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Abstract—Near-duplicate detection aims to detect images that
slightly differ in content. This problem has been addressed for
natural and document images in the literature. We are interested
here in a particular application dealing with Manga / Comics
images. In recent years, there has been a noticeable shift of
attention on this problem due to copyright protection and piracy.
Piracy is interested to getting copies of Manga / Comics. The usual
process is to purchase official versions in a print / digital form,
to capture and made them available on the web. The problem
of copyright protection is completely related to duplicate image
detection. It can can be formulated as the comparison of pages
coming from legal copies to pages coming from illegal copies. The
major issues here are related to noise coming from the capture
process, image recompression or postprocessing. The Manga /
Comics images are mixture of natural and document images, and
the standard duplicate detection methods are not fully adapted
to process them. We propose in this paper to investigate template
selection and matching in the binary domain to deal with this
problem. Our approach deals with the no-deformable and no-
invariant matching case. The first experiments report that our
method is robust to noise, scalable, supports skewing and low
resolution and is time efficient.

Keywords—near-duplicate image detection, template matching
and selection, auto-correlation features, binary similarity measures

I. INTRODUCTION

The near-duplicate image detection methods aim to detect
the duplicates of a query image. Images that are near-duplicate
slightly differ in content. The differences can result from the
digitalization process, streaming capture, cropping operations,
resampling or recompression processes, post-processing, etc.
Several researches have been conducted for addressing near-
duplicate image detection problem, both for natural and doc-
ument images [1], [2]. The selection of a suitable method de-
pends on the kind of application use-case which is to be solved.
When the problem is less concerned with geometric invariance
(e.g., image rotation, shearing, etc.) or partial detection (e.g.,
finding a crop, dealing with occlusions, etc.), it is referred as
an exact duplicate detection in the litterature [1].

Several global descriptors have been proposed for exact
duplicate detection of natural images such as GIST, the Haar
wavelets, the PCA-transformed histogram or radon-based ge-
ometric invariant features [1], [3]. They outperforms local
approaches in most of the cases. When dealing with DIA, a
combination of global and local features has been investigated
in [2] and tested against the literature methods.

In this work we are interested in a particular exact detection
application dealing with Manga / Comics images (see Fig. 1).
The detection of Manga / Comics duplicate is a core topic for
copyright protection and piracy. Piracy is interested to getting
copies of Manga / Comics. The usual process is to purchase
official versions in a print / digital form and to capture them.
The camera-ready versions of illegal copies are then put online
on web portals. The detection methods support comparison
of pages coming from legal copies to pages coming from
illegal copies on the web. The major issues are related to noise
coming from the capture process, image recompression or
postprocessing. In the last recent years, different contributions
have been proposed on this problem for images and/or books
copy detection [4], [5], [6].

Figure 1. Manga/Comics images with their line drawing content

The exact duplicate detection methods of the CV and DIA
fields are not fully adapted to process Comics / Manga images.
These are a mixture of natural and document images, they
can be mainly characterized as a line drawing content Fig.
1. We propose in this work to investigate template matching
and selection in the binary domain to deal with this problem.
We exploit the template matching to process the graphic layer
of Manga / Comics images, obtained with edge detection, to
detect the exact duplicates. Our approach deals with the no-
deformable and no-invariant matching case. The first exper-
iments report that our method is robust to noise, scalable,
supports skewing and low resolution and is time efficient.

In the rest of the paper we will introduce in section
II the problem statement and state-of-the-art about template
selection. Section III will provide a description of our approach
and section IV will report experiments and results. Conclusions
and perspectives will be given in section V.

II. PROBLEM STATEMENT AND STATE-OF-THE-ART

Template matching is a well known image processing
methodology. Finding a given template in an image is typically



performed by scanning the image and evaluating the similarity
between the template and an area. The matching process
chooses the template position that maximizes (or minimizes)
a given similarity measure between the template and the
image. Typical measures are the Lp-norm, the Normalized
Cross Correlation (NCC) or the binary similarity measures.
Other measures make the matching robust to rotation, affine
transformations, occlusions, or illumination variations.

