
of frames have been categorized as not consistent NC and worst W . Within the
remaining ≃ 78%, only ≃ 13% fit with the partial PS or full separability FS.
That is, only a very small amount of “good” key-frames appears in the several
videos corresponding to the categories PS and FS. ≃ 87% of key-frames are
hard to detect from their 2D CNN features not consistent or little discriminant.

The categorization results of applied thresholds α = 0.05 and β ∈ [−0.4, 0].
They must be selected carefully, we have fixed them with automatic methods
illustrated in Fig. 4. Fig. 4 (a) plots the cumulative distribution of σ over the
50, 844 indices. The threshold α ≃ 0.05 can be easily obtained with an automatic
elbow detection. For clarification, the cumulative rate of indices with τ = 0 (over
all the indices τ ∈ [0, 1]) is given for σ > α. ≪ 1% of indices have a τ ̸= 0. The
threshold β has been fixed to detect outliers for indices with τ = 0 and σ ≤ α
reference per reference. Fig. 4 (b) illustrates the method. For each reference, a
mean Z of indices is computed. This mean serves to fix the threshold β = Z.
The indices with zmax < Z are categorized as worst frames W . Considering the
243 references Table 3, we have obtained a range β ∈ [−0.4, 0].

Fig. 4: (a) distribution of σ (for α) (b) times series with τ = 0 and σ ≤ α (for β)

Fig. 2 provides examples of key-frames for the different categories. Fig. 2 (d,
e) gives key-frames labelled FS containing distinguished shapes (e.g. background
/ foreground text). They are easy to detect with 2D CNN features [20]. However,
they are difficult to catch from videos as they constitute only ≃ 3% of the total
amount of key-frames Table 7. Fig. 2 (b, c) gives key-frames having a worst label
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W with a near-constant or an altered visual content (e.g. inclusion of logos). Even
if they constitute a small part of key-frame ≃ 8% Table 7, they must be carefully
avoided for PVCD. Fig. 2 (a) shows a key-frame with a high level of blurring
labelled NC. Such key-frames have 2D CNN features with a large variability and
little discriminant. They are hard to detect [14]. At last, ≃ 65% of key-frames
are categorized as NS. The 2D CNN features of these key-frames cannot be
detected efficiently.

4 Conclusions and perspectives

Based on a large-scale video dataset, this paper gives a performance character-
ization of 9 common 2D CNN features used for PVCD. The experiments have
been driven on 4.4 M feature vectors with 700 B of comparisons. The separability
is not achieved on the detection problem even if strong scores are obtained with a
maximum of F1 ≃ 0.93. The different networks present competitive results with
a maximum gap of F1 ≃ 0.03. As a general trend, features extracted from recent
2D CNN such as ResNet50 perform better. A correlation appears between the
feature extraction methods and the 2D CNN architectures (e.g. VGG-16 with
the MAC and R-MAC features). These different conclusions are consistent with
the state-of-the-art in the computer vision field.

From 2D CNN features modelled as time series, a method for categorization
of key-frames is proposed. This method allows a deeper characterization of a
PVCD problem with 2D CNN features. It provides (i) a fine categorization of
key-frames (ii) a characterization of 2D CNN features for separability and con-
sistency (iii) a quantitative analysis of the goodness of key-frames. It highlights
the performance limits of 2D CNN features when facing blurred, near-constant
or almost-equivalent key-frames. In addition, a large part of key-frames (≃ 87%)
cannot be classified efficiently from 2D CNN features. These limitations will be
explored in our future works by investigating the robust key-frame selection and
learning of 2D CNN features to further improve the PVCD performance.
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Appendix

We present in this appendix the pipeline to extract frames from the videos
and groundtruth of the STVD dataset. The STVD dataset is constituted of
six test sets A to F having different sources of degradation (e.g. pixel attack,
video speeding). We have selected the test set D, illustrated in the next figure,
related to scalability and global transformations. As detailed in the next Table, it
includes 3, 213 and 12, 165 positive and negative videos having a total and a mean
duration of 1, 960 hours and 7.5 minutes, respectively. The videos are encoded
at 30 FPS with a controlled quality9. The source of video capture ensures a low
contrast variation10. Global transformations have been applied and combined
including flipping, rotation and inclusion of black borders. This test set fits well
with the 2D CNN features that are translation, scale and rotation invariant.

Global transformations in the test set D of the STVD dataset

Data pipeline for frame extraction
Videos Number Duration FPS 60% 40% Total

(h) training testing

Negative videos 12,165 1,545 h ≃ 0.08 259,050 f 172,700 f 431,750 f

Positive videos 3,869 415 h
Copied segments 4,436 7.5 h 1 16,200 f 10,800 f 27,000 f

458,750 f ≃ 7 GiB of 4,096-F features

We have randomly split the videos into a training and a testing set as detailed
in the Table. The rates of 60% and 40% have been applied. We have used the
12, 165 negative videos without any modification. We have re-generated and
added 656 videos to the 3, 213 positive videos. Indeed, the 243 references have
occurrences from 1 up to 167. To fit with the splitting process, a minimum
of 10 occurrences per reference is needed. We have then used the timestamps
information to extract the copied segments. As detailed in [13], these segments
have a duration ∈ [1; 25] seconds and one and more segments could appear in a
video. We have obtained 4, 436 copied segments having a duration of 7.5 hours.

9 144× 192 pixels per frame at 28 kbps characterized with MSE in [13]
10 characterized with a Contrast Noise Ratio (CNR) in [13]



12 V.H. LE et al.

We have sampled the negative videos and copied segments with static FPS to
get frames. Static FPS is a common method for key-frame selection. As detailed
in the Table, a FPS= 1 has been applied to the copied segments. We have
obtained 27, 000 feature vectors split into the training and testing sets. For the
negative videos, we have fixed a FPS ≃ 0.08 for tradeoff between the scalability
and the memory constraint. We have considered for the experiments a GPU with
a 8 GiB of memory (e.g. Nvidia GPU RTX 2070). In such a GPU, 7 GiB can be
allocated to the features11 for a total amount of 458, 750 considering a maximum
size of 4, 096-F. We have extracted 431, 750 features vectors from the negative
videos dispatched into the training and testing sets.

11 1 GiB to store the program, frameworks and for the results.
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