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Abstract—In this paper, we present an overview about the
use of the SESYD dataset for performance evaluation of symbol
spotting systems. SESYD is a dataset of synthetic graphics
documents containing non-isolated symbols in a real context.
These documents are drawings (architectural floorplans and
electrical diagrams), bags of symbols (i.e. arbitrary composi-
tions of segmented symbols) or query symbols (i.e. cropped
images of symbols). The whole dataset is currently composed
of 5 document collections containing around 11,100 images
representing 128,700 symbols. All these collections have been
made publicly available for evaluation purpose since 2007. As
a result, this dataset has been employed in a large number of
papers in the literature. It constitutes till today, at the best
of our knowledge, one of the top datasets in the graphics
recognition community for performance evaluation. In this
paper, we present an overview about the use of this dataset on
the specific task of symbol spotting. We report and compare
the main results and characterization approaches presented
in the literature. We also present some improvements of our
approach resulting in some new published collections.

Keywords-symbol spotting, performance evaluation, distor-
tion methods, performance characterization

I. INTRODUCTION

Performance evaluation is a particular cross-disciplinary
research field in a variety of domains (Information Retrieval,
Computer Vision, CBIR1, etc). Its purpose is to develop
full frameworks in order to evaluate, to compare and to
select the best-suited methods for a given application. Such
a framework should include the groundtruth and datasets
for training and testing, the definition of a data exchange
protocol, the definition of metrics and the development of
tools to match the system results with the groundtruth.

In the field of DIA2, performance evaluation is a well
known-topic since the early 90’s. Performance evaluation
frameworks have been defined for several DIA tasks such
as table recognition, page segmentation, OCR3, etc. In this
paper we are interested in the performance evaluation of

1Content Based Image Retrieval
2Document Image Analysis
3Optical Character Recognition

symbol spotting systems [1]. Since research on symbol
spotting is just starting, it is still a little ambiguous to define
“what a spotting method is”. In [2], symbol spotting is
defined as “a way to efficiently localize possible symbols
and limit the computational complexity, without us ing
full recognition methods”. So, symbol spotting could be
considered as a middle-line technique combining symbol
recognition & segmentation and can also be viewed as a
CBIR task.

As spotting is concerned by retrieval and localization of
symbols, a hard problem is how to compare experimental
results from existing systems. Traditionally, with recognition
[3] this step was done independently for every system by
comparing manually the results with the original images and
checking the segmentation errors. This process was unreli-
able as it raises conflicts of interest and does not provide
relevant results. Moreover, it does not allow to compare
different systems and test them with large amounts of data.
In order to solve this problem, several research works have
been carried out over the last ten years on the performance
evaluation of symbol recognition systems [1], resulting in the
organization of several international contests and evaluation
campaigns. However, these works have been focused on
the recognition of isolated symbols. They do not take into
account segmentation of symbols in real documents. One of
the main reasons is the difficulty of obtaining a large set
of documents with the corresponding groundtruth. Doing
that manually would require an unaffordable amount of
time, as all the symbols in the document must be precisely
located and labeled. Groundtruthing still constitutes an open
research problem today, and new approaches have been
investigated recently on this topic [4].

In order to address this problem, we have proposed in
[5] an approach to the generation of synthetic graphics
documents containing non-isolated symbols in a real context.
The initial version of the system has been published in
2007 [5] and a complete description of it was reported in
[6]. Since 2007, this system has been used to generate a
large variability of document collections containing graphics



and text information. These collections consist of drawings
(architectural floorplan, electrical diagrams, geographical
maps) but also of arbitrary compositions of segmented ob-
jects (e.g. bags of symbols, bags of words, cropped symbols,
character images, etc.).

All these collections have been published in a dataset
called SESYD4 made publicly available5 for performance
evaluation purpose. This dataset is currently composed of
11 document collections containing around 280,000 images
representing 440,000 objects (i.e. characters and symbols),
whose 5 collections are concerned with the symbols (corre-
sponding to around 11,100 images and 128,700 symbols).
Since the publication of the initial collections in 2007,
the SESYD dataset has been employed in around 30 pa-
pers6 in the literature for different performance evaluation
tasks including symbol recognition [?] & spotting [7], text
segmentation [?], line drawing indexing [8], performance
characterization [?], etc. It constitutes today, at the best
of our knowledge, one of the top datasets in the graphics
recognition community for performance evaluation.