The performance of the template matching process is
dependent of the used template. The selection of templates
is usually performed manually which is often time consuming
and error prone. It is desirable to make the process automatic
and this is referred as the template selection problem in the
literature [7], [8], [9], [10], [11], [12].

Template selection may be posed as follows. Given an
image (or a sub-image) I of size M×N and a template Xk ∈ I
of size s×t, we have ∁ = (M−s)×(N−t) templates ∈ I . The
template selection process aims to identify the template Xk,
with X1, . . . , Xk, . . . , X∁, that best characterizes the image in
terms of robustness, scalability and location accuracy.

The standard approach for template selection is to charac-
terize the uniqueness of a template with the crosscorrelation
map resulting of the template matching process, and to look
for the peak response [9], [11], [12]. This evaluates the
crosscorrelation between the template and its duplicate. A
strong peak response in the correlation coefficients at the
template’s position is evidence that the template is unique.
The peak response can be characterized through the maximum
value of the peak, i.e. the local maxima [9], [12]. Alternative
to local maxima is to minimize a noise measure such as the
Signal-to-Noise-Ratio (SNR) [11].

The local maxima and SNR require reference images (i.e.
a trained dataset) to be computed, and such images cannot be
still obtained. This restricts their application to real-life use-
cases. To avoid this limitation, no-reference methods can be
used. They include shape analysis [7], [8], [10] and autocor-
relation features [12]. These methods must be correlated with
the local maxima and the SNR measures, as they constitute
the optimal characterization of the uniqueness of templates.

Shape analysis can be used to determine the goodness
of templates [7], [8], [10]. Features are extracted without
the need correlation operations or reference images, they are
straightforward to compute. They include entropy [10], the
maximum Intensity Variation Number (strongly related to
entropy) [7] or the coherence measure that indicates how well
the gradients are pointing in the same direction [8].

Shape analysis methods have a little meaning for template
selection, as they operate in a different domain compared to the
matching process. An alternative is to employ autocorrelation
features (i.e. features computed from the crosscorrelation of
a template with itself). Autocorrelation features for template
selection have been little investigated in the literature. In [12],
peak response is characterized by inspecting the shape of the
peak. We would want the shape of peak as sharp as possible so
that the position of the detected template will be accurate. The
autocorrelation features constitute a meaningful estimator for
matching. This is coming from the general observation that the
matching score S(X,Y ) between a template X and a duplicate
image Y is a combination of the autocorrelation S(X,X)

and noise η(X,Y ) functions Eq. (1). That is, properties with
S(X,X) could drive a minimization of η(X,Y ). In addition,
we will highlight in this paper how the autocorrelation features
can support large time optimization for matching. The next
section will detail our approach.

S(X,Y ) = S(X,X) + η(X,Y ) (1)

III. BINARY TEMPLATE SELECTION AND MATCHING
WITH AUTOCORRELATION FEATURES

In this section we present our approach for binary template
selection and matching using autocorrelation features. Our
overall process is introduced in Fig. 2 and detailed in next
sections (A.) to (F.). A sampling process extracts C ≪ ∁
templates from an image I , by restricting their overlapping
(e.g., not more than 90% of overlapping). This rule avoids
to process close templates and saves computation time, as a
neighboring at some pixels results in a strong template similar-
ity. These templates are then processed to get autocorrelation
maps (section A). As we process our images in the binary
domain for no-deformable and no-invariant matching, we have
considered the binary similarity measures for the autocorrela-
tion and matching processes [13]. Our autocorrelation features
are extracted at two levels to characterize the robustness to
matching (sections B, C) and the pruning abilities (section D)
of templates. Both used input parameters (τ , ω) modeling the
expected upper-bound noise of the application use-case. We
have reformulated the matching process (section E) to embed
the autocorrelation features for time optimization. The final
process for selection is then detailed in section F.

