
ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

An efficient indexing scheme based on1

linked-node m-ary tree structure and polar2

partitioning of feature space3

The-Anh Pham, Sabine Barrat, Mathieu Delalandre, and and Jean-Yves Ramel4

Laboratoire d’Informatique 64, Avenue Jean Portalis, 37200 Tours - France.5

the-anh.pham@etu.univ-tours.fr,{sabine.barrat, mathieu.delalandre,6

jean-yves.ramel}@univ-tours.fr7

Abstract. Fast nearest neighbor (FNN) search is a crucial need of many8

recognition systems. Despite the fact that a large number of algorithms9

have been proposed in the literature for the FNN problem, few of them10

(e.g., randomized KD-trees, hierarchical K-means tree, randomized clus-11

tering trees, and LHS-based schemes) have been well validated on exten-12

sive experiments, and known to give satisfactory performance on specific13

benchmarks. While such representative indexing schemes works well for14

the approximate nearest neighbor search (ANN), their performance is15

slightly better or even worse than brute-force search for the problem of16

exact nearest neighbor search (ENN). In this work, we propose a linked-17

node m-ary tree (LM-tree) indexing algorithm, which works rather well18

for both the ANN and ENN tasks. The main contribution of the LM-tree19

is three-fold. First, a new polar-space-based method of data decompo-20

sition is presented to construct the LM-tree. Second, a novel pruning21

rule is proposed to efficiently narrow down the search space. Finally, a22

bandwidth search method is presented to deal with the ANN task, in23

combination with the use of multiple randomized LM-trees. Our experi-24

ments carried out on one million SIFT features show that the proposed25

method gives substantial improvement in search performance relative to26

the aforementioned indexing algorithms.27

Keywords: Image Indexing, Nearest Neighbor Search, Hashing Func-28

tion, Clustering Trees29

1 Introduction30

Recently, there has been a great interest of researchers to deal with the fast31

nearest neighbor search as this task plays a critical role in many computer vi-32

sion systems such as object matching, object recognition, and CBIR. In many33

applications, an interested object can be represented by a real feature vector34

in a D-dimensional space. The problem of nearest neighbor search is formu-35

lated as follows. Given a set X composing of n points or feature vectors in RD
36

space, design a data structure for reorganization of X to efficiently answer the37

queries of finding a point in X closest to given any query point. Excellent sur-38

veys of indexing algorithms in vector space are presented by White et al. [16],39

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2

Gaede et al. [6], and Böhm et al. [3]. These algorithms are often categorized40

into space-paritioning-based, clustering-based, and hashing-based approaches.41

We will discuss the most representative algorithms in the following sections.42

For the space-partitioning-based approaches, KD-tree is probably argued as43

one of the most popular techniques [4]. The basic idea is to iteratively partition44

the data X into two roughly equal-sized subsets, using a hyperplane perpen-45

dicular to a split axis, say the ith axis, in RD space. The first subset contains46

the points whose values at the ith dimension are smaller than a split value, and47

the second subset contains the rest of X. The split value is often chosen as the48

median value of the ith components of the points in X. Two new nodes are49

then created with respect to the subsets. This process is then repeated for the50

two subsets until the size of every subset falls below a threshold. Searching for51

a nearest neighbor of given a query point q is proceeded using a branch-and-52

bound technique whose the pruning rule works as follows: a node u is selected53

to explore if its hyper-rectangle does intersect the hyper-sphere centered at q54

with a radius equal to the distance of q to the nearest neighbor found so far.55

The KD-tree has been shown to work very efficiently in low-dimensional space56

for the ENN search. Several variations of the KD-tree have been investigated to57

deal with the ANN search. The Best-Bin-First search or priority search in [1]58

is a typical improvement of the KD-tree. The basic idea of the BBF technique59

is twofold: it limits the maximum number of data points to be searched; and it60

visits the nodes in the order of increasing distances to the query. The BBF tech-61

nique has been shown to give much better performance than restricted search62

with the KD-tree. The use of priority search is further improved in [15], where63

the author proposed to construct multiple KD-trees, called NKD-tree, by apply-64

ing different rotations to the data. The obtained results are quite interesting.65