In this paper, we present an overview about the use of
this dataset focused on the symbol spotting task and the
main results and conclusions reported in the literature. We
also present some improvements of our approach and, as
a result, some new published collections. In the rest of the
paper, firstly we will present in section 2 a quick overview of
our approach and give a presentation of the SESYD dataset
including the new collections. Section 3 will report and
compare the main results and characterization approaches
presented in the literature. Finally, in section 4 we state the
main conclusions about this work.

II. PREVIOUS WORK AND RECENT CONTRIBUTIONS

A. Previous work

The system we have published in [5], [6] allows the
generation of synthetic graphics documents containing non-
isolated symbols in a real context. Our underlying aim was
to make these documents as realistic as possible. However,
realistic documents cannot be produced without taking into
account human know-how into the process. In our work,
we have considered an alternative approach to solve this
problem. Our key idea came out observing that graphical
documents are composed of two layers: a background layer
and a symbolic one. We have used this property to build
several document instances as shown in Fig. 1 (a). We
generate several different symbolic layers and place them
on the same background obtaining different documents. In
this way, the building process of realistic documents can be
considered as a problem of symbol positioning on a given
document background.

4Systems Evaluation SYnthetic Documents
5http://mathieu.delalandre.free.fr/projects/sesyd/
6Statistics obtained with the “Publish or Perish” software.

Figure 1. (a) two instances of document (b) reproduction of domain rules
(c) bags of symbols

We have addressed the symbol positioning problem
through the definition of sets of constraints. These con-
straints determine where and how the symbols can be placed
on a background image according to the properties of
a particular domain (architecture, electronics, engineering,
etc.). They are edited with the help of users, familiar with
the domains, to reproduce the rules of original drawings. The
Fig. 1 (b) gives one example of an original floorplan and a
corresponding synthetic document. The initial information
concerning the types and the locations of symbols has been
preserved in the constraints.

The Table I gives the details about the collections we
have produced using our system in terms of numbers of
datasets, images, symbols placed on the documents and
symbol models. The datasets #1, #2 and #3 are the initial
datasets presented in [6]. Our key objective was to highlight
the flexibility and relevance of our approach for performance
evaluation. The datasets #2, #3 are of drawings from the ar-
chitectural and electronic domains, which proves the flexibil-
ity of our approach. In both datasets #2 and #3, the resolution
of the produced images has been set in order to respect a
mean symbol sizes of 3202 and 2882 pixels respectively. The
dataset #1 is concerned with bags of symbols shown in the
Fig. 1 (c). Here, the symbols are positioned at random on an
empty background, without any connection, and using dif-
ferent rotation or scaling parameters. They establish a bridge



between the recognition datasets published in the previous
ISRC7 and the localization datasets #2 and #3. In these bags,
the symbols appear at a fixed size of 2562 pixels. We have
reported in [6] some performance evaluation experiments
of a symbol localization system on these datasets. These
experiments reflect variations in term of localization results
between document instances, highlighting the relevance of
our datasets for performance evaluation.

id Collections Datasets Images Symbols Size Models
#1 bags 16 1600 15046 2562 25-150
#2 floorplans 10 1000 28065 3202 16
#3 diagrams 10 1000 14100 2882 21
#4 resolution 6×5 300×5 13106×5 3202 16-21
#5 query

