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Abstract. This paper is interested with the performance evaluation of
the partial video copy detection. Several public datasets exist designed
from web videos. The detection problem is inherent to the continuous
video broadcasting. The alternative is then to process with TV datasets
offering a deeper scalability and a control of degradations for a fine
performance evaluation. We propose in this paper a TV dataset called
STVD. It is designed with a protocol ensuring a scalable capture and
robust groundtruthing. STVD is the largest public dataset on the task
with a near 83k videos having a total duration of 10, 660 hours. Perfor-
mance evaluation results of representative methods on the dataset are
reported in the paper for a baseline comparison.
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1 Introduction

This paper is interested with the Partial Video Copy Detection (PVCD). It
aims to find one or more segments of a reference video which have transformed
copies. It is a well-known topic in the computer vision field [12]. The recent works
investigate the detection methods robust to the spatial & temporal deformations
[6,5,15] or real-time [4,13,19]. A key aspect for any computer vision task is to
design public datasets for performance evaluation. A few has been proposed in
the literature for the PVCD [21,9,8]. They have been mainly designed from Web
videos ensuring realistic degradations. However, this approach raises different
problems such as (i) a huge user interaction (ii) errors in the groundtruth (iii)
a low-level of scalability (iv) an unbalance distribution of test sets (v) a difficulty
to challenge the methods on a particular detection problem.

The PVCD is inherent to the continuous video broadcasting. An alternative
is to process with TV datasets offering meaningful data and having a low-level of
noise. This ensures a deeper scalability, a robust groundtruthing with the help
of TV metadata and a fine control of video degradations. We propose in this
paper a large-Scale TV Dataset for the PVCD, called STVD. It is made public
available for the needs of the research community1. Section 2 describes the re-
lated work. Section 3 presents our protocol and pipeline for the video capture

1 http://mathieu.delalandre.free.fr/projects/stvd/index.html

http://mathieu.delalandre.free.fr/projects/stvd/index.html


2 V.H. LE et al.

and groundtruthing. Experiments to design the dataset are reported in section
4 with performance evaluation results of representative methods. Section 5 pro-
vides conclusions and perspectives. For convenience, Table 1 gives the meaning
of the main symbols used in the paper.

Table 1: Main symbols and terms used in the paper
Symbols Meaning

t, t̂ the scheduled and detected timestamp for a TV program

L ∈ [Lmin,Lmax] L = t̂− t is the latency, Lmin < 0, Lmax > 0 the min and max

L− < 0,L+ > 0 a negative and positive latency, respectively

W = W− + W+ the capture window
D ∈ [Dmin,Dmax] D > 0 is a program duration, Dmin, Dmax the min and max
T0, . . . ,T6 the video degradations and transformations

S a T0 sequence starting at s = t− |L−| and ending at e = t + D + L+

α, β the parameters to control the degradation level

2 Related work

Several datasets have been proposed in the literature for the performance eval-
uation of the PVCD. They are listed in Table 2. These datasets provide video
files with a groundtruth. The groundtruth labels the partial video copies. The
datasets can be used to characterize the tasks of video detection or retrieval.
They are constituted by two main sets of (i) query and (ii) testing videos.

Table 2: Comparison of datasets for the PVCD performance evaluation
Datasets TV 2007 CC WEB TRECVID TV 2014 VCDB SVD STVD

Reference [10] [21] [16] [2] [9] [8] Ours
Year 2007 2009 2010 2014 2016 2019 2021
Query videos 100 24 1,608 N/A 28 1,206 243
Positive videos 500 3,481 134 20,000,000 528 10,211 19,280
Negative videos N/A 9,309 7,866 N/A 100,000 26,927 64,040
Duration (h) 60,000 537 200 380,000 2,030 197 10,660
Annotation cost (m-h) N/A N/A N/A N/A 700 800 105
Source of capture TV Web Web TV Web Web TV
Degradation methods synthetic real synthetic synthetic real synthetic synthetic
Public available no yes no no yes yes yes

The (h), (m-h) and N/A stand for (in hours), (in man-hours) and (not available), respectively.

