
Graphical Knowledge Management
 in Graphics Recognition Systems

Mathieu Delalandre1, Eric Trupin1, Jacques Labiche1, Jean-Marc Ogier2 ♣

1 PSI Laboratory, University of Rouen, 76 821 Mont Saint Aignan, France
{first name, last name}@univ-rouen.fr

2 L3i Laboratory, University of La Rochelle, 17042 La Rochelle, France
jean-marc.ogier@univ-lr.fr

Abstract. This paper deals with the problem of graphical knowledge manage-
ment (formalization, modelling, representation and operationalization) in graph-
ics recognition systems. We present here a “generic” formalism for graphical
knowledge, allowing various modellings for a given graphical shape. We use a
modelling library based on this formalism for the management of our graphical
knowledge. The use of this library allows to request graphical knowledge data-
bases, according to the processings’ requirements on graphical primitives. Like
this, this approach allows interoperability between processings, especially for
their combination. We present a “short” system use-case of our approach to il-
lustrate the interoperability between processings.

1 Introduction

This paper deals with the problem of graphical knowledge management in graphics
recognition systems. This knowledge corresponds to graphical primitives used by
systems during the recognition process. We present here a “generic” formalism for
graphical knowledge. Indeed, this formalism allows various modellings of a given
graphical shape. Based on this formalism, we have developed a modelling library for
the representation and the operationalization of our graphical knowledge. We use this
library in graphics recognition systems to request graphical knowledge databases,
according to the processings’ requirements on graphical primitives. Like this, this
approach allows the interoperability between processings, especially for their combi-
nation. In the paper’s follow-up, we present in section (2) an overview on graphical
knowledge management in graphics recognition systems. In section (3), we present
our approach for graphical knowledge management with our formalism, its represen-
tation and operationalization through our modelling library. In section (4), we present
a “short” use-case of our approach with a graphics recognition system and its applica-
tion. Finally, in section (5) we conclude and give some perspectives.

♣ The authors wish to thank Sébastien Perin and Mustapha Hamidou (Rouen University,
France) for their contribution to this work.

2 Graphical Knowledge Management: Overview

Graphics recognition [19] is a stage of document image interpretation that is used for
different purposes like: technical document interpretation [1], symbol recognition
[10], handwriting recognition (especially Asian handwriting [18]), and so on. It is a
well-known problem and several commercial applications exist [1]. A graphics
recognition process can be decomposed into two parts [14]: the extraction part of
graphical primitives, and the system part.

The system part uses various approaches in order to supervise the extraction proc-
ess [4]. These approaches come from pattern recognition and artificial intelligence
domains. This paper deals especially with the extraction step of graphical primitives
[22] [5]. This one extracts graphical primitives from document images corresponding
to graphical shapes of documents. It employs many methods in order to extract differ-
ent primitive types from images. In a previous work [5], we have proposed a classifi-
cation of these methods in some families (Fig. 1). The methods are based on skele-
tonization (a), contouring (b), tracking (c), run (d), region (e), mesh (f), object seg-
mentation (g), connected component grouping (h).

Fig. 1. (a) skeletonization (b) contouring (c) tracking (d) run

(e) region (f) mesh (g) object segmentation (h) component grouping

We do not discuss in this paper about the presentation and the comparison of these
methods1, but about common graphical primitives extracted between these methods as
we show in Table 1. These graphical primitives can be grouped in four primitive
classes: pixel, vectorial (vector, arc, and curve), region (subset of connected pixels on
image), and symbol (a symbolic label). In the same way, some methods can be used
to extract different types of primitive [5]. For example, the skeletonization and con-
touring are often used with a polygonisation method to extract vectorial data (in the
“two steps” vectorisation systems [15]). Also, the run decomposition methods can be
used to extract the skeleton and contours [24], and in this way used with polygonisa-
tion method, and so on.

1 It is not the purpose of this paper to do this, we report the reader to [1] [5] [10] and [22].

(a) (b) (c) (d) (e)

(f) (g) (h)

Table 1. Comparison of methods for graphical primitive extraction

Graphical primitives Methods
Pixel skeletonization (a), contouring (b), run (d)
Vectorial skeletonization (a), contouring (b), tracking (c), run (d),

object segmentation (g)
Region Run (d), region (e), component grouping (h)
Symbol all

So, a system can use different methods in order to extract some given graphical

primitives. In a previous work [5], we have presented the drawbacks and advantages
of all these methods (Fig. 1). So, their combination can help a system for the graphi-
cal primitive extraction. From our point of view, it is an important research perspec-
tive of graphics recognition. However, this perspective raises the problem of graphi-
cal knowledge exchange between the system’s processings based on these methods.