symbols
6 6000 6000 2882-

3202
16-21

72 11100 128741

Table I
COLLECTIONS OF TEST DOCUMENTS OF THE SESYD DATASET

B. Recent contributions

Recently, we have extended our dataset with a new collec-
tion #4 that consists of multi-resolution documents. Indeed,
traditionally performance evaluation contests on symbol
recognition [1] are focussed on binary degradation to distort
images in a way similar to a scanning process. Degradation
models, to be applied on the clean images resulting of the
building process, have been proposed in the literature such
as [?]. With this new collection #4, our goal is to investigate
the impact of low-resolution as it noises the Web images.
Fig. 2 (a) gives some examples of degradation resulting in
modifications of the resolution. Our synthetic documents
are initially generated in a vector graphics form with the
corresponding groundtruth. To produce images at multiple
resolutions, we apply a scaling process to the syntectic
documents. The groundtruth is scaled simultaneously to pre-
serve the corresponding graphics information. The obtained
vector graphics documents are then rasterized in gray levels
to produce the test images. The precise resolution of a
rasterized vector graphics necessary for high-quality results
depends on the viewing distance. Therefore the distortions
will mainly result of this rasterization process. With a
rasterization at low-resolution, the images will be blurred or
pixelized excessively. We have selected 6 datasets from the
collections #2 and #3 from the architectural and electrical
domains. These datasets have been scaled to produce 5
resolution levels 1/2n, with n ∈ {0, 1, 2, 3, 4}. The Fig. 2
(a) gives examples of a cropped symbol at levels 1/1, 1/2
and 1/4.

We have also extended our dataset with an additional
collection #5 involved with distortions related to user inter-
action. This collection proposes query symbols (i.e. cropped

7International Symbol Recognition Contest, see [1] for references.

Figure 2. (a) Examples of degradation at different levels of resolution (b)
Precision in cropping with different distortion parameters

images of symbols) extracted from complete drawings. The
Fig. 2 (b) gives some examples of images extracted from
this collection. These queries are symbols cropped from the
images of drawings that can be affected by the way the user
makes the selection. Then, this collection #5 tries to imitate
this effect.

At the best of our knowledge, only the work of [?] deals
with the topic of distortions related to user interaction in
the literature. This work proposes a system that supports
learning, from sample documents, of probabilistic models
of objects which take into account their variability. These
models can then be used to build and to distort objects. Focus
distortions on real input provides more realistic test sets, but
the work involved may be a significant proportion of that
required to generate test data directly from real documents.
In our approach we have adopted an opposed method which
operates without any prior knowledge. While the proposed
method does not correspond strictly to a “realistic” noise,
we don’t need a learning step nor sample documents.

Our method is based on the generation of gaussian random
numbers. We have employed here a gaussian model, as it
is a common way to represent random distributions of real
inputs. As shown in Fig. 3 (a), this generation consists of
finding the v value from a normally distributed number s.
The problem here is that the gaussian function cannot be
inverted analytically. So in order to solve it the common
way described in the literature is to use the Box-Muller
transformation to pass from the uniform distribution to
the gaussian one [9]. This transformation allows efficient
computation of gaussian random numbers but does not allow
the user to set different variance values σ2, that can be
necessary to control the amount of distortion (see Fig. 3
(b)). To solve this problem we compute an approximation
of the gaussian sum by using the erf(z) function. This
function can be computed in various ways but it is usually
computed as a Maclaurin polynomial. We need next to solve



erf(z) ≈ s in order to find the v value. This is difficult,
because to obtain a good approximation of s, a high value
of l (the order of the Maclaurin polynomial) is needed which
involves a complex factoring step. In order to solve it we
apply a dichotomic search algorithm on the x axis. Our
experiments have shown that with a Maclaurin polynomial
built with l = 20, the v values are obtained with 10−3

precision in less than 20 iterations. As the distortion process
is done off-line, this processing charge has no impact.

Figure 3. Generation of random gaussian numbers
(a) uniform distribution (b) no uniform distribution

We have used this random number generator within a
distortion method to produce the query images. Our method
starts from the groundtruth information about bounding
boxes of symbols in drawings. We extract the top-left
(x0, y0) and bottom-right (x1, y1) points of bounding boxes
from the dx, dy values (i.e. width and height) as defined in
Eq. (1). Next, we modify the coordinates of these points
using four random gaussian numbers vx0, vy0, vx1, vy1 as
detailed in Eq. (2) and (3). This process grows the bound-
ing box around the symbol in order to simulate the over
segmentation that usually appears during a crop of a user.
The new coordinates {x′

0, y
′

0, x
′

1, y
′

1} will serve as cropping
parameters to extract the query image from the complete
drawing. We have used this approach to generate 6 datasets
of query symbols (Table I) from the architectural and elec-
trical domains, using three different settings for the random
number generator σ2 = {0.002, 0.01, 0.05}. Fig. 2 (b) gives
examples of query symbols produced at these three levels
of distortion.