Figure 2. The template selection process

A. The autocorrelation map

Considering a template X of size s× t (height and width),
the autocorrelation map Fig. 3 in a local neighborhood of the
template X is a matrix W of size (2s+ 1)× (2t+ 1), where
ic = s+1, jc = t+1 is the center of the map and the location of
the peak. This autocorrelation map is computed from a region
of interest in I of size (3s + 1) × (3t + 1). In this matrix,
all elements Wi,j provide the similarity measure S(X,Xi,j)
between the template X and the shifted template Xi,j using
an offset ∆i = i− ic,∆j = j − jc. At ∆i = ∆j = 0 we have
then the center of the map ic, jc where S(X,Xi,j) = UB is
the upper bound of the considered similarity measure.



Figure 3. A template (a) and the corresponding autocorrelation map (b)

B. Detection of the peak

One way to characterize robustness of a template to noise
is to inspect the shape of the autocorrelation peak. Thus, we
need to locate it first. A standard way is to threshold the
autocorrelation map such as Wi,j > τ ∀i, j. In [12], the
threshold value τ is fixed by an expert user. We propose to
determine τ from a performance characterization point of view,
using the intra-class and between-class distributions.

We consider X1, . . . , Xk, . . . , X∁ the set of templates and
Y1, . . . , Yk, . . . , Y∁ a set of corresponding duplicate images.
The intra-class corresponds to the S(Xk, Yk) ∀k comparisons,
whereas the between-class is obtained from S(Xk, Yl) ∀k, l ̸=
k. That is, the intra-class and between-class sets have cardi-
nality of ∁ and ∁(∁ − 1) respectively (using no-commutative
measures). We can obtain probability density functions from
these sets such as

∫ UB

LB
zI(i) =

∫ UB

LB
zB(i) = 1. LB , UB are the

lower and upper bounds of the considered similarity measure
such as LB = S(X,X) and UB = S(X,X).

We have the separability gap ∆S between the two distri-
butions zB , zI as ∆S = Smax − Smin with Smin = max(zB)
and Smax = min(zI). If ∆S > 0 the matching problem
is separable corresponding to a perfect detection score. With
∆S < 0, performance characterization enters in the Precision
/ Recall scheme. Considering the threshold τ ∈ [LB , UB ],
the true and false positive negative (tp, tn, fp, fn) are given
with tn =

∫ τ

i=LB
zB(i), tp =

∫ UB

i=τ
zI(i) and fp = 1 − tn,

fn = 1− tp. Accuracy is then defined as A = tp+tn
tp+tn+fp+fn .

The threshold τ defines the precision of a pattern recog-
nition system. Practical applications target to avoid any false
positive fp and thus set τ high enough such as τ > Smin. In
our case, the challenge is to miss none peak in the localisation
process and then we need to avoid any false negative fn. Thus,
we setup the threshold low enough to guaranty τ < Smax.

C. Peak characterization and robustness

Once the peak is located we can inspect the shape to char-
acterize the robustness properties. In [12], sharpness is used
to guaranty location accuracy while matching. We would want
the shape of the peak as sharp as possible so that the position
of the detected template will be accurate. The minimization of
the sharpness will result in detection of smooth peaks as shown
in Fig. 4 (a). The smooth peaks present robustness properties
to noisy conditions. However, as we will discuss in our next
section D this will tend to minimize the local derivatives then
the goodness of templates for pruning.

Figure 4. Peak with a low sharpness (i.e. smooth) (a) a high eccentricity (b)

We propose here to investigate eccentricity to characterize
the peak robustness to noise. Eccentricity is correlated to
sharpness but characterizes in addition the shape of the peak
with elongation Fig. 4 (b). An elongated region appears as
a specific sharp peak in the autocorrelation domain that can
presents robustness properties to noisy conditions.

