(will be inserted by the editor)

International Journal on Document Analysis and Recognition (IJDAR) manuscript No.

Generation of Synthetic Documents for Performance Evaluation of
Symbol Recognition & Spotting Systems

Mathieu Delalandre!, Ernest Valveny', Tony Pridmore?, Dimosthenis Karatzas'

1 CVC, Barcelona, Spain
2 SCSIT, Nottingham, England

xx-xx-2008/ xx-x%-2009

Abstract This paper deals with the topic of perfor-
mance evaluation of symbol recognition & spotting sys-
tems. We propose here a new approach to the generation
of synthetic graphics documents containing non-isolated
symbols in a real context. This approach is based on the
definition of a set of constraints that permit us to place
the symbols on a predefined background according to
the properties of a particular domain (architecture, elec-
tronics, engineering, etc.). In this way, we can obtain a
large amount of images resembling real documents by
simply defining the set of constraints and providing a
few predefined backgrounds. As documents are synthet-
ically generated, the groundtruth (the location and the
label of every symbol) becomes automatically available.
We have applied this approach to the generation of a
large database of architectural drawings and electronic
diagrams, which shows the flexibility of the system. Per-
formance evaluation experiments of a symbol localiza-
tion system show that our approach permit to generate
documents with different features, that are reflected in
variation of localization results.

1 Introduction

This paper deals with the topic of performance eval-
uation. Performance evaluation is a particular cross-
disciplinary research field in a variety of domains such as
Information Retrieval [1], Computer Vision [2], CBIR!
[3], DIA? [4], etc. Its purpose is the development of
frameworks to evaluate and compare a set of methods
in order to select the best-suited for a given application.
Due to the heterogeneity of the fields where performance
evaluation can be applied to [1-4], it is difficult to find a
common definition of “what a performance evaluation
framework is”. Two main tasks are usually identified

1 Content Based Image Retrieval
2 Document Image Analysis

(Figure 1): groundtruthing, which provides the test and
reference data to be used during the evaluation (both for
training and testing), and performance characterization,
which determines the metrics and the protocol to match
the results of a given method with the groundtruth in
order to give a measure of the performance.

Testdata ———»

e e e g M L g e~ E

Fig. 1 Performance evaluation

In this paper we are especially interested in the first
of these two tasks, applied to two particular topics of
DIA: symbol recognition & spotting. Figure 2 compares
these two processes. Symbol recognition is an active
topic in the field of graphics recognition. Several sur-
veys [5—8] review the existing work on logical diagrams,
engineering drawings, maps, etc. In a very general way,
a symbol has been defined as “a graphical entity with a
particular meaning in the context of an specific applica-
tion domain” and then, symbol recognition as “a partic-
ular application of the general problem of pattern recog-
nition, in which unknown input patterns are classified as
belonging to one of the relevant classes (i.e. predefined
symbols) in the application domain” [7].

in a recognition system, the user provides a learning database, the
system locates and recognizes the symbols in all documents.

B
i

L . U
| g

in a spotting system, the user provides a query, the system returns a

ranking of symbols corresponding to this query among the documents.

Fig. 2 Recognition/spotting of symbols

Usually, symbols do not appear isolated, but are con-
nected to other elements of the document (connecting
lines, background, other symbols, etc.). Thus, one of the
major problems of symbol recognition is to combine seg-
mentation and recognition. This problem is known as the
segmentation/recognition paradigm in the literature [9]:
a system should segment the symbols before recognizing
them but, at the same time, some kind of recognition
may be necessary to obtain a correct segmentation. In
order to overcome this paradox, research has been di-
rected to symbol spotting [10]. Since research on sym-
bol spotting is just starting, definitions of symbol spot-
ting are still a little ambiguous. In [8] it is defined as “a
way to efficiently localize possible symbols and limit the
computational complexity, without using full recognition
methods”. So, spotting is presented as a kind of middle-
line technique combining recognition and segmentation.
While symbol recognition tries to find the location and
label of every symbol in the document, symbol spotting
methods can be viewed as a kind of retrieval system [11—
16]. Spotting is usually initiated with a query selected
by the user from a drawing, what we call a QBE3. Then,
the example is used as a model to find similar symbols
in the document database. At the end, the system pro-
vides a ranked list of similar symbols along with their
localization data (i.e. url of the source document with
the coordinates of the symbol).

