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Abstract—This paper presents a new approach for symbol
localization in line-drawing images using junction features and
geometric consistency checking. The proposed system first detects
junction points, and then characterizes them by very compact,
distinctive, and varying-length descriptors. The detected junctions
are used to decompose a document image into a set of smooth
primitives composing of isolated shapes (e.g., isolated circles and
straight lines) and curve segments bounded between either two
junctions or a junction and an end-point. These primitives are
then associated with a new set of keypoints to form a complete
and compact representation of document images. Next, keypoint
matching is performed to find the correspondences among the
keypoints of the query and those of database documents. The
obtained matches are finally refined by a new and efficient
algorithm to deal with the problem of geometric consistency
checking. Our experiments shown that the proposed system is
very time- and memory-efficient, and provides high accuracy rate
of symbol localization.

I. INTRODUCTION

The problem of using symbol information is an intensive
research activity in the Document Image Analysis (DIA)
and the graphic recognition communities. In line drawings,
a symbol can be defined as a graphical entity with particular
meaning in the context of specific application domain. Symbols
can serve in different applications including document re-
engineering, understanding, classification and retrieval. Earlier
works on symbols were focused on the problem of symbol
recognition, that can be considered as a particular application
of the general problem of pattern recognition. Several com-
prehensive surveys [8] review the existing works of symbol
recognition on logical diagrams, engineering drawings and
maps. Comparative results have been reported throughout a
series of symbol recognition contests, which concern with the
aspects of performance evaluation [3]. Over the past decade,
the interest has moved towards the symbol spotting problem.
Symbol spotting can be viewed as a way to efficiently localize
possible symbols and limit the computational complexity,
without using full recognition methods. In this sense, symbol
spotting works like a CBIR system.

A common problem of any symbol processing systems,
recognition or spotting, is localization or detection of the
symbols. Symbol localization can be defined as the ability
of a system to localize the symbol entities in the complete
documents. It could be embedded in the recognition/spotting
method [10] or works as a separated stage in a two-step system
[13]. The approaches used for localization are similar for
recognition and spotting. All systems rely first on a primitive
extraction step (e.g., connected components, loops, key-points,
lines, etc.). These systems differ mainly in the way that the

detected primitives are processed, using machine learning or
retrieval and indexing techniques. Different approaches have
been investigated in the literature to deal with the localization
problem.

One of the earliest approach employed in many systems is
subgraph matching. Graph is a very effective tool to represent
line drawings. Attributed Relational Graphs (ARGs) can be
used to describe the primitives, their associated attributes and
interconnections. However, subgraph isomorphism is known to
be a NP-hard problem, making it difficult to use the graph
for large images and document collections, despite the ap-
proximate solutions of subgraph isomorphism developed in the
literature [2], [9]. In addition, subgraph isomorphism remains
very sensitive to the robustness of the feature extraction step,
as any wrong detection can result in strong distortions in the
ARGs.

An alternative approach to subgraph matching is framing
[4], [5], [7]. These techniques involve with the decomposition
of the image into frames (i.e., tiles, buckets, windows) in which
the frames could be overlapped [7] or disjointed [4], [5]. Local
signatures are computed from the primitives contained in the
frames and matched to identify the candidate symbols. The
size of the frames can be determined based on the symbol
models [4], [7] or set at different resolutions [5]. In this way,
framing is not scale invariant as the size of the frames cannot
be dynamically adapted. The position of frames can be set with
a grid [4], [5] or by sliding [7]. Sliding could be performed
by steps to reduce the entire processing time [7], as any
computations with overlapping incur a polynomial complexity.

Due to the different problems discussed above, a common
way to deal with localization is the use of a triggering
mechanism. Such a system looks for some specific primitives
in line drawing images and triggers a matching process at
the symbol level within the Regions of Interest (ROIs) around
these primitives. The system in [11] is an typical example. In
this work, given a query symbol, the keypoints (i.e., Difference
of Gaussian features) and its corresponding vocabularies are
computed and used to find the matched keypoints from the
database documents. For each pair of matched keypoints, the
local scales and orienations extracted at the keypoint in the
query symbol are used to generate the ROI in the document
that probably contains the instance of the symbol. Because the
number of detected keypoints would be very large and the local
scale computed at each keypoint could be far from satisfaction,
the ROI extraction step is thus fragile and time-consuming.
Triggering mechanisms have been also developed from graph-
based representations, as in [13], [14]. These proposed systems
work from the ARGs, where the structures and attributes of the



graphs are exploited to identify the ROIs. In [14], the ROIs
are obtained from the maximum and minimum coordinates
of adjacent lines. To deal with the error-prone introduced in
the vectorization process, the ARGs are extracted from low
resolution images and processed by a contraction step. The
authors in [13] apply a scoring process in graphs to look
for specific attributes of nodes (e.g., small and perpendicular
segments). Scores are propagated through the loops of shortest
length in the graph. Triggering-based localization is very
sensitive to robustness of the mechanism in that any missed
detection at the triggering level will result in the failure of
symbol localization.