Based on that, the technique of using multiple KD-trees has been developed in66

two new different ways: multiple randomized KD-trees (RKD-trees) and mul-67

tiple randomized principal component KD-trees (PKD-trees). The RKD-tree is68

constructed by selecting the split axis at random from a small set of dimensions69

having the highest variances. The PKD-tree is constructed in a similar manner70

but the data is aligned in advance to the principal axes obtained from PCA71

analysis. Experimental results show significantly better performance, compared72

to the original single KD-tree. A last noticeable improvement of the KD-tree73

for the ENN search is principle axis tree (PAT-tree) [11]. The PAT-tree extends74

the KD-tree at twofold. First, it constructs a bigger fanout tree by partitioning75

the data at each step into m subsets (m ≥ 2). Second, the split hyper-plane is76

chosen to be perpendicular to the principle axis of data at each level of partition,77

resulting in the hyper-polygons of the nodes rather than the hyper-rectangles as78

in the KD-tree. Although the computation of lower bounds in the PAT-tree is79

more complicated, the PAT-tree still outperforms many other indexing schemes80

in the experiments.81

For the clustering-based approaches, Fukunaga et al. [5] proposed to recur-82

sively partition the data into smaller regions using the K-means technique. This83

process terminates when the size of every region falls below a threshold, result-84

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3

ing in a hierarchical K-means tree of the data. Nearest neighbor searching is85

then proceeded by a branch-and-bound algorithm. Experiments reported that86

the proposed algorithm works quite efficiently. Muja and G. Lowe [12] extend87

the work of Fukunaga et al. by incorporating the priority search to deal with the88

ANN task. Particularly, proximity searching is proceeded by traversing down the89

tree and always choosing the node whose cluster center is closest to the query.90

Each time when we pick up a node for further exploration, the other sibling nodes91

are inserted to a priority queue, which contains a sequence of nodes stored in92

increasing order of the distance to the query. This continues until a leaf node is93

reached followed a sequence search for the points contained in this node. Back-94

tracking is then invoked starting from the top node stored in the priority queue.95

The experiments shown a significant improvement compared to the LHS-based96

algorithms and the KD-tree for proximity searching on many datasets. Multiple97

randomized clustering trees have been also explored in [13] by the same authors,98

where the trees are constructed by selecting the centroids at random. In [14],99

Nister et al. constructed a hierarchical vocabulary tree for representation of fea-100

ture vectors of MSER regions. The K-means algorithm is used to partition the101

feature vectors into smaller groups, where each is then associated with a node of102

tree containing the cluster center. This process is recursively repeated for each of103

the obtained groups until the height of the tree exceeds a pre-defined threshold.104

In this way, the tree is constructed and hierarchically defines the quantized cells105

of feature vectors, which could be regarded as the visual vocabularies. Proxim-106

ity searching is essentially similar to other tree-based approaches by traversing107

down the tree, and at each level selecting the node whose center is closest to the108

query.109

For hashing-based approaches, Locality-Sensitive Hashing (LHS) [7] has been110

known as one of the most popular hashing-based methods, which can perform111

ANN search with a truly sub-linear time even for very large-dimensional data.112

The key idea of LHS is to design the hash functions that the similar points are113

hashed with a high probability of collision, while the dissimilar points are likely114

to be hashed with different keys. Given a query, proximity searching is proceeded115

by first projecting the query using the LSH functions. The obtained indices are116

then used to access the appropriate buckets followed a sequence search for the117

data points contained in the buckets. Given a sufficiently large number of hash118

tables, the LSH can perform ANN search in a truly sub-linear time complexity.119

Qin Lv et al. [10] introduced multi-probe LSH to substantially reduce the number120

of hash tables, while retaining the same search precision. The basic idea is to121

look up multiple buckets probably containing the good candidates of nearest122

neighbors to the query. In this way, the proposed method reduces the space123

requirement and increases the chance of finding the true answers. Kulis et al. [9]124

extended the LSH to the case when the similarity function is an arbitrary kernel125

function κ: D(p, q) = κ(p, q) = φ(p)Tφ(q). Given an input feature vector x, the126

problem is then to design a specific LSH function over the feature vector φ(x),127

where φ(x) is some unknown embedding function. For this purpose, the authors128

proposed to construct the LSH function as: h(φ(x)) = sign(rTφ(x)), where r is a129