The testing set groups negative and positive videos. The negative videos
are not appearing in the query set. The positive videos contain copies of the
queries. Some datasets have a small size [21,16,8]. Another limitation is the
unbalanced distribution of positive / negative videos [16,9]. This is explained by
the groundtruthing approaches requiring a huge user interaction [9,8]. Several
datasets are not public available due to the intellectual property [10,16,2].
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The positive videos are queries with degradations. Depending the datasets,
the degradations could result from a real noise [21,9] or produced with synthetic
methods [10,16,2,8]. The real noise results from the video processing pipeline
(i.e., capture, networking, editing). The datasets could be obtained from a TV
[10,2] or a Web [21,16,9,8] capture. As a general trend, the TV capture guaranties
a lowest level of noise. Synthetic methods could be applied next for degradation.
This allows a fine control for performance evaluation.

The main public dataset in the literature is VCDB [9]. It presents several
limitations such as (i) an average scalability challenge (ii) a weak balance for
the positive / negative videos (iii) a huge level of noise at the capture making
unable to drive the performance evaluation on a particular detection problem.

We propose in this paper a new dataset and protocol for the TV video capture
and groundtruthing. This dataset is public available for the needs of the research
community1. It is the biggest public dataset in the literature with a near 83k
videos and having a total duration of 10, 660 hours Table 2. Our capture is
obtained with a low-level of degradation for a fine performance evaluation. Our
protocol and dataset are presented in next section 3.

3 STVD: a large-Scale TV Dataset

We present in this section our protocol to design our large-Scale TV Dataset
(STVD). Fig. 1 details our pipeline where 3 main components are used. We drive
first a TV video capture (C1) that extracts positive/negative video candidates.
This component processes with TV metadata. This requires a user interaction
to constitute the query set and a video detection for verification driven in the
component (C2). A final component (C3) is used for degradation.

Fig. 1: Pipeline for constructing the STVD dataset

Our component (C1) is described into the publication [14]. It is mainly re-
lated to the hardware architecture and web crawling topics out of the scope of
this paper. Section 3.1 reminds it for short. The components (C2) and (C3), for
the video detection and degradation, constitute the new and key contributions
of this paper. They are presented in details in sections 3.2 and 3.3, respectively.
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3.1 TV video capture (C1)

Our component (C1) [14] captures the TV programs with a workstation [3,14,13].
This workstation can record daily video files on 8 TV channels simultaneously.
We have captured 24 public channels during a period of 3 months. We have
obtained a root database composed of 14, 400 hours of TV programs at a reso-
lution 240 × 320 and having a total size of 3.46 TB. The resolution 240 × 320
constitutes a best tradeoff between the memory cost and video degradation.

We have processed next the TV metadata to capture positive/negative video
candidates. These metadata are gathered by a Web crawler. This crawler targets
only the daily and weekly programs having the maximum occurrence for the
needs of the PVCD. A robust hashing method and user interaction are employed
to guaranty a unique hash code for every TV program.

Every program in the metadata is delivered with a timestamp t to notify
when it starts. However, no information is given about the exact location and
duration of the repeated content. In addition, the TV broadcasting suffers from
latency. To solve these problems, we have triggered the capture to get the jingles
only appearing at the kickoff of programs Fig. 2. We have used a window having a
size W = W− + W+. The parameter W− guaranties the minimum latency with
the TV broadcasting W− ≥ |Lmin|. W+ is set with the maximum latency and
jingle duration W+ ≥ Dmax + Lmax. The capture is then done on the interval
[t−W−, t + W+]. The Dmax, Lmin /max parameters are set with a loop-based
methodology from the video detection (C2) as shown in Fig. 1.