In both cases (spotting and recognition), a hard prob-
lem is how to obtain and compare experimental re-
sults from existing systems. Traditionally, this step was
done independently for every system [5-8], by compar-
ing manually the results with the original images and
checking the recognition errors. This process was unreli-
able as it raises conflicts of interest and does not provide

3 Query by Example

Mathieu Delalandre et al.

relevant results. Moreover, it does not allow the compar-
ison of different systems or support testing with large
amounts of data. In order to solve these problems, re-
search has been initiated over the last few years on the
performance evaluation of symbol recognition/spotting
systems [17], resulting in the organization of several in-
ternational contests on symbol recognition [18-21]. How-
ever, this work has focused on the recognition of isolated
symbols. They do not take into account segmentation or
spotting of symbols in real documents. The main reason
for that is the difficulty of obtaining a large set of docu-
ments with the corresponding groundtruth. Doing that
manually would require an unaffordable amount of time,
as all the symbols in the document must be precisely lo-
cated and labeled.

In this paper we propose a new approach to the au-
tomated generation of test documents to enable perfor-
mance evaluation of symbol recognition and/or spotting
systems in real context. The novelty in this approach
is that it is constraint-driven and general enough to be
applied to different domains. The constraints permit us
to place the symbols on predefined backgrounds. They
are defined according to a particular domain such as
electronics, architecture or engineering. Thus, by sim-
ply defining the set of constraints and providing a few
predefined backgrounds, we are able to produce a large
amount of images resembling to real documents. As doc-
uments are synthetically generated, the groundtruth cor-
responding to the location and the label of every symbol
becomes automatically available. We have applied this
approach to the generation of large databases of archi-
tectural drawings and electronic diagrams, which shows
the flexibility of the system.

In the rest of the paper, firstly we will review in sec-
tion 2 the previous work done on groundtruthing applied
to symbol recognition & spotting. In section 3, we will
present our approach to generate synthetic documents
based on positioning constraints of symbols. In section
4, we will introduce the graphical user interface to define
the constraints and generate the documents. The results
of the application of the system, to the generation of
architectural drawings and electronic diagrams, are pre-
sented in section 5. Finally, in section 6 we state the
main conclusions and future perspectives of this work.

2 Overview

The first step to evaluate any graphics recognition sys-
tem is to provide test documents with their correspond-
ing groundtruth data [22]. Concerning the specific topic
of symbol recognition & spotting, several systems have
been proposed in recent years: [8], [23], [24], [18], [25]
and [17]. They can be classified in two main approaches:
based on real or synthetic data. In the first case, test
data consists of real documents. The groundtruth is de-
fined from these documents by human operators using

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 3

GUI*. Concerning synthetic data, the documents are
built automatically, or semi-automatically, with their
corresponding groundtruth by the systems, using some
models of document generation.

In the rest of this section, we will present and discuss
both approaches in subsections 2.1 and 2.2. In addition
to that, to support this discussion we compare the sys-
tems in Table 1 according to different criteria: speed of
the groundtruthing process, realism of test documents,
reliability, number of symbols per image, generation of
connected or disconnected symbols and ability to add
noise with degradation methods. Finally, conclusions are
drawn in subsection 2.3.

zlrlzlse]se g
--weak | § g E8 |38 |%
FES Ed = e |82 |
good = § = a =
< a g
[Tombre’ 06 [8] -- | H - | many | yes no
'Yan’04[23] - |+ | -- |many | yes [mo |E E,_’,
IChhabra’98 [24] + ++ + | many yes no | *
iAksoy’00[18] +H | -- | ++ | many ne | yes ,E
7hai*03 [25] | - |+ | one | no |yes |EE
0
(Valveny’07[17] | H+ | -- | ++ | one noe | yes %