In this work, we present a new approach for symbol
localization using junction features and geometric consistency
checking. The junction points are first detected and charac-
terized into different types such as T-, L-, and X-junctions.
Using the detected junctions, we decompose a document image
into a set of smooth primitives, composing of isolated shapes
(e.g., isolated circles and straight lines) and curve segments
bounded between either two junctions or a junction and an
end-point. These primitives are then associated with a new set
of keypoints including Line-, Arc-, and Circle-keypoints. The
obtained keypoints, in combination with the junction points
and end-points, form a complete and compact representation
of document images. Next, keypoint matching is performed to
find the correspondences among the keypoints of the query and
those of database documents. Finally, geometric consistency
checking is applied to the obtained matches using a new and
efficient algorithm, which is designed to work on our specific
keypoints. For the rest of this paper, we describe the details of
the proposed approach in Section 2. Experimental results are
investigated in Section 3. Key remarks and future works are
given in Section 4.

II. THE PROPOSED APPROACH

A. Detection of junction points

As discussed in [12], most of the well-known techniques
for junction detection are vectorization-based systems. Such
methods rely on vectorization, known to be sensitive to setting
parameters, and presenting difficulties when heterogeneous
primitives (e.g., straight lines, arcs, curves and circles) appear
within a same document. Knowledge about the document
content must be included, making the systems less adaptable
to heterogeneous corpus. In this work, the junction points are
detected by using our previous work in [12]. For completeness,
we describe the main idea of the junction detector as follows.
We directly address the problem of junction detection by
finding the optimal meeting points of median lines. At first
glance, it seems that our approach would directly encounter
the well-known problem of junction distortion. However, it is
important to note that, apart from crossing zones or distorted
zones (i.e., the areas where several line segments meet), the
median lines are known to be very representative for the rest of
line segments. This point suggests that if we can successfully
remove the distorted zones, the remaining disjointed strokes
would be not subjected to the problem of junction distortion.
We therefore present a new algorithm to precisely detect and
conceptually remove the distorted zones. The remaining line
segments are then locally characterized to form structural
representations of the crossing zones. Finally, the junction

points are reconstructed by two-step process: clustering and
optimizing. The clustering step clusters the characterized line
segments into different groups based on their topological
constraint, and the optimizing step looks for the best position
of junction by minimizing the distance errors of the clustered
line segments. Figure 1 shows the detected junctions for few
noised symbols.

Fig. 1. The detected junctions (small red dots) for few noised symbols.

B. Junction characterization and matching

The detected junctions are characterized and classified into
different types such as T-, L-, X-junction. More generally, we
wish to characterize any complicated junctions in the same
manner based on the arms forming the junction. In our case, as
each junction point is constructed from the local line segments
of one group, we can consider these line segments as the arms
of the junction point. Given a detected junction J associated
with a set of m arms {UiVi}i=0,...,m−1, the characterization
of this junction is described as {p, sp, {θpi }

m−1
i=0 }, where:

• p is the location of J ;

• sp is a local scale computed as the mean length of the
arms of J ;

• θpi is the difference in degrees between two con-
secutive arms UiVi and Ui+1Vi+1. These parameters
{θpi }

m−1
i=0 are tracked in the counterclockwise direction

and the θpm−1 is the difference in degrees between the
arms Um−1Vm−1 and U0V0.