The eccentricity can be extracted by analysing the 2D shape
of the peak using binary descriptors. Considering the set Q
(i.e. Wi,j > τ ∀i, j) we can compute the peak orientation
θR and the eccentricity ECC . The orientation θR describes
the direction of the major axis, that runs through the peak
center ic, jc. It can be found from the central moments µpq

computation Eq. (2) with θR ∈
[
−π

2 ,
π
2

]
. Similar to the

orientation, the central moments can be used to determine the
eccentricity ECC Eq. (3). ECC ∈ [1,+∞[ that corresponds
to a perfect circular disk ECC = 1 and an elongated region
ECC ≫ 1.

µpq =
∑
i,j∈Q

(i− ic)
p(j − jc)

q θR =
1

2
arctan

2µ11

µ20 − µ02
(2)

ECC =
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

µ20 + µ02 −
√
(µ20 − µ02)2 + 4µ2

11

(3)

D. Autocorrelation features for pruning

As discussed in previous sections, the autocorrelation fea-
tures can serve to characterize the robustness of templates to
matching. We introduce here how they can be applied for
matching optimization. Indeed, indexes can be obtained from
an autocorrelation map and then used during the matching
process to prune the search space. Here, the full autocorrelation
map is processed to obtain the indexes and there is no need
of a previous peak detection step (see Fig. 2).

Our approach is introduced in Fig 5. For elements Wi,j

∀i, j, our approach looks for the maximum local derivatives
∆f(i)/∆i = (f(i+ h)− f(i))/h in the horizontal direction,
considering f(i) = a a constant. f(i) provides a Wi,j value at
the i, j position whereas f(i+ h), with h ∈ [0,+∞[, is given
with Wi+h,j = UB . That is, Wi,j is the closest peak element to
Wi+h,j having a value f(i). Let us note that with Wi,j = UB

we have h = 0 and then ∆f(i)/∆i → +∞. A similar
process is done for horizontal sampling to compute f(j).
The maximum local derivatives will ensure then a minimum
sampling process to not miss the peak area.



Figure 5. Introduction to features for pruning

The sampling parameters are recorded in arrays Si, Sj .
Si = (Si

1, . . . , S
i
k, . . . , S

i
q) is a set of q quantified mea-

sures with Si
k ∈ [LB , UB ] ∀k. At the beginning, we fix

Si
k = ∅ ∀k. We access with scan line the elements Wi,j

and obtain the corresponding k index with a lookup table
function k = LUT (Wi,j). For elements Wi,j ∀i, j, we set
Si
k = min

(
Si
k, h

)
such as h > 0 and Wi+h,j = UB . A similar

process is done for horizontal sampling to compute the Sj .

The pruning must guaranty acceleration while preserving
an exact matching result. To do this, the noise between the
crosscorrelation and autocorrelation maps must be charac-
terized. From Eq. (1), we define the crosscorrelation noise
function η(i, j) = S(X,Yi,j) − S(X,Xi,j) as shown in Fig.
6. In this function, S(X,Yi,j) provides the similarity measure
between the template X and the shifted duplicate image Yi,j

and S(X,Xi,j) is obtained from the autocorrelation map.
Thus, S(X,Yi,j) and S(X,Xi,j) provide similarity measures
at a same location i, j.

Two noise cases occur (1) the additive noise with η(i, j) >
0 and (2) the subtracting noise with η(i, j) < 0. The noise
will result in offset values ∆k when accessing Si, Sj , with
∆k > 0 for additive noise and ∆k < 0 otherwise. To
preserve the matching result, the ∆k offsets should not result
in oversampling i.e. Si

k+∆k
> Si

k ∀k.

As a general trend, the Si array appears as a decreasing
function as the sampling parameters go down when converging
to the peak area. We apply a min propagation to the Si

array Si
k+1 = min(Si

k, S
i
k+1) ∀k that guaranties Si to be

a monotonically decreasing function. That is, we prevent
oversampling with additive noise as we guaranty Si

k+∆k
< Si

k

with ∆k > 0. The process can be extended to Sj .