Table 1 Comparison of groundtruthing systems

2.1 Real Data

The natural approach to obtain the groundtruth is to
define it from real-life documents. In that case, GUI are
used by human operators in order to edit manually the
groundtruth data. Thus, the groundtruthing starts from
raster images in order to provide a vector graphics de-
scription of the content (e.g. graphical labels, region of
interest, etc.). As the groundtruth data is edited by hu-
mans, it is necessary to do this task collaboratively with
different operators [22]. In this way, errors produced by
a single operator can be avoided.

In the past, this approach has been mainly applied
to the evaluation of layout analysis and OCR?® systems
[26-28]. Concerning symbol recognition & spotting, only
the EPEIRES® platform exists to date [8]7. It is pre-
sented in Figure 3. This system is based on a collab-
orative approach using two main components: a GUI
to edit the groundtruth data connected to an informa-
tion system. The operators obtain, from the system, the

IS

Graphics User Interface(s)

Optical Character Recognition

http://epeires.loria.fr/

None related publication exists about this platform, we
refer the reader to the description given in [8].

o wm

~

images to annotate and the associated symbol models.
Groundtruthing is performed by mapping (moving, ro-
tating and scaling) transparent bounded models on the
document using the GUI. The information system al-
lows users to collaboratively validate the groundtruth
data. Experts check the groundtruth data generated by
the operator by emitting alerts in the case of errors.

R — | goumdiuhd
%m% ;f,__‘h\??#
== h .
[OE® sround- | 7 - @5
truthing | [! validati
| ! [| i
: = N
) m=
L I | andalerts
L_-_- ____________ _———
Tenlls evaluation
[/ test
images

Fig. 3 The EPEIRES system

Despite this existing platform a problem still remains
[22]: the time and cost required to edit the groundtruth
data. Similar contributions made in OCR and layout
analysis [26-28] highlight that, in most of the cases,
the groundtruthing effort makes the creation of large
databases very hard. An alternative approach to avoid
this problem is semi-automatic groundtruthing. In this
case, the key idea is to use a recognition method to ob-
tain an initial version of the groundtruth data. Then, the
user only has to validate and to correct the recognition
results in order to provide the final groundtruth data.
This approach has already been used in other applica-
tions like OCR [29], layout analysis [30], chart recogni-
tion [31], ete.

Concerning symbol recognition & spotting, only the
system described in [23] has been proposed to date. This
system recognizes engineering drawings using a case-
based approach. It is mainly used to learning and recog-
nition, but it could be easily extended to groundtruthing.
The user starts by targeting a graphical object (i.e. a
symbol) in an engineering drawing. The symbol is next
vectorized into a set of straight lines and represented as a
model tree. This model tree is used to localize and recog-
nize similar objects in the drawing. During the learning
process, the system also takes into account user feedback
on positive and negative examples. It modifies the orig-
inal tree by computing tolerances about the primitives
and their relations (length, angle, line number, etc.).

In any case, the systems presented previously render
the groundtruthing impractical for constructing large-
scale databases. In [24], the authors propose an alter-

native way to solve this problem. Their key idea is to
use vector graphics documents (e.g. “DXF, SVG, CGM,
etc.”), and to convert them into images. In this way, they
can take advantage of already existing groundtruth data:
it is not necessary to re-define it. Their system has been
used to evaluate raster to vector conversion [24]. How-
ever, it could be easily extended to symbol recognition &
spotting by using the symbol layer of the CAD files. The
remaining difficulty in this approach is to collect and to
record the electronic documents [32]. Several problems
still exist: to check the copyrights of documents, to or-
ganize the documents in the database (to define single
id, to associate duplicates, etc.), to validate the formats
and to convert them to a standard one if necessary, to
edit metadata about the documents in order to index
the database, etc.