In computer science systems “in the large” [20], the knowledge corresponds to se-
mantic data (example, data: “37.5”, semantic: “a temperature”) with their exploitation
processes (the system parts based on knowledge use). The use of these exploitation
processes corresponds to the operationalization of systems’ knowledge [4]. In these
systems, the knowledge is used [20] in an internal way (in the algorithms) or in exter-
nal way (outside of algorithms). The external knowledge is based on knowledge rep-
resentation methods [16] like: representation languages, databases, and formats. In
the internal and external cases, the knowledge used is based on a formalism [16].
Several formalisms exist2 like: algebraic (list, matrix, number, and so on.), rule,
graph, frame, and so on. Based on these formalisms, the systems use modellings of
their knowledge. A modelling corresponds to a possible use of a given formalism. In
the literature [16], we talk about knowledge management for the formalization, the
modelling, the representation, and the operationalization of knowledge.

Different types of knowledge are used in graphics recognition systems [14]. This
paper deals only with graphical knowledge [11]. This knowledge corresponds to
graphical primitives used in systems. We resume on Table 2 formalisms commonly
used for the graphical knowledge in some research systems, and standard formats of
vector graphics.

Table 2. Formalisms of graphical knowledge

2 We don’t present here these formalisms, and report the reader to [16] and [20].

Systems Formalisms Formats Formalisms
ADIK [12] vectorial, rule, symbol CGM [8] vectorial, graph
ANON [1] vectorial, rule, symbol DXF [2] vectorial, list
DMOS [3] region, vectorial, rule SVG [21] vectorial, list
OOPSV [15] vectorial, graph, symbol
QGAR [9] vectorial, graph

From our point of view, the graphical knowledge in graphics recognition systems
is based on two formalism levels (Table 2). A low level is used to describe the
graphical primitives. It is based on general formalisms used in graphic file formats
[11]: vectorial, and raster (for the region representation). A high level is used to struc-
ture these graphical primitives. Different formalisms are then used. Among them the
most used are the lists and the graphs [17], the rule formalism is often used too. How-
ever this one is more adapted to recognition problem than modelling problem [1] [3]
[12]. The graph and list formalisms correspond to structural descriptions of graphical
primitives. Indeed, the graphical shapes of documents represent themselves, in a natu-
ral way, according to a structural description [1] [10] [19].

However, based on these structural formalisms, the graphics recognition systems
use fixed modellings of their knowledge [3] [9] [12] [15]. The modellings are chosen
according to the recognition approaches of these systems. Based on these fixed mod-
elling, these systems can’t deal with an adaptable combination of processings for the
graphical primitive extraction. To solve “a part” of this problem, some systems per-
form their combinations through a low level formalism (image) [15], or a high level
formalism (rule) [3].

In the following section (3), we present a “generic” formalism and a modelling li-
brary for the graphical knowledge management. This library allows to request a
graphical knowledge databases, according to the processings’ requirements on
graphical primitives. Like this, this approach allows the interoperability between
processings, especially for their combination.

3 Our Approach for Graphical Knowledge Management

We present here our approach for graphical knowledge management. We first present
in subsection (3.1) our formalism. Next, in subsection (3.2), we present a modelling
use-case of a given graphical shape. In subsection (3.3), we present the knowledge
representation and operationalization through our modelling library.

3.1 Used Formalism

Our formalism is based on object-oriented concepts for knowledge formalization [13].
We have based our approach especially on works described in [23]. Our graphical
knowledge (kg) is represented (1) by a single graphical object (o). This graphical ob-
ject is an instance (i) of a generic (and abstract) graphical object class (og) which is
specialized in several graphical object classes ({1,.,u}) according to an inheritance (I)
relationship. In this way, this representation exploits some important properties of
inheritance [23], polymorphism and extensibility. The graphical objects are composed
(2) of a set of data (D) and methods (M). These data (D) can be composed (2) of spe-
cific data (di), or other graphical objects (oi) through a composition (or aggregation)
relationship.