The maximum level of the subtracting noise can be known
from a parameter ω ∈ [LB , UB ] close to τ with ω < τ . τ
is a global threshold that fixes the maximum level of noise
at the peak location such as S(X,Y ) − S(X,X) > τ − UB .
S(X,Y ) − S(X,X) is a subset of the crosscorrelation noise
and similar to τ , a threshold ω can be defined to fix η(i, j) >
ω − UB ∀i, j. Fig. 6 illustrates this aspect where (a) is a
template and (b) is a duplicate. Their matching results in a low
level of noise at the peak location η(i, j) = −0.06 whereas a
local minima for the noise η(i, j) = −0.22 is observed on the
rest of the map Fig. 6 (c).

The previous condition on η(i, j), ω can be rewritten in
|η(i, j)| < UB − ω ∀i, j. We can then apply a translation
process to Si with Tk = LUT (UB −ω) and Si

k = Si
k−Tk

∀k.
That is, we prevent oversampling with subtracting noise as
we guaranty Si

k+∆k
< Si

k with ∆k < 0. A similar process

Figure 6. A template and a duplicate (a,b) the noise function η(i, j) computed
with the Yule measure S(X,Y ) ∈ [−1, 1] [13]

can be applied to Sj . From the transformed Si, Sj , the
average wavelength for sampling λ is given in Eq. (4). The
maximization of this feature characterizes the goodness of the
template for pruning.

λ = mean
∀i,j

(d(LUT (Wi,j)) d(k) =

√
(Si

k)
2 + (Sj

k)
2 (4)

E. Fast matching

The complexity of the template matching depends of the
image / template size parameters M,N, s, t and the used sim-
ilarity measure. Since the template matching is unacceptably
slow in most of the applications, a large effort has been made
in the literature to design fast methods. A standard approach
is to shift the image to a new representation space, where
the matching can be accelerated for specific measures. For
the binary similarity measures this includes the FFT, the RLE
or the bitwise operators [14], [5]. In our approach we have
considered the matching with bitwise operators as it is time
efficient for local matching, supports the computation with all
the measures and can be driven while pruning.

The general algorithm for matching while pruning, using
Si, Sj indexes, is detailed thereafter. R is the region of interest
where the matching is applied. We have R ∈ W and having a
size n′ = s′ × t′ with s′ < 2s+1, t′ < 2t+1. B is a boolean
matrix of size n′ = s′ × t′ and Bi,j its set of elements. At the
initialization, we have Bi,j = 0 ∀i, j. Acceleration resulting
of this algorithm is obtained with ϖ = n′/(n′ −

∑
∀i,j Bi,j).

The matching algorithm outline is then:

• To encode R for matching with bitwise operators.
• At every pixel location (i, j) ∈ B, if Bi,j = 0

compute S(X,Yi,j) with operators [14], [5].
• Then, get the corresponding k index with the LUT

function and do Bi+y,j+x = 1 ∀y ∈ [0, Si
k[ and

∀x ∈ [0, Sj
k[, set Bi,j = 0.

F. Selection process

At last, from the autocorrelation features we must specify
a rule to drive the selection process. We assume different
hypothesis to drive the selection:

• The λ, ECC feature sets are close to normal distributions
and their maximization is correlated.
• The extremum detection with average wavelength λ
guaranties a high value range for the acceleration factor ϖ.



• The extremum detection with peak eccentricity ECC

guaranties a high value range for Lmax = S(X,Y ).

Considering these hypothesis, the selection becomes an
outlier detection problem. We propose a two-steps strategy to
ensure optimization then robustness with selection. We define
σi, σj the standard deviations of the λ (i), ECC (j) distribu-
tions with their centroids µi, µj . With a normal distribution, a
standard rule for outlier detection is to consider the conditions
(a) λ > µi + 3σi (b) ECC > µj + 3σj . We detect outliers by
respecting a • b, with • the logical AND operator. If several
templates are detected as outliers, we finalize the process with
maximization of the λ feature.

IV. EXPERIMENTS AND RESULTS

In this section we present experiments and results about
our approach. We will introduce in section A the dataset used
in our experiments. Section B will characterize our template
selection process, whereas section C will present performance
in terms of matching results and time processing.