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

4

random hyperplane drawn from N(0, I) and is computed as a weighted sum of a130

subset of the database feature vectors. Since the newly derived h(φ(x)) satisfies131

the LSH property (i.e., Prh∈H [h(p) = h(q)] = D(p, q)), the new indexing scheme132

is thus capable of performing similarity searching in a sub-linear time complexity,133

while being useful to the cases of kernelized data.134

For summary, the hashing-based approaches gives a great advantage of search135

time efficiency, but the main drawback is the use of a huge amount of memory136

to construct the hash tables. In addition, as argued in [2], the search precision137

would be a problematic because the ”good” nearest neighbors could be hashed138

into many adjacent buckets, making the access to single hash bin insufficient to139

recover the good answers. The clustering-based approaches have shown to give140

quite good performance in a wide range of feature types and data sizes [12], [13].141

The main disadvantage is the time-consuming of the process of tree construction.142

The space-partition-based approaches, particularly to the KD-tree-based index-143

ing algorithms, seem to be a proper choice for all aspects of search precision,144

search speedup, and tree construction time. However, for all these approaches,145

the performance for ENN search is still limited. In this work, we propose a146

linked-node m-ary tree (LM-tree) indexing algorithm, which works rather well147

for both the ANN and ENN tasks. Three main contributions are attributed to148

the proposed LM-tree. First, a new method of data decomposition is presented149

to construct the LM-tree. Second, a novel pruning rule is proposed to efficiently150

narrow down the search space. Finally, a bandwidth search method is presented151

to deal with the ANN task, in combination with the use of multiple randomized152

LM-trees. Our experiments carried out on one million SIFT features show that153

the proposed method gives a significant improvement in search performance,154

compared to the aforementioned indexing algorithms.155

The rest of this paper is organized as follows. The proposed indexing algo-156

rithm is presented in great details in Section 2. Experimental results are pre-157

sented in Section 3. We conclude the paper in Section 4.158

2 The proposed algorithm159

2.1 Construction of the LM-tree160

Given a dataset X composing of feature vectors or points in D-dimensional161

space RD, we present in the following section an indexing structure to index the162

datasetX supporting efficient proximity searching. For better presentation of our163

approach, we use the notation p as a point in the RD feature space, and pi as164

the ith component of the point p (1 ≤ i ≤ D). We also denote p = (pi1 , pi2) as a165

point in 2D space. Before constructing the LM-tree, the dataset X is normalized166

by aligning it to the principal axes obtained from PCA analysis. Note that, we167

perform no dimension reduction in this step. In stead, PCA analysis is only used168

to align the data via its principle axes. Next, the LM-tree is constructed by169

recursively partitioning dataset X into m roughly equal-sized subsets as follows:170

– Sort the axes in decreasing order of variance.171

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

5

– Choose randomly two axes, i1 and i2, from the first L highest variance axes172

(L < D).173

– Conceptually project every point p ∈ X into the plane i1ci2, where c is174

the centroid of the set X, and then compute a corresponding angle: φ =175

arctan(pi1 − ci1 , pi2 − ci2).176

– Sort the angles {φt}nt=1 in increasing order (n = |X|), and then divide the177

angles into m equal sub-partitions:(0, φt1] ∪ (φt1 , φt2] ∪ . . . ∪ (φtm , 360].178

– Partition the set X into m subsets {Xk}mk=1 corresponding to m angle sub-179

partitions obtained in the previous step.180

X1

X2

X3

X4

X5
X6

Fig. 1. Illustration of the iterative process of data partitioning in 2D space: the first
partitioning applied for the entire dataset X, and the second partitioning applied for
the subset X6 (the branching factor m = 6).