Fig. 2: TV video capture

Our component (C1) captures too the negative video candidates. These
videos are not supposed to appear in the query and positive sets. For relia-
bility, similar to the strategy deployed in [10] we have used two separate streams
for the capture Fig. 1. For a better robustness, we have selected program con-
tents apart of jingles. For every TV program, we have made idle for selection all
the sequences where a jingle could appear in the range [t−W−, t + W+]. Any
valid / not idle video sequence has been split into successive intervals having
a duration W. Within any interval, a selection is obtained at t = W− with a
random duration D ∈ [Dmin,Dmax]. For more details, please refer to [14].
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3.2 Video detection (C2)

The component (C1) captures positive/negative video candidates. The negative
video candidates are made consistent with the strategy deployed at the capture.
For the positive video candidates, they have to be used to constitute the query
set and validated. This is processed by our component (C2) Fig. 1.

A domain knowledge is required to detect the jingles. Indeed, repeated con-
tent not related to the programs could appear as the advertising. We have driven
the detection with a user interaction and a GUI. Different error-prone cases could
occur during the interaction: a jingle could be absent due to errors in the meta-
data, a jingle could present a different visual content Fig. 3 (a) the jingle could
have a near-duplicate jingle appearing in a different channel Fig. 3 (b) or for a
different program within a same channel Fig. 3 (c).

Fig. 3: Jingles (a) with a different visual content (b) (c) that are near-duplicate

This involves a large amount of visual inspection requiring an automatic
video detection to support the interaction. A key constraint is the lack of a train-
ing database. We have considered the Zero-mean Normalized Cross-Correlation
(ZNCC) for matching as a learning-free method [20]. The ZNCC fits well with
the detection problem as it is robust to noise and contrast-invariant [4,13].

Our approach is illustrated in Fig. 4. For an accurate detection, we have
matched the full frames ordered in the time domain. The ZNCC scores of
frame matching are aggregated with weighted averaging to obtain a ZNCC.
A subset of negative video candidates is used to fix the threshold for detection.
The maximum score gives the timestamp for detection t̂. The difference with the
scheduled timestamp is the latency L = t̂− t. The overall detection is supported
with a GPU and time-efficient implementations suitable for the user interaction.
As shown in section 4.1, we have obtained a separability with this approach. The
Dmin /max, Lmin /max parameters and the latency L are used for setting in the
components (C1) and (C3) as shown in Fig. 1.

The user interaction could be time consuming. We have adopted a strategy for
bounding. All the hashcodes of TV programs are marked first as unlabelled. The
hashcode with the maximum number of occurrence is still selected for inspection.
It is labelled when a jingle is detected and validated by the user. The detection
cases of Fig. 3 serve to correct the hashcodes. The case (a) splits the hashcode
whereas the cases (b) (c) merge two hashcodes. This strategy guaranties a low-
level of interaction compared to the other approaches Table 2.
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Fig. 4: Video detection

3.3 Video degradation (C3)

The positive/negative videos obtained with the components (C1), (C2) cor-
respond to true-life captures with real noisy conditions. For the needs of per-
formance evaluation, a common issue is to apply additional synthetic methods
to degrade the videos [10,16,2,8]. By performing transformations, a fine perfor-
mance evaluation can be handled and more challenging datasets can be designed
in order to stress the methods for detection.

Similar to the works [10,16,2,8], we have selected a set of representative meth-
ods detailed in Table 3 labelled T0 to T6. These are applied both to the positive
and negative videos. For the performance evaluation of PVCD methods, we use
first a transformation T0 to get long videos embedding the positive videos. Then,
the methods enter in two categories Fig. 5 for pixel attack T1−2 (b) and global
transformations T3−5 (c). A final transformation T6 is used for video speeding.