In our approach (as we have concluded in our overview of section (2)) we have de-
composed the different graphical object classes, in an implicit way, into two formal-
ism levels (3). The first one is a low level formalism for the description of graphical
primitive (p). So, this description is based on vectorial and raster formalisms [11]. We
have considered some standard graphical primitives like: point, junction, line, arc,
curve, region, and quadrilateral. However, these standard graphical primitives can be
easily extended thanks to the polymorphism and extensibility properties [23] of our
approach (1). The second one is a high level formalism, based on list (l) and graph (g)
formalisms, to structure the graphical objects corresponding to graphical primitives.

{ }okg =∃ { }
ugg

I
g

i oooo ,.,
1

←→ (1)

{ }MDo ,= { } { }{ }vu ooddD ,.,,,., 00= { }{ }wrPM ,,= (2)

{ } { }{ }glppo ugi
,,,.,1∈ (3)

The list formalism (l) defines (4) sets of ordered graphical object (O) and ordered

attribute object (A). A given attribute object (ai) describes a relationship (5) between
two successive graphical objects (oi) and (oj) of the list. These attribute objects (a) are
defined in the same way (6) (7) than the graphical objects (o) (1) (2). In the same way,
these ones exploit the polymorphism and extensibility properties [23]. According to
the list’s looping (4), the (A) size may be of (u) or (u-1). We have considered some
standard attributes like the labelling, angle, length, and so on.

{ } { } { }{ }vu aaooAOl ,.,,,.,, 00==))1((uuv ∨−= (4)

{ } () ijijii aoofooa =∃∀ ,, (5)

{ }
ugg

I
g

i aaaa ,.,
1

←→ (6)

{ }MDa ,= { } { }{ }vu aaddD ,.,,,., 00= { }{ }wrPM ,,= (7)

The graph formalism (g) defines (8) sets of graphical object (O) and edge object

(E). A given edge object (eq) describes a directed (or undirected) relationship (9)
between any graphical objects (oi) and (oj). This relationship is defined (9) according
to a given attribute object (aq).

{ } { } { }{ }vu eeooEOg ,.,,,.,, 00== (8)

{ }{ } { } () qjijiqq aoofooajie =∃=∀ ,,,, (9)

Through these object-oriented concepts for knowledge formalization, our graphical

knowledge (kg) (1) is structured according to a hierarchical relational graph [17].
Indeed, our graphical objects (o) (1) included into the list (l) (4) and graph (g) (8)
objects can be other list (l) and graph (g) objects. The list (l) objects are used here to
reduce the size of graph (g) objects. Indeed, the list formalism can be considered as
graph formalism [17], this one is commonly used in graph representation models of
document shapes [24].

3.2 Modelling Use-Case

Our formalism (subsection (3.1)) allows various modellings of a given graphical
shape. In order to illustrate this “generic” aspect, we present here a modelling use-
case of linked-squares (Fig. 2 (a)).

Fig. 2. (a) linked-squares (b) point list (c) line list

(d) line graph (e) hierarchical lists (f) hierarchical graphs

The Fig. 2 (b), (c), and (d) present three no-hierarchical modellings of linked-
squares. The (b) (c) modellings are based on the list formalism, for the point (p) (b)
and line (l) (c) objects. Indeed, it is possible to describe the linked-squares according
to successive points or lines. The (d) modelling is based on graph formalism for the
line (l) objects. In this graph, the connected lines (l) are linked by angular attributes.

 (d) (e) (f)

 (a) (b) (c)

The Fig. 2 (e) and (f) present two hierarchical modellings of linked-squares. The
(e) modelling is based on list formalism for the line (l), junction (j), and (L) objects.
In this modelling, the (L) objects represent sub-lists of line (l) object. Each sub-list
corresponds to a square object. The (L), (j), and (l) objects are linked by the labelling
attributes (close) and (connect). The (f) modelling is based on graph formalism for the
line (l) and (G) object. In this modelling, the (G) objects represent sub-graphs of line
(l) objects. Each sub-graph corresponds to a square object. In these sub-graphs, the
line (l) objects are linked by labelling attributes (connect) and (parallel). The (l) and
(G) objects are linked by an attribute corresponding to a graphical primitive (l).

Like this, the Fig. 2 presents some of possible modellings (b-f) of linked-squares
(a). Based on our formalism (subsection (3.1)), it is still possible to define several
modellings. From our point of view, it doesn’t exist a best modelling to describe a
given graphical shape. Indeed, an adopted modelling by a graphics recognition system
depends of its process aims [14]. Then, it is important to allow the exchange of “simi-
lar” graphical knowledge between graphics recognition systems, in spite of differ-
ences between adopted modellings.

3.3 Graphical Knowledge Representation and Operationalization

We present in this subsection the representation and the operationalization of our
graphical knowledge through our Graphical Object Modelling Library3.