For each subset Xk, a new node Tk is constructed and then attached to181

its parent node where we also store the following information about the split:182

split axes (i.e., i1 and i2), split centroid (ci1 , ci2), split angles {φtk}mk=1, and183

split projected points {(pki1 , p
k
i2

)}mk=1 where the point (pki1 , p
k
i2

) corresponds to184

the split angle φtk . For efficient access across these child nodes, a direct link is185

established between two adjacent nodes Tk and Tk+1 (1 ≤ k < m), and the last186

one Tm is linked to the first one T1. Next, we repeat this partitioning process187

for each subset Xk associated to the child node Tk until the number of data188

points in each node falls below a pre-defined threshold Lmax. In this way, only189

the leaf nodes contain the actual data points, and the internal nodes keep only190

the information about the splits. This leads to a minimal utilization of memory191

space with a cost of truly linear O(n). It is worth pointing that each time when192

a partition is proceeded, two highest variance axes of the corresponding set are193

employed. This is contrast to many existing tree-based techniques where they194

often employ only one axis to partition the data. Consequently, as argued in195

[15], considering a high-dimensional feature space, such as 128D SIFT features,196

the total number of axes involved in the tree construction is rather limited,197

making any pruning rules inefficient and the tree less discriminative for later198

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6

usage of searching. Naturally, more the number of principal axes involved in199

partitioning the data, more benefit we achieve for both efficiency and precision200

search. Figure 1 illustrates the first and second levels of the LM-tree construction201

with a branching factor m = 6.202

2.2 Exact nearest neighbor search in the LM-tree203

Exact nearest neighbor search in the LM-tree is proceeded using a branch-and-204

bound algorithm. Given a query point q, we first project q into a new space205

using the principal axes as we have processed in the LM-tree construction. Next,206

starting from the root, we traverse down the tree, and use the split informa-207

tion stored at each node to choose the best child node for further exploration.208

Particularly, given an internal node u along with the corresponding split infor-209

mation {i1, i2, ci1 , ci2 , {φtk}mk=1, {(pki1 , p
k
i2

)}mk=1} which is already stored at u, we210

first compute an angle: φqu = arctan(qi1 − ci1 , qi2 − ci2). Next, binary search is211

applied for the query angle φqu over the sequence {φtk}mk=1 to choose the closest212

child node of u from q for further exploration. This process continues until a leaf213

node is reached, and then partial distance search (PDS) [11] is applied for the214

points contained in the leaf. Backtracking is then invoked to explore the rest of215

the tree. Each time when we are positioned at some node u, the lower bound is216

computed as the distance from the query q to the node u. If the lower bound217

exceeds the distance from q to the nearest point found so far, we can safely avoid218

exploring this node and proceed with other nodes. In the following section, we219

present a novelty rule to compute efficiently the lower bound. Our pruning rule220

is developed from that presented in the principal axis tree (PAT) [11]. PAT is221

a generalization of KD-tree in that the page regions are hyper-polygons rather222

than hyper-rectangles, and the pruning rule is recursively computed based on223

the law of cosines. The disadvantages of this pruning rule are expensive cost of224

computation (i.e., O(D)) and being inefficient when working on high-dimensional225

space due to the fact that only one axis is employed at each partition. As our226

algorithm of data decomposition (i.e., LM-tree construction) is quite different227

from that of the KD-tree-based structures, we have developed a significant im-228