2.2 Synthetic Data

The systems using real-life documents result in realistic
test data but render the groundtruthing complex (errors,
delay and cost, copyright, database indexing, etc). A
complementary approach, which avoids these difficulties,
is to create and to use synthetic documents. Here, the
test documents are generated by an automatic system
which combines pre-defined models of document com-
ponents in a pseudo-random way. Test documents and
groundtruth can therefore be produced simultaneously.
In addition, a large number of documents can be gen-
erated easily and with limited user involvement. Several
systems have been proposed in the literature [18] [25] and
[17], mainly used in the context of international contests
of symbol recognition. Figure 4 gives some examples of
documents produced by these systems.

“J,:J

]

test image with several binary noisy images of
unconnected geometric symbols segmented symbols
© ||
7 distoried CAD
representations of
segmented symbols

Fig. 4 Examples of synthetic documents [18] [25] [17]
(a) random symbol sets (b) (c) distorted segmented symbols

Mathieu Delalandre et al.

The system described in [18] employs an approach
to build documents composed of multiple unconnected
symbols. Figure 4 (a) gives an example of such a doc-
ument. Each symbol is composed of primitives (circles,
lines, squares, etc.) randomly selected and mildly over-
lapped. Next, they are placed on the image at a ran-
dom location and without overlapping with the bound-
ing boxes of other symbols. The systems proposed in [25]
and [17] support the generation of degraded images of
segmented symbols as shown in Figures 4 (b) and (c). In
these systems, the models of the symbols are described
in a vector graphics format. They use a random selection
process to select a model from the model database, and
apply to it a set of transformations (rotations, scaling,
and binary or vectorial distortions).

2.3 Conclusion

In recent years, several pieces of work have been un-
dertaken to provide groundtruthed databases in order
to evaluate symbol recognition & spotting methods, us-
ing real [8] [23] [24] as well as synthetic [18] [25] [17]
data. As indicated in Table 1, the time needed to collect
and groundtruth the real-life documents makes their use,
for constructing large-scale databases, complex. More-
over, the groundtruthing is done by human operators
making the results unreliable. For that reason, synthetic
data have been mainly used to date for the evaluation
of systems, for example during the international con-
tests of symbol recognition [18,19,8,21]. With such data,
test documents and groundtruth are produced simulta-
neously. Then, as mentioned in Table 1, data can be
generated quickly making the production of statistically
important groundtruth datasets feasible. Moreover, the
groundtruth is produced directly from the models and,
therefore, without errors. Finally, the content of docu-
ments can be controlled, which is an interesting property
to evaluate the methods regarding scalability, geometry
invariance, noise robustness, etc.

The major problem when using synthetic data is
the difficulty of reproducing the variability of real docu-
ments. The systems proposed in the literature [18] [25]
[17] only generate documents composed of segmented
symbols, no whole documents which is the original goal
of groundtruthing systems. Indeed, real-life documents
(engineering and architectural drawings, electrical di-
agrams, etc.) are composed of multiple objects con-
strained by spatial relations (connectivity, adjacency,
neighbourhood, etc.). Systems capable of generating
whole synthetic documents would be very helpful. Such
systems would provide a much more realistic context
in which evaluation could take place. In this paper we
present some contributions in this direction that we will
introduce in next section 3.

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 5

3 Our Approach

In this paper we present a new approach to the build-
ing of synthetic documents for the performance evalua-
tion of symbol recognition & spotting systems. Our key
contribution is the building of whole documents (draw-
ings, maps, diagrams, etc.) and the underlying aim of
our work is to make the produced documents more re-
alistic. The design of a suitable process is a challenging
task. Indeed, realistic documents cannot be produced
without importing human know-how into the process.
In our work we have considered a shortcut way to solve
this problem. Our key idea observes that graphical doc-
uments are composed of two layers: a background layer
and a symbolic one. We use this property to build several
document instances as shown in Figure 5. We generate
several different symbolic layers and place them on the
same background obtaining different documents. In this
way, the building process is made easier and can be con-
sidered as a problem of symbol positioning on a given
document background.

