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Abstract

In this paper we present a robust system of symbol recog-
nition using a structural approach. Our key objective here is
to provide a system, equaling the statistical ones in robust-
ness concerning the recognition, to apply next to localiza-
tion. To do it we have investigated two particular structural
methods: the straight line detection using Hough Transform
and the vector templates matching. Experiments done on
the GREC2003 database show how their combination al-
lows to obtain high recognition results.

1 Introduction

Symbol recognition is a particular application of pattern
recognition. It aims to localize/recognize symbols within
document images in regard to specific application domains
(architectural, electrical, etc.). It was an active topic in the
field of graphics recognition during the years 90’s. In the
last ten years, there has been a noticeable shift of attention
towards the problem of performance evaluation of symbol
recognition systems [2]. This has resulted in the organiza-
tion of several international contests, held during the confer-
ences ICPR 2000 and GREC 2003, 2005 and 2007. How-
ever, all these contests have been focussed on recognition
of isolated symbols. They have not considered the prob-
lem of symbol localization in real documents, composed of
multiple objects constrained by spatial relations. The main
reason for that is the few of ready-to-use systems working
in localization. In addition, the performance evaluation task
is made harder. It is difficult to obtain groundtruth of whole
documents, evaluation metrics must be also reformulated to
evaluate localization/recognition in complete documents.

This particular situation results today in a mixed result.
In one hand, the work done in performance evaluation has
highlighted robust methods of isolated symbol recognition.

In the other hand, none of the proposed methods can deal
with the localization of symbols on real documents. Indeed,
to gain robustness the authors have focussed their systems
on statistical approaches. Feature vectors are computed
globally to images, and next compared using statistical clas-
sification technics. Thus, to locate symbols a filtering must
applied to whole document images. Such a filtering requires
large computation times, despite the possible use of heuris-
tics to limit the areas to explore. In addition large amounts
of data are used to train these systems. Such experimental
conditions can’t be obtained with a real recognition case.

The system of [10], winer of the GREC2005 contest, is
an example of that. It uses 2D kernel densities to represent
symbols, computed from sample points issued of a skele-
ton. The comparison between two symbol is achieved us-
ing the Kullback-Leibler divergence as similarity measure.
During this contest, provided databases were composed re-
spectively of 50% for training and testing.

The open question today is how to define robust sym-
bol recognition systems applicable to localization. The key
point to do it are the structural methods. They are based on
the relational organization of low-level primitives (straight-
lines, arcs, etc.) into higher-level structures (graphs, sig-
natures, etc.). Systems could rely on this primitives de-
composition, to locate and recognize symbols at the same
time, using closed-loop methodologies. In addition, struc-
tural matching methods require usually a few of data for
training, at minimum ideal models of symbols. However,
these methods are well-know for their noise sensitivity.

In this paper we propose a new structural system for
symbol recognition. Our key objective here is to provide a
system equaling the statistical ones in robustness concern-
ing the recognition, to apply next to localization. Localiza-
tion and recognition are both huge issues, in this paper we
will investigate the structural recognition part. We will give
in perspectives some considerations to use of this method
for localization. To make robust our system we have inves-
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tigated two particular structural methods for symbol recog-
nition: straight line detection using Hough Transform, and
vector template matching. In the rest of the paper we will
present both of these methods in sections 2 and 3. In sec-
tion 4, we will present results and experiments done with
our system on the GREC2003 database. Finally, section 5
will give our conclusions and perspectives about this work.

2 Straight line detection

First step of any structural recognition system, is to ex-
tract graphical primitives (straight-lines, arcs, etc.) from
images. During the last twenty years, different types of ex-
traction methods have been proposed in literature includ-
ing skeletonization, contouring, line tracking, etc. Among
them, the ones based on the Hough Transform (HT) present
good properties of robustness. It has been applied with suc-
cess in the past to line drawing documents [6].

The HT is a well-known method introduced in years 60’s
by P.V. Hough. Its key idea is to project pixels of a given
image into an parametric space (ρ, θ), where shapes can be
represented in a compact way Fig. 1. The classical Hough
transform was concerned with the identification of straight
lines. It has been extended next to other shapes like circles
or ellipses. In our system we have limited our detection to
straight-lines. Usual process consists of three main steps:

1. Point selection: Points of interest are selected first us-
ing some pre-processings, allowing to reduce process-
ing times of next steps. These points must characterize
properly the shapes to detect, in order to not loose rel-
evant information.

2. Point accumulation and peak detection: Points of
interest previously selected are mapped to the Hough
space. An accumulator array is employed to record
the number of sine curves going trough a given point.
Peak detection consists in the identification of points in
the accumulator, for which the number of sine curves
is important enough. Several methods have been pro-
posed in the literature to accelerate the accumulation
and to make more accurate the peaks detection (ran-
domized HT, probabilistic HT, etc.).