provement of the pruning rule used in PAT. Particularly, we have incorporated229

two following major advantages for the proposed pruning rule:230

– The lower bound is computed as simple as in 2D space, regardless of how231

large the dimensionality D is. Therefore, the computation cost is just O(2)232

instead of O(D) as in the case of PAT.233

– The magnitude of the proposed lower bound is significantly greater than234

that of using PAT. This makes the proposed pruning rule work efficiently.235

We now return to the description of computing the lower bound. Let u be the236

node in the LM-tree at which we are positioned, and Tk be one of the children237

of u which is going to be searched, and pk = (pki1 , p
k
i2

) be the kth split point238

corresponding to the child node Tk (see Figure 2). The lower bound, LB(q, Tk),239

from q to the child node Tk is recursively computed from LB(q, u) as follows:240

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

7

x

q

c

q2

h

pk

pk+1

Tk

1

2

i1

i2

Fig. 2. Illustration of computing the lower bound in 2D space.

– Compute the angles: α1 = 6 qcpk and α2 = 6 qcpk+1, where q = (qi1 , qi2) and241

c = (ci1 , ci2).242

– If one of two angles α1 and α2 is smaller than 900, we have the following243

fact due to the rule of cosines [11]:244

d(q, x)2 ≥ d(q, h)2 + d(h, x)2 (1)

where x is any points in the region of Tk, and h = (hi1 , hi2) is the projection245

of q on the line cpk or cpk+1 depending of if α1 < α2 or not, respectively.246

Then, we applied the rule of lower bound computation in PAT in 2D space247

as follows:248

LB2(q, Tk)← LB2(q, u) + d(q, h)2 (2)

Next, we treat the point h = (q1, q2, . . . , hi1 , . . . , hi2 , . . . , qD−1, qD) in place249

of q in the means of lower bound computation to the descendant of Tk.250

– If both the angles α1 and α2 are greater than 900 (e.g., the point q2 in Figure251

2), we have a more restricted rule as follows:252

d(q, x)2 ≥ d(q, c)2 + d(c, x)2 (3)

Therefore, the lower bound is easily computed as:253

LB2(q, Tk)← LB2(q, u) + d(q, c)2 (4)

Again, we then treat the point c = (q1, q2, . . . , ci1 , . . . , ci2 , . . . , qD−1, qD) in254

place of q in the means of lower bound computation to the descendant of255

Tk.256

As the lower bound LB(q, Tk) is recursively computed from LB(q, u), it is257

needed to set an initial value for the lower bound at the root node. Obviously,258

we set LB(q, root) = 0. It is also noted that when the point q is fully contained259

in the region of Tk, no computation of the lower bound is required, therefore:260

LB(q, Tk)← LB(q, u).261

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

8

2.3 Approximate nearest neighbor search in the LM-tree262

In some cases when exact nearest neighbor (ENN) search is not a crucial need,263

approximate nearest neighbor (ANN) search is an excellently alternative choice264

as the precision search could be slightly degraded but we can gain a speedup of265

hundreds times compared to the brute-force search. In this section, we describe266

the use of the LM-tree to deal with the ANN task. Particularly, ANN search is267

proceeded by constructing multiple randomized LM-trees to account for different268

viewpoints of the data. The idea of using multiple randomized trees for ANN269

search is originally presented in [15], where the authors proposed to construct270

multiple randomized KD-trees. This technique has been then incorporated with271

the priority search and successfully used in many other tree-based structures such272

as hierarchical clustering trees, K-means trees, and KD-trees [12], [13]. Although273

the priority search is shown to give better search performance, it is certainly sub-274

jected to high cost of computation because the process of maintaining a priority275

queue during the online search is rather expensive. Here, we exploit the advan-276

tages of using multiple randomized LM-trees but avoid using the priority queue.277