Table 3: Degradation methods for video transformation
Label Method Parameters

T0 video cut uses the latency distribution to cut segments before / after the video

and having a duration |L−|,L+, respectively

T1 down-scaling applies a random down-scaling α ∈ [0.1, 0.9] to get frames from 24× 32
up to 216× 306 for a robust matching with time optimization [18]

T2 compression processes with a parameter 1
β with β ∈ [1, 80] applied to the recom-

mended kbps ∈ {140, 280, 420} for capture [1] such as 1
β× kbps

T3 flipping applies randomly (yes/no) a flipping transformation to the video

T4 rotating applies a random vertical/horizontal rotation ∈ {0, Π2 , Π,
3
2Π}

T5 black border &
stretching

selects an aspect ratio w
h ∈ {0.46, 0.56, 0.63, 0.75, 1.33, 1.6, 1.78, 2.17} to

introduce left / right borders (wh < 1) or to stretch the image (wh > 1)

T6 video speeding speeds down the videos at a FPS ∈ [15, 25]

For the needs of the PVCD, short negative/positive videos must be embedded
into longest sequences S. We use a specific transformation T0 in our approach
designed with our latency measure L Fig. 4. T0 extracts additional left/rigth
video segments within the window of size W Fig. 6 (a). The duration of S must be
fixed, we have set T0 with the latency distribution obtained with the component
(C2) as illustrated in Fig 1. Considering a short negative video timestamped at
t = W− in (C1), or a query / jingle detected at t̂ in (C2), Si is obtained
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Fig. 5: Degradation (a) reference (b) pixel attack (c) global transformations

by cutting a long video at si = ti − |L−| and ei = ti + Di + L+ (and with t̂i
respectively) with L−,L+ random negative/positive latency values.

Fig. 6: (a) a sequence S (b) covering case

A sequence S could be extracted for any short negative video. Indeed, a
selection at t = W− within a window of size W by (C1) cannot result in a
covering case while using the latency in T0. However, such a case could appear
with the short positive videos Fig. 6 (b). Considering two videos timestamped at
ti, tj with ti < tj, we could met a case where tj − ti �W+. A mean sequence
Su must be computed and preserved if ∀Si ∈ Su, su < ti + Di < eu. That is, a
long positive video for testing could embed several queries.

We apply next a set of baseline video processing T1−6 for degradation.
T1,T2 are set with recommended parameters for robust low-resolution video
processing [18] and capture [1]. Two parameters α, β control the level of degra-
dation. T3 and T4 apply realistic geometric transformations for video rendering
as the flipping and the horizontal/vertical rotations. The aspect ratio parameters
in T5 have been fixed using the standard screen resolutions2. T6 speeds down
the videos with predefined FPS similar to [21,8].

We have combined the degradations T0 to T6 to generate the test sets A to F
as detailed in Table 4. The test set A gives a root capture while applying only T0.
It is given for the needs of tuning a performance evaluation task. The test sets
B and C apply a pixel attack with T1 and T2 at two levels of degradation with
the control of parameters α, β. The test set B has a low-level of distortion and
scalability and constitutes a “hello world” benchmark. The test set C presents

2 For desktop, tablet and phone https://gs.statcounter.com/
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a hard pixel attack. The test set D is related to the global transformations with
T3 to T5 whereas the test set E applies T6 for video speeding. For storage
optimization, T1 and T2 are used with predefined parameters α, β ensuring a
negligible degradation. At last, the test set F combines the sets C, D and E.

Table 4: Test sets
Test set T0 T1−2 α ∈ β ∈ T3−5 T6 Description

Set A
√

Root capture for tuning
Set B

√ √
[0.25, 0.9[ [1, 40[ “Hello world” test set

Set C
√ √

[0.1, 0.25] [40, 80] Pixel attack with scalability
Set D

√ √
0.6 20

√
Global transformations with scalability

Set E
√ √

0.6 20
√

Video speeding with scalability
Set F

√ √
[0.1, 0.25] [40, 80]

√ √
Combination of sets C, D and E

4 Experiments

4.1 Dataset and groundtruthing

We report in this section experiments to generate the dataset with the groundtruth.
Table 5 details the dataset organization where the components (C1), (C2) and
(C3) have been used to generate the positive/negative videos with degradations.