x0, y0 dx, dy x1 = x0 + dx, y1 = y0 + dy. (1)

x
′

0 = x0 − vx0 × dx y
′

0 = y0 − vy0 × dy (2)

x
′

1 = x1 + vx1 × dx y
′

1 = y1 + vy1 × dy (3)

III. REPORT OF USE

This section reports the use of the SESYD dataset in the
literature. As stated in introduction, since its initial publica-
tion this dataset has been employed in around 30 papers in
the literature. We present here an overview about the use of
this dataset focussed on the symbol spotting task, and next

we report and compare the main results and characterization
approaches presented in the literature. Since its publication,
the SESYD dataset has attracted a strong interest in the
research community on symbol spotting systems [?], [7],
[10], [11], [12], [13]8. These systems are focussed on symbol
retrieval in complete drawings, using as input query symbols
produced by users. The important characteristics for this
kind of systems are scalability, according to different criteria
like application domains or size of the database to index,
robustness to noise, etc. Compared to the traditional recog-
nition methods no training datasets are used here and the
complexity of methods is a major issue to support a fluent
user interaction. The Table II - left part allows a comparison
of the main results reported in [?], [7], [10], [11], [12], [13].
As these works are focused on symbol retrieval in complete
drawings, the collections #2 and #3 were mainly concerned.
The input of systems are sets of query symbols M/Q
(being M the number of different models and Q the total
number of query symbols) to be retrieved in the collection
of drawing images Datasets. Results are presented in terms
of (P )recision/(R)ecall metrics that are well known in the
Information Retrieval field.

Table II
COMPARISON OF SYMBOL SPOTTING SYSTEMS

#n(m) m images of the collection n, M/Q are (M)odels and (Q)ueries
P/R are (P)recision and (R)ecall, (-,+,++) are comparative scores

Na is (N)o (a)vailable

In the rest of the section we give a detailed analysis
of the performance evaluation approaches reported in these
papers and, as a conclusion, a more objective comparison
of spotting results of these systems. We will argue this
comparison on several aspects including system scalabil-
ity (tests, models and domains), characterization protocols
(query symbols, results) and processing complexity. The
table II - right part gives comparative scores we propose

8Among the existing publications of the same authors, we have selected
the most recent and relevant ones.



for each of these systems on these aspects. We will present
each of the aspects in the next subsections 1. to 6., and
discuss and justify the scores. At last, we will compare and
discuss the spotting results of the systems in the subsection
7.

1) Scalability according to the size of the test database:
To drive the experiments, the authors have extracted subsets
from the collections #2 and #3 initially constituted of one
thousand drawings each. Some of these experiments concern
very small subsets. In [10] and [11] the authors provide
results on a dataset of 15 drawings composed of around
200 symbols9. The rest of the experiments deal with with
hundreds of drawings when possible, 86 in [12] and 320 in
[7]. The top experiments in terms of size have been reported
in [?] and [13], with one thousand drawings and around
14,000 and 28,065 symbols respectively.

2) Scalability according to the number of symbol models:
One of the main limitation of the proposed methods is
scalability of symbol models. The collections #2 and #3
have been produced from symbol model libraries of size
16 and 21 respectively. However, most of the proposed
systems [10], [11], [7], [12] have restricted their experiments
on subsets of these models, (8-10)/16 for the floorplans
and (4-14)/21 for the electrical diagrams. Only the works
described in [?], [13] address the spotting task using the
complete model libraries. Few explanation are given in
the corresponding papers about this problem, but one of
the main reasons is certainly the descriptive power of the
employed descriptors. In [10], [11], the authors use a graph
based representation describing closed loops detected on the
drawings with their adjacency relations. However, not all the
symbols are composed of loops. The works proposed in [7]
and [12] exploit local descriptors (i.e. key points) to be used
in matching processes focussed on mapping transformation
[7] and Shape Context [12]. The major problem in these
approaches is the robustness of the key point detection step.
Sampled points of contours are used in [7], introducing
occlusions when symbols appear connected. In [12] the
DoG10 descriptor is used. This descriptor is popular in the
computer vision field, it focusses on describing the local
structures of images based on intensities, orientation and
location histogram. However, its performance is likely to be
reduced when facing to bi-level document images.