The basic idea is to restrict the search space to the branches not very far from the278

considering path. In this way, we introduce a specific search procedure, so-called279

bandwidth search, which is proceeded by setting a search bandwidth to every280

intermediate node of the on going path. Particularly, let P = {u1, u2, . . . , ur}281

be a considering path obtained by traversing on a single LM-tree, where u1 is282

the root node, and ur is the node at which we are positioned. The proposed283

bandwidth search indicates that for each intermediate node ui of P (1 ≤ i ≤ r),284

every sibling node of ui at a distance of b+ 1 nodes (1 ≤ b < m/2) on both sides285

from ui is no need to be searched. The value b is called search bandwidth. Taking286

one example as shown in Figure 3, where X6 is an intermediate node on the con-287

sidering path P , then only X1 and X5 are the candidates for further inspection288

given a search bandwidth b = 1. There is a notable point that when the query q289

is too close to the centroid c, all the sibling nodes of ui should be inspected. In290

our experiments, this is happened at the node ui if d(q, c) ≤ εDmed, where q and291

c are the projected query point and centroid on the 2D plane associated to the292

split axes at ui, and Dmed is the median value of the distances between c and all293

projected data points associated to ui, and ε is a tolerate parameter. In addition,294

in order to obtain a varied range of search precision, we would need a parameter295

Emax of maximum data points to be searched on a single LM-tree. As we are296

designing an efficient solution dedicated to ANN search, it would make sense to297

use an approximate pruning rule rather than an exact one. This at one hand298

gives a great benefit of computation cost, and on the other hand, it ensures that299

a larger fraction of nodes will be inspected but few of them would be actually300

searched after checking the lower bound. In this way, it increases the chance of301

reaching the true nodes closest to the query. In our case, we have used only the302

formula (4) as an approximate pruning rule.303

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

9

X1

X2

X3

X4

X5 X6

c

q

Fig. 3. Illustration of our bandwidth search with b = 1: X6 is an intermediate node of
the considering path, then its adjacent sibling nodes, X1 and X5, will be also searched;
if q is too close to c (e.g., inside the circle), all the sibling nodes of ui will be searched.

3 Experimental results304

We have evaluated our system versus several representative fast proximity search305

systems in the literature, including randomized KD-trees (RKD-trees) [12], [15],306

hierarchical K-means tree (K-means tree) [12], randomized K-medoids clustering307

trees (RC-trees) [13], and multi-probe LSH indexing algorithm [10]. These all308

indexing systems have been well-implemented and widely used in the literature309

thanks to the open source library FLANN1. The source code of our system is also310

publicly available at this address2. Note that the partial distance search have311

been implemented in these all systems for improving the efficiency of sequence312

search at the leaf nodes. We have used the dataset ANN SIFT1M from [8] for313

all experiments. This dataset contains a database of 1 million SIFT features, a314

test set of 5000 SIFT features, and a training set of 10,000 SIFT features. As315

no training process is required in our approach, we have therefore used the two316

first sets only. Following the convention of the evaluation protocol used in the317

literature [1], [12], [13], we have computed the precision and search time as the318

average measures obtained by running 1000 queries taken from the test set. To319

make the results independent on the machine and software configuration, the320

speedup factor is computed relative to the brute-force search. The details of our321

experiments are presented in the following sections.322

3.1 ENN search evaluation323

For ENN search, we have set the parameters involved in the LM-tree as follows:324

Lmax = 10, m = 7, L = 2 (see Section 2.1). We have compared the performance325

of ENN search of three systems: the proposed LM-tree, the KD-tree, and the326

1 http://www.cs.ubc.ca/ mariusm/index.php/FLANN/FLANN
2 https://sites.google.com/site/LM-tree/

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

10

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

Points (100K)

S
pe

ed
up

 o
ve

r
br

ut
e−

fo
rc

e
se

ar
ch

Exact search on 1 million SIFT features

LM−tree
KD−tree
K−means tree

(a)

2 4 6 8 10
10

20

30

40

50

60

70

80

90

100

Points (100K)

F
ra

ct
io

n
of

 v
is

ite
d

po
in

ts
 (

%
)

Efficiency of pruning rules on 1 million SIFT features

Our pruning rule
PAT pruning rule

(b)

Fig. 4. Exact nearest neighbor search on 1 million SIFT features: (a) Speedup over
brute-force search of three systems: the proposed LM-tree, KD-tree, and K-means tree,
(b) Evaluation of our pruning rule and PAT’s pruning rule.