Table 5: STVD dataset
Root capture C1, C2 C3

Channels Duration Videos Duration Test sets Videos Duration
Positive videos 8 4, 800 h 3, 780 6 h 6 19, 280 2, 515 h
Negative videos 16 9, 600 h 12, 165 21 h 6 64, 040 8, 145 h

We have split the root database obtained with (C1) into two subsets of 4, 800
and 9, 600 hours for the positive/negative videos. We have captured then a near
3k and 12k positive/negative video candidates with the metadata3. The positive
video candidates have been processed with the component (C2). We have ex-
tracted 243 distinct jingles with the GUI. They have been matched against the
positive video candidates and a subset of negative videos as detailed in section
3.2. We have observed a separability between the interclass / intraclass ZNCC
distributions ∈ [0.79, 0.90] Fig. 7 (a). This ensures none false positive case.

For a further investigation, Fig. 7 (b) gives a characterization of the interclass
ZNCC distribution in terms of compression noise and contrast deviation. We
have employed the standard metrics MSE4 [7] and CNR4 [11], respectively. The
distributions are compact with a MSE < 20 and CNR < 0.01 for most of the

3 A full analysis and experiments with the metadata are reported into [14].
4 Mean Square Error, Contrast Noise Ratio
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Fig. 7: Distributions of (a) ZNCC (b) MSE / CNR (c) latency

matching cases. This reflects the ZNCC distributions obtained in Fig. 7 (a) and
the sources of degradation for the TV capture.

We have analysed then the two time aspects illustrated in Fig. 4. We have
obtained a total video duration of 6 hours Table 5 as the jingles have a short
duration D ∈ [1, 25] seconds. For the latency, we have observed an almost-
Gaussian distribution with L ∈ [−590, 820] seconds at ±3σ Fig. 7 (c). We have
used the duration and latency distributions to set the Dmin /max, Lmin /max

parameters and the random model in T0 for (C1) and (C3) as shown in Fig. 1.
We have then applied the component (C3) to get the 6 test sets as discussed

in section 3.3. For the test sets A, C, D, E and F we have obtained 5× 3, 780 =
18, 900 and 5× 12, 165 = 60, 825 positive/negative videos, respectively. The test
set B has been generated in balance for a low scalability with a total number
of 2× 3, 780 = 7, 560 videos. We have observed a ' 15% of covering cases with
the positive videos Fig. 6 (b). We have then obtained a total amount of ' 83k
videos composed of 19, 280 and 64, 040 positive/negative videos Table. 5.

Considering the latency distribution Fig. 7 (c), the application of T0 has
resulted in an average duration |L−|+ L+ of 7.5 minutes. The total duration
of the dataset is 10, 660 hours with 2, 515 hours and 8, 145 hours for the posi-
tive/negative videos, respectively Table. 5. Each test set C to F contains ' 1, 960
hours of testing video for scalability competitive with the VCDB dataset [9] Ta-
ble 2. Considering the all test sets A to F, STVD is the largest dataset of the
literature ×5 larger than VCDB. STVD is made public available1 for the needs
of the research community.

4.2 Performance Evaluation

We present in this section performance evaluation results on the STVD dataset of
representative PVCD methods [24,23,22]. These methods process in two steps for
key-frame extraction and matching. The key-frame extraction selects candidate
frames for matching based on sampling methods [23,22] or temporal features
[24]. The matching processes with features (SIFT [24], BRIEF [23] and CNN
[22]) and optimization components for the time processing requirement.