3) Scalability according to the domain usability: Domain
scalability concerns the ability of systems to process draw-
ings of different domains. This aspect is strongly linked to
the scalability of symbol models, as restrictions on models
will impact the domains concerned by these models. Most of
the systems [?], [7], [12] have been tested on drawings from
the architectural and electrical domains using the #2 and #3
collections. As stated before, some of them [7], [12] include

9[11] is an improvement of [10], datasets and features are the same in
both experiments.

10Difference-of-Gaussian

limitations on the processed symbol models: (8-10)/16 for
the floorplans and (4-14)/21 for the electrical diagrams.
Results are given in separate way to prove the domain
adaptation of the methods [7] [?]. The work described in [12]
is the only one combining the results of the both domains
within the same experiment.

Only the works described in [10], [11], [13] report results
on the architectural domain only. The works [10], [11] use a
graph based representation describing closed loops detected
on the drawings with their adjacency relations. A loop based
representation seems to be little appropriate for electrical
symbols, as symbols mainly appear as sets of parallel and
orthogonal straight lines without loops (e.g. capacitor, earth,
resistor, etc.). A similar constraint occurs in [13]. In their
approach, the authors represent the symbols with graph
paths. These paths are computed from a line graph resulting
of a vectorization process. Next, they are described using
some statistical descriptors in order to be recognized in
a classification chain. The approach seems well adapted
for the strong connected symbols as those in architectural
floorplans, however the path based representation looks
limited when the symbol representation is driven by the
neighboring information only e.g. parallel lines of capacitor
or earth symbols.

4) Types of query symbols: The spotting systems are
focussed on symbol retrieval in complete drawings, using
as input query symbols produced by users. Consequently,
a set of query symbols must be defined and submitted to
the systems to evaluate their P/R abilities. These query
symbols should present distortions as they are supposed
to be provided by users. However, most of the proposed
systems [11], [7], [10], [12], [13] have restricted their query
symbols to the ideal case only. Symbol model images have
been used resulting in clean and unoised query symbols,
that is far away from a real spotting use-case. As a re-
sult, characterization have been computed from too small
amounts of query symbols (8-22) to really judge about the
performances of the systems. Only the work done in [?]
has considered a complete evaluation. The authors have
exploited the collection #5 of query symbols to evaluate their
spotting approach. At the end, spotting has been tested from
two thousands query symbols at the first level of distortion
(i.e. σ2 = 0.002) to retrieve the 14,000 symbols. No results
are presented about the highest levels of distortion, that could
certainly impact the P/R results.

5) Characterization protocols: In the papers [7], [10],
[11], [12], [?], [13] the characterization of results is given
with the P/R metrics. Indeed, as the symbol spotting looks
like a CBIR task, the P/R seem to be well adapted.
However, symbol spotting concerns not only the retrieval
of the images containing the query symbols, but also the
localization of the symbols in the whole images of drawings.
Indeed, the symbols appear connected in a drawing, and each
drawing is usually composed of several symbols. Therefore



the characterization metrics should take into account the
retrieval and localization simultaneously. Some works have
been published recently to propose some adapted character-
ization protocols for symbol spotting and localization [?],
[14]. Despite these contributions, this topic still constitutes
today an open problem as no comparison of the protocols
has been proposed in the literature, and no ready-to-use
characterization tools are available.

As a result, the works described in [?], [7], [10], [11],
[12] have defined their own characterization protocols. In
[10], [11], [12], the characterization has been done by
comparing the results with the original images and checking
manually the spotting errors. This process was unreliable as
it raises conflicts of interest and does not provide relevant
results. In addition, doing the comparison manually is a
strong limitation for the scalability of tests, as the error
checking becomes time consuming. The authors in [?] have
chosen an automatic characterization protocol that doesn’t
take into account the results of localization. In their protocol,
a detection is considered as true positive if a spotted symbol
in a drawing appears at least one time, at any localization,
in the corresponding groundtruth file.