A. Dataset

At best of our knowledge, the exact duplicate detection
problem of Manga / Comics images has neither been addressed
in the literature. Our first task was to constitute a dataset we
will refer as MangaOPU . We have constituted an image
dataset composed of 3844× 2 = 7688 legal and illegal pages
of a Manga Magazine - Manga Shukan Shonen Jump1. The
illegal images have been collected from web portals. They are
given at low resolution (128 dpi with a mean page size of
1300× 900 pixels), compressed using the jpg standard with a
low quality factor and produced with homemade digitalization
processes. Legal images have been produced at high resolution
and quality in terms of compression and digitalization process,
and then downsampled for comparison. The binary images
have been obtained using a system described in [5] with gray-
level conversion and canny-edge detection.

B. Performance characterization for selection

To characterize our selection process, a first step is to
establish a correlation between the autocorrelation features and
the matching results. To do this, we need to constitute an initial
set of “good” template. To tackle this problem, we have first
driven a selection in a reference context as did in [9], [11],
[12]. We have extracted randomly 30 templates 256 × 128
per page and applied them for matching. For our experiments,
we have driven the matching with the weighted Yule measure
[13]. We have then selected the “best” template per page corre-
sponding to the strongest local maxima Lmax = S(X,Y ). We
have characterized then the existing correlation between our
autocorrelation features and the Lmax values. The complete
set of experiments is presented in Figures (7) (a-f).

In Figures (7) (a-c), peaks are characterized according their
eccentricity ECC and orientation θR.

Figure (7-a) provides the ECC distribution using a dB
scale. Peaks appear mainly (≃ 95%) as a near-blob structure
with low level ECC < 2 dB. Normality test reveals that

1No 26, 27, 28, 35, 41, 42, 44, 45, 46 and 48

Figure 7. Characterization of the template selection (a-c) peak eccentricity
and orientation (d) average wavelength distribution (e) average wavelength /
acceleration - the tp case (f) average wavelength / acceleration - the tn case

the ECC distribution is close to a normal distribution as
highlighted in Figure (7-a). Within the range ECC ∈ [0, 2[
dB, the orientation parameter θR is little accurate as a blob
does not run through a main direction axis. Therefore, we have
θR ∈

[
−π

2 ,
π
2

]
for ECC < 2 dB. With highest ECC > 2 dB,

some main orientations appear |θR| ≃ {0, π
2 } Figure (7-b).

Figure (7-c) evaluates the correlation between Lmax and
ECC . More a peak converges to a blob structure, more it
becomes sensitive to lowest Lmax. From this distribution, the
selection threshold ECC > µj + 3σj is reported in dot line
in Figure (7-c). With ECC > 936.7 (i.e. 2.97 dB) we have
Lmax ∈ [0.84, 1] with a mean value Lmax = 0.92.

Figures (7) (d-f) discuss correlation between the average
wavelength λ and the acceleration factor ϖ.

Figure (7) (d) highlights a normal distribution for λ
checked with a normality test. Figure (7) (e) presents the
correlation between λ and ϖ. More λ increases, better the
acceleration factor ϖ is. The selection threshold λ > µi+3σi

is reported in dot line. For λ > 27.7 we obtain ϖ ∈ [6, 34]
with a mean value ϖ = 15.08. We have extended this analysis
to the true negative tn case Figure (7) (f). We have computed
the between-class distribution S(Xk, Yl) ∀k, l ̸= k with our
template set and look for pruning abilities. For λ > 27.7 we
obtain ϖ ∈ [31, 265] with a mean value ϖ = 90.72. This is
the major pruning result as the recognition process drives ∁−1
tn comparisons and 1 tp comparison from a dataset of size ∁.