Al el =
&l 1 d
“I LA D LI \K

) N
% n =
o 7

- f.ﬁ,-;:"‘ l .‘\.‘ L I .,.\.‘ "

Fig. 5 Two document instances

&7

g:

In order to place randomly symbols on a given back-
ground, we have developed a building system based on
the use of positioning constraints. These positioning con-
straints determine where and how the symbols can be
placed on a background image. Figure 6 presents the
architecture of our system. It uses as input data a back-
ground image, a database of symbol models and a file
describing the positioning constraints. Using these data,
it generates vector graphics documents with the corre-
sponding groundtruth. These documents are next raster-
ized and noise added, to generate the final test images
for evaluation. The central part of our system is the
building of documents. Two main processes take part:
symbol positioning and document generation. Symbol
positioning is in charge of placing symbols on the back-
ground according to the parameters and conditions of
given constraints. Document generation controls the po-
sitioning process, through a building loop including up-
stream and downstream steps, to ensure the generation
of correct documents. It starts with empty documents
and fills them with symbols in a pseudo-random way.

The interactions between the two processes are explained
in the workflow diagram presented in Figure 7. For each
loop, a constraint and a symbol are selected. Then, the
symbol is placed on the background according to the
specifications of the constraint. After that, several tests
are carried out to ensure that the symbol is well posi-
tioned. The process continues until some stopping crite-
ria (concerning the number of symbols and the amount
of free space) are satisfied.

Symbol o L4'—|
Models *—\l
Positioning Document [Symbol
Constraints | || Generation [+ Positioning
Building of documents
- Inmjge_ L] ization | 1

Generation of test images

Fig. 6 System overview

In the rest of this section we will introduce first in
subsection 3.1 the positioning constraints. Next, in sub-
sections 3.2 to 3.8 we will describe all the steps (1) to (7)
mentioned in the workflow diagram of Figure 7, and will
detail how the constraints are processed at each of these
steps. The last subsection 3.9 will give details about the
final test image generation process.

3.1 Positioning Constraints

The key mechanism employed in our system is symbol
positioning using constraints. Figures 8 (a) and (b) ex-
plain how it works. The constraints specify which sym-
bols can be placed and where in a background (Figure
8 (a)). Each constraint defines a set of symbol models
to instantiate, a shape to specify where symbols can
be placed on the background (either a single point, a
straight-line or a polygon), and some parameters that
specify how these symbols are placed (concerning ge-
ometric transformations and the definition of control
points). Then, a symbol is placed in such a way that
its control point will match a point inside the shape de-
fined in the constraint (Figure 8 (b)). More specifically,
a constraint addresses the following issues:

Symbol models: The list of symbol models that can
be selected to instantiate symbols to place.

Constraint size: The maximum number of symbols
that can be placed using this constraint.

Constraint satisfaction: It specifies whether the con-
straint is mandatory (at least one instance of a sym-
bol must be placed using this constraint) or not.

6
constraint stack
empty?
(1) model and
~ constraintselection
selection on
constraint
model and constraint
symbol loader L (2)symbol
loader
\l, symbol and consiraint -
(3) symbol
symbeol control = control
\l/ control shapes 2|
o=
shape positioning £ | + (@)shape
& positioning,
positioned symbol -
| (5)constraint
checking
L
=
&
2
= -
=
E (6) Space
— management
(7) Stopping
— criterion

buildingend
I:I docnment generation - symbol positioning

Fig. 7 Building workflow

Geometric transforms: Geometric transformations
(rotation, scaling) along their associated parameters
to apply to the symbols before placing them on the
background.

Positioning shape: It defines where the symbols can
be placed on the background. It can be a single point,
a straight-line or a polygon. In the two last cases, the
exact locations of symbols will be selected at random
within the straight-line or the polygon.

Positioning control: The parameters to compute the
control points used to position the symbols within
the shape.