Only the works described in [7], [13] exploit the lo-
calization of symbols for performance characterization. In
[7], a characterization protocol is proposed exploiting the
bounding boxes of the spotted symbols to be compared with
those of the groundtruth. A symbol is considered as well
detected if no more than 10% of overlapping is detected
with the groundtruth. This protocol looks like the one of [?]
well known for the characterization of the logos spotting
systems. The authors in [13] use the protocol described in
[?]. This protocol is slightly different from the previous
one [7] as the characterizations, at retrieval and localization
levels, are combined in a single metric. This metric combines
the precision (P) and recall (R) metrics with areas of the
overlapping between sets of polygons representing results
and ground-truth. Final characterization is given by the way
of an average precision which rewards the earliest return
of relevant items. In [?], the authors present this metric as
especially adapted to evaluate well the behavior of symbol
spotting systems.

6) Complexity: In a retrieval application, the complexity
of methods is a major issue to support a fluent user in-
teraction. This consideration is quite accepted today in the
graphics recognition community to define what a symbol
spotting system should be [1]. However, few of the works
published in [10], [11], [7], [12], [?], [13] report time results
and a complexity analysis of their approach. In table II, we
propose a classification of these different systems regarding
the decreasing levels of complexity NP11 & exponential, and
linear & sublinear.

NP & exponential complexities: In [10], spotting is

11Nondeterministic Polynomial

achieved using a subgraph isomorphism algorithm. The
subgraph isomorphism is of NP complexity. However the
employed matching algorithm in [10] is tuned for large
graphs using heuristics resulting in approximation of the
isomorphism. They argue that the matching is NP bounded
in worst of the cases. Despite this optimization, it seems
difficult to apply this approach to a real spotting use-case.
The authors in [7] propose an approach where spotting
is done by applying a branch-and-bound algorithm using
feature points extracted from drawings. The worst case com-
plexity of any branch-and-bound algorithm is exponential
but the average observed complexity is significantly lower.
The average running time reported in the paper is 22s per
query, that restricts this system to off-line uses in most of
the cases.

Linear & sub-linear complexities: At the best of our
knowledge, only the works [?], [11], [12], [13] have con-
sidered the complexity problem in their systems. In [11],
the approach of [10] is extended on the complexity aspects
as they have shifted the subgraph isomorphism problem
to a linear integer programming. Another work interested
with replacement of subgraph isomorphism algorithms due
to complexity is [?]. Their method accomplishes subgraph
spotting through graph embedding working within a linear
time complexity. In [13], the complexity is addressed using
indexing data structure to spot symbols in a sub-linear time
complexity. Their approach relies on hash tables to organize
their shape descriptors. They employ a specific hashing data
structure, called locality sensitive hashing (LSH), that aims
to organize the shape descriptors regarding the neighborhood
information. Experiments done report an average time retrial
of around 0.1 second per query corresponding to the shortest
retrieval time reported in the literature.

7) Comparaison of the results: All the works described
in [?], [7], [10], [11], [12], [13] present results, in terms of
P/R, to characterize the spotting ability of their systems. As
these results have been obtained from the SESYD dataset,
this could open interesting perspectives for comparison
of these different systems. Besides, some of these works
[7], [12] present comparisons of their results with other
systems argued by the use of this common dataset for their
experiments. However, as the characterization approaches
employed in these works differ on many aspects (i.e. used
instances of the SESYD dataset, symbol models supported
by the spotting systems, types of query symbols to be sub-
mitted, characterization protocols, etc.) a direct comparison
of the P/R results remains quite subjective and must be
considered carefully.

The results presented in [10], [11], [12] have been ob-
tained without automatic characterization process and from
very small instances of the SESYD dataset. As a conclusion,
results presented in these works seem few reliable and it
becomes difficult to give relevant conclusions about the
evaluation of these systems.



Among the exiting works interested with the SESYD
dataset, the main relevant results from our point of view
have been reported in [?], [7], [13]. The results presented
[?] present a particular property, as they have been obtained
from a large variability of query (in terms of noise and
number) to be submitted to the system. At the end, spotting
has been tested from two thousands query symbols with a
low level of distortion. The dataset used to obtain these query
symbols is the collection #5 presented as new contribution
in this paper. However, as the characterization has been
driven without taking into account the localization level, the
presented P/R scores certainly overvalue a lot the real per-
formances of the system. The authors should also complete
their experiments with the highest levels of distortion, that
will certainly impact significatively the spotting results. In
[7], [13], complete results have been presented including
characterization at the retrieval and localization levels. As
the characterization metrics and symbol librairies differ in
these both works, none direct comparison of the P/R scores
can be driven objectively. However, results reported in these
papers prove than, considering the case without distortion of
the drawing images and the query symbols, retrieval can be
achieved with a quite good recall and acceptable precision.
Let’s notice than improvements must be driven for the
system [7] on the scalability aspects, as not all the symbol
models are supported to date. In addition, the proposed
approach should also be revisited on the complexity of the
proposed approach, as the reported retrieval times cannot
guaranty on-line uses in most of the cases.