C. Performance characterization for matching

Table I provides information about processing time2. The
matching time depends mainly on the s′×t′ parameters for R.
Normality tests reveal that the image registration parameters
(i.e. i, j location differences between X and Y ) are close to
normal distributions. Within the MangaOPU dataset, 99%
of the registration cases appear in −3σ,+3σ whereas a full
coverage is obtained with −5σ,+5σ. In that case, we obtain
with experiments s′ × t′ = 64× 128.

For matching with bitwise operators [14], [5] we need to
encode (i.e. get the fingerprint) the region of interest R first.

2Java/C++ framework on a Windows 7 system with an 2.1 GHz Intel CPU



method fingerprint matching
Our approach 0.37 ms FS 16.4 ms

FS with pruning (tp) 1.08 ms
FS with pruning (tn) 0.18 ms

GIST 840 ms 0.003 ms
Table I. COMPARISON OF PROCESSING TIME

This requires then some hundreds µs. Then, comparing a 256×
128 template X to a subimage Y at a location i, j can be
achieved in 2 µs. Considering s′ × t′ = 64 × 128, the FS
application of our algorithm requires 16.4 ms for the complete
matching. Wile pruning, the processing time goes down to 1
ms for a tp detection and 180 µs for fp as averages. Our full
processing time (encoding then matching) is near to a half ms
in the main (i.e. fn) case. Using our autocorrelation indexes
Si, Sj , we have fixed a setting ω = 0.12, τ = 0.22 that
preserves exact matching results while pruning.

With the template set, we have obtained separable distri-
butions ∆S > 0, A = 1 on the dataset (i.e. separability). Fig.
8 gives some of the worst detected cases. We have completed
characterization with a validity indice. A validity indice helps
to complete characterization on a separable problem. We have
used the Davies - Bouldin Index DBI as a validity indice
of the zB , zI distributions. Considering a two-class problem
i, j, the DBI could be given with the standard deviations
σi, σj as dispersion measure and di,j = µi − µj the distance
between the two centroids. Thus, the indice is given as
DBI = (σi + σj)/di,j . The indice operates in the range
DBI ∈ [0,+∞[, with DBI = 0 the optimal value and [0, 1

3 ]
the usual range for separable problems3. Our obtained DBI
is 11, 714× 10−3 close to the optimal value DB = 0.

Figure 8. Some worst detected cases (left) images (right) templates

For comparison, we have used the GIST descriptor con-
sidered as a reference method for exact duplicate detection
in the Computer Vision field [1], [3]. We have set GIST for
optimum performance by processing the 300×300 central part
of gray-level images in a not-scale and not-rotation invariant
way for fair comparison. We have obtained separability but
with a higher DBI = 288, 627 × 10−3. This indice is close
to the separability upper bound 1

3 = 333, 333× 10−3. That is
GIST performances are worst and our approach is supposed
to preserve separability when faced to largest recognition
problems whereas GIST should not.

Another major difference is processing time Table I. GIST
requires a large processing time for fingerprint extraction, near
to 1s to process a 300 × 300 image. At the matching level,
comparing two 1296 GIST descriptors can be done in 3 µs.
Thus, GIST scales better when ∁ is large. Our approach can
process one to two thousands template to image comparisons
while GIST extracts a fingerprint. GIST looks more suitable

3Considering a coverage of 6σ for a Gaussian distribution.

for retrieval, whereas our approach presents better performance
for recognition or when real-time constraints are needed.

V. CONCLUSION AND PERSPECTIVES

We have presented an exact duplicate image detection
method based on binary template selection and matching.
Through the selection, the matching is made robust and time
efficient. The approach has been tested on a proposed dataset
against the GIST descriptor. We obtain better performances in
terms of robustness and response time. We plan to extend the
experimental aspects. The Manga / Comics duplicate detection
is a recent topic of interest [4], [5], [6] and none public dataset
exists. Recently, a Manga dataset4 has been made available
for research. This requires an image degradation framework
to get the synthetic near-duplicates. Complete performance
characterization of our method must be driven against the
literature methods [1], [3], [2]. At last, further acceleration of
our approach could be obtained with FS-equivalent matching
and template search space reduction technics.
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