10 V.H. LE et al.

We have applied a protocol for a fair comparison. We have normalized the
key-frame extraction step within all the methods. The SIFT and BRIEF features
are not supporting the global transformations. We have bounded the evaluation
to the test sets B and C only. We have characterized the methods in a learning-
free / pre-trained mode. Only the SIFT and BRIEF features of query frames have
been stored for comparison. The CNN features have been obtained from a pre-
trained VGG16 network from the ILSVRC dataset [17]. We have also removed
the optimization components for a strongest accuracy. The F1 score has been
used as it is common to characterize the PVCD methods [9,4,19,6,5,15].

We have evaluated first the method [23] on the test set B. We have obtained a
score F1 = 0.98 highlighting the “hello world” ability. Further experiments have
been investigated on the test set C Fig. 8. We have constituted first a subset with
in balance 3k +3k positive/negative videos. Fig. 8 (a) gives the F1 scores against
the normalized thresholds for all the methods. We have obtained optimum scores
F1 ∈ [0.73, 0.83] with a top F1 = 0.83 for the method [23]. A gap ' 0.15 appears
for [23] between the test sets B and C due to the pixel attack. Fig. 8 (b) reports
the results of the top methods [23,22] on the full test set C while increasing the
negative videos up to 12k. We have observed a gap ' 0.25 for the F1 score due
to the scalability with a better robustness for the CNN features [22].

Fig. 8: F1 scores on the test set C
(a) comparison of methods [24,23,22] (b) performance with scalability for [23,22]

5 Conclusions and perspectives

We propose in this paper a new dataset to evaluate the PVCD methods called
STVD. This dataset is designed with a protocol ensuring a scalable capture and
robust groundtruthing. STVD is today the largest public dataset on the task.
It covers a near 83k videos for a total duration of 10, 660 hours. Performance
evaluation results of representative methods on the dataset are reported in the
paper for a baseline comparison. A key issue next will be to promote the dataset
in the research community. Additional test sets should be included to address
specific PVCD tasks such as the real-time or near-duplicate detection.
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segments de vidéos tv. In: Journées Francophones des Jeunes Chercheurs en Vision
par Ordinateur (ORASIS) (2021)

15. Liu, X., Feng, X., Pan, P.: Gann: A graph alignment neural network for video par-
tial copy detection. In: Conference on Big Data Security on Cloud (BigDataSecu-
rity), Conference on High Performance and Smart Computing (HPSC), Conference
on Intelligent Data and Security (IDS). pp. 191–196 (2021)

16. Over, P., al: Trecvid 2010 - an overview of the goals, tasks, data, evaluation mech-
anisms and metrics. NIST, https://www.nist.gov/ (2010)

17. Russakovsky, O., al: Imagenet large scale visual recognition challenge. International
Journal of Computer Vision (IJCV) 115(3), 211–252 (2015)

18. Su, J., Vargas, D., Sakurai, K.: One pixel attack for fooling deep neural networks.
Transactions on Evolutionary Computation (TEVC) 23(5), 828–841 (2019)



12 V.H. LE et al.

19. Tan, W., Guo, H., Liu, R.: A fast partial video copy detection using knn and global
feature database. In: Preprint arXiv. No. 2105.01713 (2021)

20. Wang, X., Wang, X., Han, L.: A novel parallel architecture for template matching
based on zero-mean normalized cross-correlation. IEEE Access 7, 186626–186636
(2019)

21. Wu, X., Ngo, C., Hauptmann, A., Tan, H.: Real-time near-duplicate elimination
for web video search with content and context. IEEE Transactions on Multimedia
11(2), 196–207 (2009)

22. Zhang, C., al: Large-scale video retrieval via deep local convolutional features.
Advances in Multimedia (7862894), 1687–5680 (2020)

23. Zhang, Y., Zhang, X.: Effective real-scenario video copy detection. In: International
Conference on Pattern Recognition (ICPR). pp. 3951–3956 (2016)

24. Zhu, Y., Huang, X., Huang, Q., Tian, Q.: Large-scale video copy retrieval with
temporal-concentration sift. Neurocomputing 187, 83–91 (2016)


	A large-Scale TV Dataset  for partial video copy detection