hierarchical K-means tree. Figure 4(a) shows the speedup over brute-force search327

of the three systems carried out on the SIFT database with different sizes. As328

we can notice that the LM-tree outperforms the two other systems on all tests.329

Taking the test with #Points = 1000000, for example, the LM-tree gives a330

speedup of 9.1, the KD-tree gives a speedup of 4.5, and the K-means tree gives a331

speedup of 2.2 over the brute-force search. These results confirms the efficiency332

of the LM-tree for ENN search relative to the two baseline systems. For getting a333

more detailed analysis of the efficiency provided by our pruning rule, we present334

in Figure 4(b) the fraction of visited points over the size of the test of the LM-335

tree using our pruning rule (i.e., the rules (2) and (4) in Section 2.2), and the336

PAT’s rule (i.e., the sole rule (2)). On average, the faction of searched points337

using the proposed pruning rule is almost 15% less than that of using the PAT’338

rule in all tests. This again support our claims about the two advantages of the339

proposed pruning rules compared with the original one used in PAT.340

3.2 ANN search evaluation341

For ANN search, we have fixed the following parameters: Lmax = 10, m = 7, L =342

8, b = 1. Four systems are participated in this evaluation, including the proposed343

LM-trees, RKD-trees, RC-trees, and K-means tree. We have used 8 parallel344

trees in the first three systems, while the last one uses a single tree because345

it was shown in [12] that the use of multiple K-means trees does not give better346

search performance. For the LM-trees, the parameters Emax and ε are empirically347

determined to obtain the search precision varying in [90%, 99%]. Figure 5(a)348

shows the search speedup versus the search precision of all the systems. As349

we can see that, the proposed LM-trees gives much better search performance350

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT

DISTRIBUTE. 11

90 91 92 93 94 95 96 97 98 99
0

50

100

150

200

250
Approximate search on 1 million SIFT features

Precision (%)

S
pe

ed
up

 o
ve

r
br

ut
e−

fo
rc

e
se

ar
ch

LM−trees
RKD−trees
RC−trees
K−means tree

(a)

2 4 6 8 10
20

40

60

80

100

120

140

160

Points (100K)

S
pe

ed
up

 o
ve

r
br

ut
e−

fo
rc

e
se

ar
ch

Approximate search on SIFT datasets with different sizes

LM−trees
RKD−trees
RC−trees
K−means tree

(b)

Fig. 5. Approximate nearest neighbor search on SIFT features: (a) Speedup versus
search precision of 4 systems on 1 million SIFT features; (b) Speedup of 4 systems on
SIFT database with different sizes (search precision = 96%).

everywhere than the other systems and tends to perform well with respect to the351

increase of search precision. Taking the search precision of 95%, for example, the352

speedups over brute-force search of the LM-trees, RKD-trees, RC-trees, and K-353

means tree are 167.7, 108.4, 122.4, and 114.5, respectively. To make it comparable354

with the multi-probe LSH indexing algorithm, we have converted the real SIFT355

features to the binary vectors and tried several parameter settings (i.e., the356

number of hash tables, the number of multi-probe levels, and the length of the357

hash key) to obtain the best search performance. However, the result obtained on358

one million SIFT vectors is rather limited. Taking the search precision of 74.7%,359

for instance, the speedup over brute-force search (using Hamming distance) is360

just 1.5. Figure 5(b) shows the search performance of all systems on the SIFT361

database with different sizes. In this test, the search precision is fixed at 96% for362

all systems. The LM-trees clearly outperforms the others and scales well to the363

increase of data size. The RC-trees works reasonably well except for the point364