It is noticed that the description of each junction point
as discussed above is very compact and distinctive. The
dimension of this descriptor is limited up to the number of
arms of each junction point and in practice, this value is
quite small (e.g. 3 for a T-junction, 4 for a X-junctions). This
point constitutes a great advantage for the detected junctions
which supports for the subsequent task of junction matching
in very efficient manner. In addition, the junction descriptor is
distinctive (i.e., symbolic description) and general that we can
describe any junction points appearing in a variety of com-
plex and heterogeneous documents. Given two junction points
characterized as {p, sp, {θpi }

mp−1
i=0 } and {q, sq, {θqj}

mq−1
j=0 }, the

information of junction location and junction scale is used to
quickly refine the matches to be described later, and the rest
is used to computed a similarity score, C(p, q), of matching
two junctions p and q as follows:



C(p, q) = max
i,j
{ 1
H

h−1∑
k=0

D(θp(i+k) mod mp
, θq(j+k) mod mq

)}

(1)
where h = min(mp,mq), H =Max(mp,mq), and

D(θpi , θ
q
j ) =

{
1, if |θpi − θ

q
j | ≤ θthres (2)

0, for otherwise. (3)

The similarity score C(p, q) is in the range [0, 1] and θthres
is an angle difference tolerance. Two junctions are matched if
their similar score is higher than a threshold: C(p, q) ≥ Cthres.
Our investigation shown that a good range of these parameters
are following: θthres ∈ [15, 20] and Cthres ∈ [0.65, 0.75]. In
some specific domains taking object localization for example,
a query object or symbol is often embedded into complicated
documents. It is therefore common case to see that the query
object could be touched with other context information appear-
ing in a document. In such cases, using the similarity score
C(p, q) could be too restricted to find corresponding junctions.
We therefore release the junction matching step by introducing
an addition constraint as follows. Two junctions p and q are
matched if their similar score is higher than a threshold, or
one inclusion test is hold for these two junctions. Here, we
consider that the junction p is included in the junction q if
there are exact mp− 1 angle matches between the angles of p
and q. This implies: C(p, q)∗Max(mp,mq) = mp−1. Figure
2 shows the corresponding matches of the junctions detected
in a query symbol (left) and those of an image cropped from
a big document (right).

Fig. 2. Corresponding junction matches between a query symbol (left) and
a cropped document (right).

C. Keypoint-based representation of document images

The junctions detected in the previous stage are used to
decompose a document image into a set of smooth primitives.
Here, we define the smooth primitives as those composing
of isolated shapes (e.g., isolated circles and straight lines)
and curve segments bounded between either two junctions
or a junction and an end-point. This definition is derived
based on the fact that after the process of junction detection,
every median line segment bounded between two junctions are
sufficiently smooth. Otherwise, some new junction points are
likely to be detected on this segment. In this work, we restrict
the smooth primitives to three kinds of segment: straight line
segment, arc segment, and circle. These basic-shape primitives

could be simply derived using the linear least squares fitting
technique. Next, each type of these primitives is characterized
as a specific keypoint as follows:

• A straight line primitive is represented by a triple
{pL, pL1

, pL2
} corresponding to the middle point

and two extremity points, respectively. A triple
{pL, pL1 , pL2} is regarded as a Line-type keypoint or
L-keypoint.

• An arc primitive is represented by {pA, pA1 , pA2}
with the same meaning as that of a straight line
primitive. A triple {pA, pA1 , pA2} is regarded as an
Arc-type keypoint or A-keypoint. It is noted that the
characterization an A-keypoint is proceeded in the
same spirit as that of a junction whose two arms are
pApA1

and pApA2
.

• A circle primitive is represented by {pC , rC} corre-
sponding to its centroid and radius. A couple {pC , rC}
is regarded as a Circle-type keypoint or C-keypoint.

For completeness, we name the junction points as J-
keypoints and end-points as E-keypoints. As a result, a doc-
ument image is now completely represented by a set of
keypoints, composing of the L-keypoints, A-keypoints, C-
keypoints, J-keypoints, and E-keypoints. Figure 3 shows a
decomposition of a document image into a set of keypoints.

  

J-keypoints 

A-keypoints 

L-keypoints 

C-keypoints 

Fig. 3. Keypoint-based representation of a simple document image.

D. Symbol matching and localization

Given a query symbol Q and a database document D, their
keypoints are first detected and characterized as described in
the previous sections. Next, keypoint matching is performed to
find the correspondences among the keypoints of Q and those
of D. Keypoint matching is independently processed for each
type of keypoints as follows:

• An A-keypoint is matched with another A-keypoint
using the same matching procedure as that of the J-
keypoints (i.e., junction matching).

• An E-keypoint (resp. C-keypoint, L-keypoint) is al-
ways matched with any other E-keypoints (resp. C-
keypoints, L-keypoints).