3. Segment detection: The detected lines in Hough
space are mapped with the document image, in order to
detect the begin-end points composing segments. Ar-
eas of lines are scanned, in order to check the connec-
tivity of neighboring pixels along. Details about the
used methods to achieve this step, and their compari-
son, are seldom addressed in the literature.

Among the existing methods, we have made the follow-
ing choices for our system. Our point selection results of a

Figure 1. Hough Transform

skeletonization process. We have employed the algorithm
of [1], based on a medial axis transform. Such a skele-
tonization approach is known to be less sensitive to noise
and large thicknesses. The algorithm of [1] is also partic-
ulary adapted to multi-orientation cases due to the use of
the 3-4 distance. It constitutes a good choice to process
line drawing images. We apply next a point accumulation
and peak detection as proposed by [7]. This method finds
local maxima within the accumulator using a sliding win-
dow. The setting of the window size could impact a lot
the detection, which constitutes a main drawback of the
method. However, this method is much more faster than au-
tomatic ones based on iterative accumulations. This speed
is mandatory when processing large size documents [6]. In
a last step, we detect segments. Our method is based on
computation of a dissemination criteria of meet pixels along
the scan lines. This dissemination criteria corresponds to
the mean of Euclidean distances, between the meet pixels
along scanned lines. Post-processing steps are also em-
ployed to merge and to delete the near and small segments,
using pre-defined thresholds.

3 Vector Templates Matching

3.1 Introduction

The graphical primitives must be exploited next during
a matching process, to achieve the symbol recognition. It
exists different approaches in literature to perform such
a matching: signatures based classification, matching of
ARG1, etc. In this work we have investigated the vector
templates matching.

Vector templates matching has been introduced in years
90’s by J.R. Parker. It has been initially applied to charac-
ter recognition, and next extended to symbols [4]. The key
idea of this approach is to apply template matching tech-
nics to vectorial representations. Like this, it takes benefit
of robustness of template matching and flexibility of vecto-
rial representation (straight-lines, arcs, etc.). Vectors can be
scaled and rotated easily without any distortion, it is then
possible to render the matching invariant.

1Attributed Relational Graph



In the system proposed by J.R. Parker [4], images of any
arbitrary dimensions are first converted (detection of vec-
tors, rotation and scaling) into vector templates of regular
square sizes. The templates are next matched together. For
that purpose, they are redrawn into raster templates by re-
specting the original widths of vectors. The final match
score is obtained by comparing the pixels of rasters. An
Euclidean distance is computed for each pixel, to the near-
est pixel of a same value in a raster template to compare.
The global distance corresponds to the average.

We propose here a revisited method for vector templates
matching. Indeed, the original method proposed by [4]
raises problems due to the use of raster templates for com-
parison. This distorts the vectors in order to map them into
pixels, especially when using small templates. In addition,
this approach can’t be used in a localization perspective.
The computation of distance involves several accesses to
rasters to look for the nearest pixels, impossible to apply
with large images. To avoid these problems a solution could
be to match at a vector level. Initial information without
any distortion could be used, moreover vectors correspond
to small subsets of points in regard to rasters. However,
template matching must be be redefined to be apply at a
vector level. We propose here an algorithm to achieve such
a matching, detailed in the next subsections 3.2 and 3.3.

3.2 Building of Templates

The first step of our algorithm is to build the vector tem-
plates. A bounding box is computed from detected vec-
tor (i.e. straight-lines), using min-max methods. We re-
scale next these vectors in order to place their bounding box
within a template of 1282. In a last step, they are shifted in
order to center the bounding box to the middle of template.
Our system represent the vectors at a sub-pixel precision of
10−6, making like this few distortions.

3.3 Matching of Templates

The key problem next is to define a templates match-
ing algorithm able to work at a vector level. In fact, such
a problematic has been already studied in the performance
evaluation field for vectorization processes. Such an evalu-
ation aims to compare a groundtruth with some vectoriza-
tion results. Thus, proposed algorithms could be extended
to vector templates matching. In our system we have taken
benefit of methods proposed by [5, 9].

As proposed by [5], we build a match score matrix be-
tween a model and a built templates (Fig. 2). This matrix
gives the best match scores between vectors of two tem-
plates. The global match score could be then obtained by
meaning the matrix. We build it in three steps, employing a
method closed to [5]: overlapping test, ranking process and

computation of overlapping distances. Our overlapping test
Fig. 3 (a) aims to determine possible overlappings between
vectors of two templates. It is applied between extremities
of two vectors to compare. When all the overlapping re-
lations have been identified, we compute for each positive
case an Euclidean distance between the corresponding vec-
tors. We use these distances to rank the vectors from near
to far ones. At last, we match the nearest ones using the
overlapping distance proposed by [5] Fig. 3 (b), and report
them into the matrix (Fig. 2).