In our formalism (subsection (3.1)) each graphical and attribute object is composed
of a set of method (M) (2) (7). This set of method is composed of process methods (P)
on object’s data, and read (r) write (w) methods (2) (7). In this way, each object sup-
ports its outsourcing. The Fig. 3 (a) gives an example of representation in XML used
in our library of point object. The outsourcing properties of objects can be then used
by other objects, like the (l) (4) and (g) (8) objects, or any other graphical or attribute
objects using a composition relationship (2) (7). The Fig. 3 (b) gives an outsourcing
example of point object used through a composition relationship into the line object.

Fig. 3. XML representation: point (a) line (b)

We use our library in the graphics recognition processings. Like this, our library al-
lows the graphical knowledge operationalization into the processings for, the graphi-
cal primitive management, and their read/write into graphical knowledge databases
represented in XML (Fig. 3).

3 GOMLib, available on http://site.voila.fr/mdhws/

<OPoint x= "10" y= "10" /> <OLine length="10" direction="0">
 <OPoint x="10" y="10" />
 <OPoint x="20" y="10" />
</OLine>

 (a) (b)

The aim of our approach is to allow the interoperability between processings. We
have developed a request based approach, in order to extract graphical knowledge
from XML databases according to the processings’ requirements on the graphical
primitives. This approach exploits request methods, based on list or/and graph search
algorithms. So, these requests are “content based” like the FLoWeR4 requests. Indeed,
our requests do not allow to structure search like sub-lists or/and sub-graphs.

The Fig. 4 presents our requests based approach through an example. In this exam-
ple, a processing (Processing) performs a read request method (Rr) on a graphical
knowledge database (kg). This request uses a set of “content constraints” correspond-
ing to the request (rr): list of point (lp) and size (s≥2). So, we can translate this request
into natural language like this: “for graphical knowledge (kg) return lists where a list
is only composed of point object (lp) and the list’s size is upper than one point (s≥2)”.
Then, a read graphical object (or) is extracted corresponding to request’s result. Fol-
lowing the execution of processing (Processing), an object to write (ow) is obtained.
The processing (Processing) performs then a write request method (Rw) in order to
update the graphical knowledge database (kg) with this result object (ow). During the
(Rw) execution, (rr) is used like trace to locate the objects to update, in this example
the line list objects (ll) update the point list object (lp).

Fig. 4. example of request process on a graphical knowledge database

4 System Use-Case

In order to illustrate our approach for graphical knowledge management (section (3)),
we present here a “short” system use-case of graphics recognition. The Fig. 5 (a-high)
gives a network’s part extracted from an utility map [6]. For our graphics recognition
system, we have developed the well-known contouring/skeletonisation approach [1].
We don’t discuss here about the processing abilities5, but about the interoperability
between processings through the graphical knowledge database.

4 For Let Where Return
5 It is not the purpose of this paper to do this, we report the reader to [6].

In a first step (Fig. 5), our system performs a chaining processing (b) on the result-
ing image of skeletonisation/contouring processing (a-low). So, our graphical knowl-
edge database (kg) is updated (Table 3) from a raster object (r) to a graph (g) object
composed of junction (j) and point list (lp) objects. In a second step, our system per-
forms a polygonisation processing (Fig. 5 (c)). A request on point list (lp) objects is
then used to extract these (lp) objects form graph (g) object. These (lp) objects are then
updated (Table 3) in (kg) by line list (ll) objects. In the final step, our system performs
a contour matching processing (Fig. 5 (d)). A request on closed line list (ll) objects is
then used to extract these (ll) objects form graph (g) object. These (ll) objects are
updated (Table 3) in (kg) by quadrilateral list (lq) objects. The result graphical knowl-
edge database (kg) is then composed of (g), (j), (ll), and (lq) objects.

Table 3. update of graphical knowledge database for processings interoperability

skeletonisation/contouring chaining polygonisation matching
kg = {r} kg = {g,j,lp} kg = {g,j,ll} kg = {g,j,ll,lq}

Fig. 5. (a) skeletonisation/contouring (b) chaining (c) polygonisation (d) matching

5 Conclusion and Perspectives

In this paper we have presented an approach for graphical knowledge management in
graphics recognition systems. This approach is based on a “generic” formalism allow-
ing various modellings of a given graphical shape. This formalism is based on object-
oriented concepts, especially for the inheritance, polymorphism and extensibility
properties. We represent and operationalize this formalism through our modelling
library. We use this library into graphics recognition systems to request graphical
knowledge databases, according to the processings’ requirements on graphical primi-
tives. Like this, this approach allows the interoperability between processings, espe-
cially for their combination. For the perspectives, in a first step we wish to develop a
complete platform of graphics recognition processing based on our formalism. We
would like to exploit the interoperability between processings to develop some strate-
gic approaches [6]. Next, we wish to extend our request based approach with request
language to extract graphical object structures, through graph request [7].