The obtained matches are finally verified by checking
geometric consistency. This step will remove false matches
and cluster the remaining matches into different clusters that
each of which indicates an instance of the query symbol.
Concerning this problem of geometric consistency checking,
two main strategies are often exploited in the literature. The



first strategy treats data (i.e., the matches) in a top-down way.
One typical technique of this strategy is known as RANSAC
(RANdom Sample Consensus) [6]. The key idea of RANSAC
is to randomly select k matches for estimating a transformation
model (typically an affine transformation and thus k = 2 or 3).
The model is then assigned with a confidence factor, which is
calculated as the number of matches fitting well to this model.
Next, these steps are repeated a number of times to find the
model with the highest confidence. RANSAC is often used to
find a single transformation model between two images with a
high degree of accuracy, provided that the ratio of inliers and
outliers occurring in the data is sufficiently high (≥ 50%).
However, when this is not the case, it is difficult to use
RANSAC. In addition, RANSAC would be time-consuming
because the number of iterations is often large to ensure that
an optimal solution could be found. The second strategy treats
data in a bottm-up manner by performing a voting process
starting from all data points, and then finding the parameters
(typically composing of 4 paramters: orienation, scaling, and
x, y-translatation) corresponding to the dense density areas of
support. One typical technique falling this strategy is known
as Generalized Hough Transform (GHT) [1]. GHT is most
commonly used for the cases where multiple transformation
models are presence in the data. It is less accurate than
RANSAC but very robust to noise even if a large number of
outliers are present. However, because GHT requires a proces
of parameter quantization, it is subjected to very high cost
of memory space O(M4), time-consuming O(N2)1, and is
sensivtive to the quantization of parameters.

In our case, as each keypoint of the query symbol is often
occurred in a database document with a high frequency, the
outlier matches are thus significantly greater than the inlier
matches. In addition, multiple instances of a query symbol are
appeared in the database document, it is therefore not a good
idea to use some techniques like RANSAC or GHT because of
the aforementioned weaknesses. We therefore present, below,
an efficient algorithm to deal with the problem of geometric
consistency checking. The proposed algorithm incorporates the
advantages of both RANSAC and GHT while avoiding their
weaknesses. It requires no parameter quantization and works
very efficiently in terms of time complexity and memory space.
The basic idea is to directly estimate a geometry model F (i.e.,
an affine transformation) based on every match formed by a
pair of either two L-keypoints or two A-keypoints. This idea is
inspired by the fact that a pair of two matched lines (or acrs)
provides us with 4 parameters (i.e., orientation, scaling, and
x, y-translation) of an affine transformation F . As a result, we
need only one match to estimate a model F other than two
matches as the cases of GHT and RANSAC. Next, we apply
the transformation F to all the keypoints detected on the query
Q, resulting in a new set of projected points on the database
document D. If there is a sufficiently large overlap among the
projected points and the keypoints of D matched with those
of Q, the transformation F is accepted and used to localize
the position of the corresponding instance of Q on D. Here,
we consider two points are overlapped if the distance between
them is less than a threshold εoverlap. As the number of the
L- and A-keypoints of Q are quite small and few real compu-
tations are needed, the proposed method is very time-efficient.

1N and M , are the number of matches and sampling bins, respectively.

In particularly, the computation complexity of the proposed
method is limited up to a linear order O(kN1N2), where N1

is the number of keypoints of Q, and N2 is the number of
matches corresponding to the L- and A-keypoints of Q, and
k is a constant value depending on the threshold εoverlap. It
is obvious to see that N1 << N2 << N . Furthermore, with
a bit prior knowledge of the dataset, we can quickly prune a
large number of matches by setting the lower and upper scales
for the query symbol. In this way, the local scales associated
to the keypoints are used to prune the matches. It is also noted
that there is no need to process all the L- and A-keypoints of
Q. In our experiments, we first sort m L- and A-keypoints of
Q in a decreasing order of their length and then choose the
first m/2 keypoints to be processed. As an accepted model
F corresponds to an instance of the query, multiple instances
of the query are thus successfully detected with respect to
the number of accepted models. In order to achieve a high
accuracy rate of making an accept/reject decision for F , the
decision threshold is empirically determined for each query
symbol from a training dataset.

III. EXPERIMENTAL RESULTS

For performance evaluation of the proposed approach,
we have selected the final dataset for symbol spotting in
GREC20112. The details of this dataset are described on Table
I. We also used the same evaluation metric including Precision
(P), Recall (R) and F-score as described in this contest [15].