Figure 2. Match Score Matrix [0-100]

Figure 3. Overlapping (a) test (b) distance

However, some fragmentation cases could appear within
the matrix. These cases correspond to vectors not well de-
tected, like the cases (7) to (2,3), or (4) to (6,7) in Fig. 2.
They could impact a lot the global match score, and must be
processed consequently. In [5], these fragmentation cases
are just detected and counted in an edit-cost, corresponding
to hand-made corrections to apply to vectorized drawings.



Such a criterion is not adapted to the goal of vector tem-
plates matching, match scores are not recomputed. For that
purpose we have extended the initial approach of [5] with
fragmentation quality method proposed by [9] Fig. 4 (a).
This one allows to match a vector with a set of fragmented
vectors. It is defined as the average of lengths of fragmented
vectors projected to a full one.

Figure 4. score (a) fragmentation (b) global

To apply this method, it is necessary to detect the frag-
mentation cases first. It is achieved in our algorithm by cre-
ating a weighted matrix (Fig. 5) of the match score one.
This matrix identifies the fragmentation cases, and provides
a weight for each match score depending of the detected
case. These weights will be used next in combination to
the match score matrix, to compute the global distance. To
build this matrix, we count all exiting values in the match
score matrix. A count n > 1 corresponds to a fragmenta-
tion case, either one vector model to many (line), or either
many to one (column). We put then weights of 1

n values
in the weighted matrix at same places. The non detection
cases correspond to missed vectors or false alarms.

Figure 5. Weight Score Matrix [0-1]

We process next the detected fragmentation cases with
the fragmentation quality method of [9] Fig. 4 (a). The
obtained results are reported in the match score matrix Fig.

6. We use next this modified match score matrix with its
associated weighted matrix, to compute the global match
score Fig. 4 (b). This global match score is obtained by
multiplication of each weight wi,j with their corresponding
match score ci,j . It takes too into account the false alarm
and missed cases. The Fig. 6 gives the global match score
before (Score 1) and after (Score 2) the process of fragmen-
tation cases, as soon as the gained delta between them.

Figure 6. Modified Match Score Matrix [0-100]

4 Experiments and results

In this section we present experiments and results about
our system. We have tested it on the database of interna-
tional contest of symbol recognition GREC20032 [8]. This
database deals with the recognition of segmented architec-
tural and electrical symbols. Because it has been developed
for the 1st GREC contest, it is well known today and widely
used for comparisons. Different tests are available accord-
ing to the number of class, the type and level of noise, the
geometrical transformations (scale and/or orientation), etc.
Each test is provided with groundtruth to allow performance
evaluation. Among these tests we have considered those of
binary degradation. They have been generated using the
Kanungo method with different settings. We have retained
only the tests with 20 symbol classes. Indeed, our system
can’t detect arcs, that constitutes a strong limitation to test
it to a higher recognition problem. At the end, we have used
9 tests of 100 images each.

The Fig. 7 gives our recognition results. We have ob-
tained a global recognition rate of 97.9%. This rate is just
slightly lower than those of GREC2003 and GREC2005
winers (both based on a statistical approach) on the same
database, respectively of 99.7% [8] and 100.0% [10]. Our
results start from a lower rate of around 92% to perfect
rates of 100%. During the recognition process, we have
also computed the mean match score for each test. The Fig.
7 gives the corresponding curve. These match scores are

2http://www.cvc.uab.es/grec2003/



ranked from 0.02 to 0.07. The higher values are obtained
for tests 3 to 5, corresponding to the lower recognition rates.

Figure 7. Recognition results

In order to interpret our recognition results, we have
also computed the recognition rates of individual symbol
classes, and the global confusion matrix. Fig. 8 presents a
typical recognition error of our system. Such a symbol is
often confounded. Indeed, it is composed of some vectors
of small lengths, difficult to identify properly with our HT-
based detection. The bottom parallel vector is too near to
other ones, especially when noise makes connect them by
filling the hole (like in test degrad 5). The two vectors are
merged during the detection, and the symbol is matched to
another representative model during the recognition step.

Figure 8. Typical recognition error

5 Conclusions and Perspectives

In this paper we have presented a robust structural sys-
tem of symbol recognition. Our key objective here is to
provide a system equaling the statistical ones in robustness
concerning the recognition, to apply next to localization. To
do it we have investigated two particular structural methods:
the straight line detection using HT and the vector templates
matching. Both of them presents interesting properties of
robustness. We have shown in our experiments, how the
combination of these two methods, permits to obtain high
recognition results on the GREC2003 database.

Concerning the perspectives, the short term one will be
to integrate arc and circle detection in our system. It will al-

low us to extend recognition experiments to other datasets,
especially regarding scalability. Our long term perspective
concerns the extension of our method to symbol localiza-
tion. Indeed, we have re-defined our templates matching to
work at the vector level. The use of this vectorial represen-
tation for matching, makes today possible the application
of windows technics (sliding, framing, etc.) to match our
templates. Experiments done in past contributions [3] show
than localization could be achieved within reasonable times
using such a technic.
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