 (a) (b) (c) (d)

References

1. S. Ablameyko and T. Pridmore. Machine Interpretation of Line Drawing Images. Springer
Verlag Publisher, 2000.

2. Autodesk. Drawing Interchange and File Formats, Release 12. Autodesk Inc, 1992.
3. B. Coüasnon. Dmos : a generic document recognition method, application to an automatic

generator of musical scores, mathematical formulae and table structures recognition sys-
tems. In International Conference on Document Analysis And Recognition (ICDAR), 2001.

4. D. Crevier and R. Lepage. Knowledge-based image understanding systems: A survey.
Computer Vision and Image Understanding (CVIU), 67(2):161-185, 1997.

5 M. Delalandre, E. Trupin, and J. Ogier. Local structural analysis: A primer. Lecture Notes
in Computer Sciences (LNCS), 3088:220-231, 2004.

6. M. Delalandre, Y. Saidali, J. Ogier, and E. Trupin. Adaptable vectorisation system based on
strategic knowledge and xml representation use. Lecture Notes in Computer Sciences
(LNCS), 3088:196-207, 2004.

7. R. Giugno and D. Shasha. Graphgrep : A fast and universal method for querying graphs. In
International Conference on Pattern Recognition (ICPR), 2002.

8. L. Henderson and A. Mumford. The CGM Handbook. Academic Press, 1993.
9. X. Hilaire and K. Tombre. Improving the accuracy of skeleton-based vectorisation. In

Workshop on Graphics Recognition (GREC), 2001.
10. J. Lladós, E. Valveny, G. Sánchez, and E. Martí. Symbol recognition : Current advances

and perspectives. In Workshop on Graphics Recognition (GREC), 2001.
11. J. Murray and W.V. Ryper. Encyclopedia of Graphic File Formats. Editions O'Reilly, 1996.
12. B. Pasternak and B. Neumann. The role of taxonomy in drawing interpretation. In Interna-

tional Conference on Document Analysis And Recognition (ICDAR), 1995.
13. J. Pesonen. Concepts and object-oriented knowledge representation. Master's thesis, De-

partment of Cognitive Science, University of Helsinki, Finland, 2002.
14. Y. Saidali, S. Adam, J. Ogier, E. Trupin, and J. Labiche. Knowledge representation and

acquisition for engineering document analysis. Lecture Notes in Computer Science
(LNCS), 3088:25-36, 2004.

15. J. Song, F. Su, C. Tai, and S. Cai. An object-oriented progressive-simplification based
vectorisation system for engineering drawings: Model, algorithm and performance. Pattern
Analysis and Machine Intelligence (PAMI), 24(8):1048-1060, 2002.

16. J. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Founda-
tions. Cole Publishing Co, 1999.

17. J. Spinrad. Efficient graph representations. In Fields Institute Monographs, volume 19.
American Mathematical Society, 2003.

18. C. Suen, S. Mori, S. Kim, and C. Leung. Analysis and recognition of asian scripts - the state
of the art. In International Conference on Document Analysis and Recognition (ICDAR),
pages 866- 878, 2003.

19. K. Tombre and B. Lamiroy. Graphics recognition - from re-engineering to retrieval. In
International Conference on Document Analysis and Recognition (ICDAR), 2003.

20. J. Ullman. Principles of Data-Base and Knowledge Base Systems, volume 1-2. Computer
Sciences Press, 1989.

21. W3C. Scalar Vector Graphics (SVG) 1.0 Specification. 2001.
22. L. Wenyin and D. Dori. From raster to vectors : Extracting visual information from line

drawings. Pattern Analysis and Applications (PAA), 2(2):10-21, 1999.
23. T. Williams. Object architecture dealing with the unknown - or - type safety in a dynami-

cally extensible class library. Technical report, Microsoft Corporation, 1988.
24. H. Xue. Building skeletal graphs for structural feature extraction on handwriting images. In

International Conference on Document Analysis And Recognition (ICDAR), 2001.