P = SInt

SRet
, R = SInt

SGT
, F -score = 2 · P ·R

P+R

Where SInt is sum of intersection areas between the
bounding boxes returned by the spotting system and that of
ground-truth, and SRet is sum of areas of the bounding boxes
returned by the spotting system, and SGT is sum of areas of
the bounding boxes in ground-truth. It is worth pointing that
this metric does not take into account the overlapping areas
of the bounding boxes detected by the system. Consequently,
taking one examples as shown in Figure 4 where one system
returns three bounding boxes with the same size at the same
location, then we obtain a perfect score (1.0) for both Precision
and Recall. In order to alleviate this matter, we have set a strict
constraint for our system in that the ratio of overlapping area
and union area of any two retrieved bounding boxes is alway
smaller than a threshold (10% in our implementation).

 

  

Fig. 4. The case where Precision and Recall obtain a perfect score (1.0).

The detailed results of our system are reported on Table II
including Precision, Recall, F-score, maximum ratio between
overlapping area and union area of any two bounding boxes
retrieved by our system, and mean processing time for a query
done an input image. General speaking, the proposed system

2http://mathieu.delalandre.free.fr/projects/sesyd/symbols/isrc2011.html



TABLE I. DATASET USED FOR SYMBOL SPOTTING IN GREC2011.

Test Set Models Images Queries Symbols Noises Image Size
Elec1. 21 20 118 246 Ideal Min:1700x1600Elec2. 21 20 127 274 Level 1
Elec3. 21 20 114 237 Level 2 Max:4400x2100Elec4. 21 20 156 322 Level 3

Archi1. 16 20 247 633 Ideal Min:2300x2500Archi2. 16 20 245 597 Level 1
Archi3. 16 20 245 561 Level 2 Max:5400x2900Archi4. 16 20 249 593 Level 3

TABLE II. EXPERIMENTAL RESULTS OF OUR SYSTEM (%).

Test Set Precision Recall F-Score Max Overlap
Union Mean Time (ms)

Elec1. 0.85 0.84 0.84 0.00 % 723.38
Elec2. 0.86 0.79 0.82 0.00 % 677.83
Elec3. 0.92 0.81 0.86 5.76 % 655.39
Elec4. 0.80 0.81 0.80 5.76 % 1097.05
Archi1. 0.91 0.96 0.93 6.69 % 1521.47
Archi2. 0.91 0.92 0.92 9.92 % 1341.90
Archi3. 0.94 0.89 0.92 9.92 % 1605.80
Archi4. 0.91 0.90 0.90 10.63 % 1409.88

achieves quite good results on both detection rate and accuracy.
On average, the proposed system obtains the F-score(s) of 0.83
and 0.92 on electrical and architectural datasets, respectively.
It is worth pointing that these scores are obtained under a very
small overlap of the detected bounding boxes. The processing
time consists of all stages included in the proposed system
and is calculated as mean time of a complete query relying
on our specific computer configuration: Intel(R) Core(TM) i5
CPU 2.4GHz, RAM 2.4 GB, Windows 8. As discussed by
the authors of this contest [15], the performance of a spotting
system is not only dependent on the level of noises but also
other factors including the number of model symbols, query
symbols, and the number of symbol instances in document
database, etc. It is noted that the results obtained on the
architectural dataset are much higher than those on electrical
dataset. The reason lies in the fact that in the electrical dataset,
more query symbols are used and many query symbols looks
very similar making it difficult to be correctly distinguished.

Fig. 5. An example of symbol localization: a query symbol (left) and the
detected instances of the query (red bounding boxes).

Figure 5 shows an example of our symbol localization
system where the query is perfectly localized even if it is
embeded into a complicated database document. There are,
however, some queries as shown in Figure 6 that they are very
difficult to be correctly distinguished.

IV. CONCLUSION

In this work, a new approach for symbol localization in
line-drawing images has been presented. The main contribution

Fig. 6. False alarms (small bounding boxes) due to the difficulty of a
document content.

of our work is three-fold. First, a new set of keypoints is
presented to work on the line-drawing documents. Second,
a new decomposition method is described to construct a
complete and compact representation of the graphic document
images. Finally, an efficient method is proposed to deal with
the problem of geometric consistency checking. All of these
advantages are attributed to the proposed symbol localization
system, making it very time- and memory-efficient. We have
also demonstrated that the proposed system achieves quite
interesting results for a large and standard dataset. Further
works on keypoint indexing would be very useful to deal
with the time-critical applications such as symbol retrieval or
symbol spotting.
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