#Points = 800K, its search performance is noticably degraded. Three crucial365

factors explain for these outstanding results of the LM-trees. First, the use of366

the two highest variance axes for data paritioning in the LM-tree gives more367

discriminative representation of the data compared with the common use of the368

sole highest variance axis as in the literature. Second, by using the approximate369

pruning rule, a larger fraction of nodes will be inspected but much of them370

would be eliminated after checking the lower bound. In this way, the number of371

data points, which will be actually searched, is retained under the pre-defined372

threshold Emax, while covering a larger number of inspected nodes, and thus373

increasing the chance of reaching the true nodes closest to the query. Finally,374

the use of bandwith search gives much of benefit in terms of computation cost375

compared with the priority search used in the baseline indexing systems.376

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

12

4 Conclusions377

In this paper, a new indexing scheme, called LM-tree, in feature vector space378

has been presented. The main contribution of the proposed LM-tree is three-379

fold. First, a new method of data decomposition is presented to construct the380

LM-tree. Second, a novelty elimination rule is proposed to efficiently prune the381

search space. Finally, a bandwidth search technique is presented to deal with the382

ANN task, in combination with the use of multiple randomized LM-trees. The383

proposed LM-tree has been validated on 1 million SIFT features, demonstrating384

that it works well for both ENN search and ANN search, compared with the385

baseline indexing algorithms. More experiments on different feature types of386

different domains would be performed in the future to study thoroughly the387

performance of the proposed LM-tree. Dynamic insertion and deletion of data388

points in the LM-tree would be also investigated in future works.389

References390

1. Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-391

neighbour search in high-dimensional spaces. In Proceedings of the 1997 Conference392

on Computer Vision and Pattern Recognition, CVPR’97, pages 1000–1006, 1997.393

2. Jeffrey S. Beis and David G. Lowe. Indexing without invariants in 3d object394

recognition. IEEE Trans. Pattern Anal. Mach. Intell., 21(10):1000–1015, 1999.395

3. Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-396

dimensional spaces: Index structures for improving the performance of multimedia397

databases. ACM Comput. Surv., 33(3):322–373, 2001.398

4. Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm399

for finding best matches in logarithmic expected time. ACM Trans. Math. Softw.,400

3(3):209–226, 1977.401

5. K. Fukunaga and M. Narendra. A branch and bound algorithm for computing402

k-nearest neighbors. IEEE Trans. Comput., 24(7):750–753, 1975.403

6. Volker Gaede and Oliver Günther. Multidimensional access methods. ACM Com-404

put. Surv., 30(2):170–231, June 1998.405

7. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards re-406

moving the curse of dimensionality. In Proceedings of the thirtieth annual ACM407

symposium on Theory of computing, STOC’98, pages 604–613, 1998.408

8. Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product Quantization for409

Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–410

128, 2011.411

9. Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing. IEEE412

Trans. Pattern Anal. Mach. Intell., 34(6):1092–1104, 2012.413

10. Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe414

lsh: efficient indexing for high-dimensional similarity search. In Proceedings of the415

33rd international conference on Very large data bases, VLDB’07, pages 950–961,416

2007.417

11. James McNames. A fast nearest-neighbor algorithm based on a principal axis418

search tree. IEEE Trans. Pattern Anal. Mach. Intell., 23(9):964–976, 2001.419

12. Marius Muja and David G. Lowe. Fast approximate nearest neighbors with auto-420

matic algorithm configuration. In In VISAPP International Conference on Com-421

puter Vision Theory and Applications, pages 331–340, 2009.422

ICIAP 2013
CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

13

13. Marius Muja and David G. Lowe. Fast matching of binary features. In Proceedings423

of the Ninth Conference on Computer and Robot Vision, pages 404–410, 2012.424

14. David Nister and Henrik Stewenius. Scalable recognition with a vocabulary tree. In425

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision426

and Pattern Recognition - Volume 2, CVPR’06, pages 2161–2168, 2006.427

15. Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image de-428

scriptor matching. In IEEE Conference on Computer Vision and Pattern Recog-429

nition (CVPR’08), pages 1–8, 2008.430

16. David A. White and Ramesh Jain. Similarity indexing with the ss-tree. In Pro-431

ceedings of the 12th International Conference on Data Engineering, ICDE’96, pages432

516–523, 1996.433