As a conclusion, we have proposed in this section a quite
detailed analysis of the results and performance evaluation
approaches reported in these woks. This analysis highlights
some of the strong and weak points of the proposed ap-
proaches. As a conclusion of this analysis, we give here a
set of recommandations than can be used as guideline for
performance evaluation of further researches on the symbol
spotting systems.

1) The characterization process must be achieved auto-
matically and computed from a significant number of
test documents to be relevant.

2) The experiments must be done using the full symbol
model library to allow an exhaustive comparison of
the systems.

3) The types of query symbols to be submitted to the
systems must be extended in terms of noise and
number, as query symbols should present distortions
introduced by users.

4) The characterization protocols must take into account
the retrieval and localization levels, as spotting con-
cerns the localization of the symbols in the whole
images of drawings.

5) The complexity of methods is a major issue to support
a fluent user interaction, then spotting must be consid-

ered as a real-time application where results provided
after the deadline are not only in late but wrong.

IV. CONCLUSIONS

In this paper we have presented overview about the
use of the SESYD dataset for performance evaluation of
symbol spotting systems. SESYD is a dataset of synthetic
graphics documents that has been used in a large number of
papers in the literature for different performance evaluation
tasks (symbol recognition & spotting, text segmentation,
line drawing indexing, etc.). It constitutes today, at the best
of our knowledge, one of the top datasets in the graphics
recognition community for performance evaluation. Consid-
ering the documents related to the symbol spotting task,
the SESYD dataset is currently composed of 5 document
collections containing around 11,100 images representing
around 128,700 symbols. These documents contain non-
isolated symbols in a real context, including drawings, bags
of symbols or query symbols.

In this paper, we have presented a quick overview of
our approach with some improvements resulting in new
published collections. A first new collection #4 consists of
multi-resolution documents, with the goal to investigate the
impact of low-resolution as it noises the Web images. We
have also proposed an additional collection #5 of query
symbols (i.e. cropped images of symbols) extracted from
complete drawings. These query symbols tries to reflect the
way the user makes the selection of symbols on drawings.
In our approach we have adopted a method which operates
without any prior knowledge, based on the generation of
gaussian random numbers. While the proposed method does
not correspond strictly to a “realistic” noise, we don’t need
a learning step nor sample documents.

In a second part, we have reported and compared the
main results and characterization approaches for perfor-
mance evaluation of symbol spotting systems presented in
the literature [?], [7], [10], [11], [12], [13]. Despite the
common use of our dataset for performance characterization
in all these works, a direct comparison of the system results
remains quite subjective and must be considered carefully
as the employed characterization approaches differ on many
aspects. However, results reported in the some papers [7],
[13] prove than, considering the case without distortion of
the drawing images and the query symbols, retrieval can be
achieved with a quite good recall and acceptable precision.
We have proposed here a quite detailed analysis of the results
and performance evaluation approaches reported in these
woks, resulting in some main recommandations than can
be used as guideline for performance evaluation of further
researches on the symbol spotting systems.

To conclude, we are enjoyed today of the interest met in
the research community on the SESYD dataset for perfor-
mance evaluation of the symbol spotting systems. As this



dataset has attracted many researches, we believe it consti-
tutes a useful contribution. Results reported in the literature
highlight quite good performance on the first collections #2
#3. In that way, we can consider that researches on symbol
spotting get through a first stage with the help of this dataset.
However, these collections #2 #3 are not concerned by
distortion. In addition, the used model libraries are restricted
in terms of size, however real domain applications usually
concern thousands of symbol models. Thus, a huge work
is waiting the research community on symbol spotting, as
researches on this topic should go ahead on the distortion
and scalability aspects. We believe than the new collections
#4 #5 we have presented in this paper will help to initiate
work in this direction.
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