Figure 9 gives an example of a rule declaration used
in the positioning. It is composed of a model and an
associated constraint. This specifies mainly the link(s)
between the model and the constraint and the parame-
ters used for the positioning (the control point and the
shape coordinates). Additional parameters can be em-
ployed to produce more complex rules. Table 2 gives the
full explicit list of parameters we use in our rules. These

Mathieu Delalandre et al.

@
—
[[] constraints defined on the backgronnd with shapes
"1 symbol models
— links between the symbol models and the constraints
®)

rolated and
scaled symbol
with its control
point

symbolmodel

[shape

O control point

@ reference poini
withina shape

the control point will
muaich the reference point

Fig. 8 Positioning constraint
(a) model/constraint link (b) positioning mechanism

are employed at different steps (1) to (7) of our building
process shown in Figure 7. We will detail each of them
in next subsections.

[<modelurl="models\battery"
constraints="c0" } link to the constraint,
s here a single one

model

<constraint namc="c0"

polar="1.0;0.75”] positioning control
shape="134.04;506.50" | positioning shape
P

constraint

Fig. 9 Rule declaration

3.2 Constraint € Model Selection

To initiate a building loop in our workflow (Figure 7),
we have to select a symbol model and an associated
constraint. We have implemented two selection modes:
a constraint-based selection and model-based selection.
The motivation for defining two selection strategies is
that some constraints are mandatory to be satisfied
while others are optional, as illustrated in Figure 10. For
instance, doors and windows are mandatory in order to
close the house and a bed is also required in a bedroom
while a sofa is optional. Constraint-based selection per-
mits to ensure that all mandatory constraints are taken

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 7

parameter| defankt description
value

_|url required | url of the model file

§ consiraints | required | constraini(s) linked to the model

. morph 1.0 1o control the thickness of symbol lines
name required | name of the constraint
rigid true 1o specify if the constraint is mandatory
scale 1.0 1o scale the symbols

. | rotation 00 to rotate the symbols

"g polar {0.0;0.0} | parameters to compute the control point

ig'? align 0.0 parameter used for the rotation alignment
shape required | coordmnates of the shape
overlap false the symbol can overlap the other ones
overflow false 1o coerce the positioning within the shape
size 1 maxinmum number of symbol to place

Table 2 Rule parameters

into account in the generation of the document, while
model-based selection also includes optional constraints.

optional

Fig. 10 Constraint satisfaction

The constraint based selection selects the constraints
first and the symbol models next. This way, it will co-
erce the positioning i.e. the constraint will be satisfied.
Figure 11 (a) details the selection process we use. It is
done by managing a constraint stack. All the constraints
defined as “mandatory” in the constraint file are loaded
and pushed into this stack. Then, when starting a build-
ing process these constraints (cy, ..., ¢;) are popped-up
from the stack at each loop. A symbol model (si) linked
to this constraint is next selected at random using a uni-
form probability distribution (p1, ..., p;). When the stack
is empty the document generation shifts to the model
based selection as illustrated in Figure 7.

The model based selection works in the opposite way.
It selects symbol models first and linked constraints
next. The selection of symbol models is performed so
that it will satisfy a maximum number of constraints
among documents. We favor symbols linked to several
constraints, or those linked to weak associated con-
straints. The constraints are next selected at random

Pi=P2=Ps=---= DB

i
ZPE =1
=1

&

5

@ P
- < Sl
‘\ i 8y
G
! i pi
"

(b) > w=033 wy=033 DPa=011
c wp=033 wy=033 DPo=011
a) Wa=100 wg=066 Pa=022

é Wy =033 DPu=011

< ws=033 Ps—0.11

1 ws=100 Ps=033

i, 7"_ 7w-(
ol S,
n, 1 n,

s

Fig. 11 (a) constraint selection (b) model selection

with an uniform probability distribution. This guar-
anties a better spatial distribution of symbols among
documents, and thus a better visual rendering of doc-
uments. Figure 11 (b) presents the method we use to
achieve this. First, a weight w,. is computed for each
constraint based on the number of symbols n, associ-
ated with it. The weight ws of a symbol is next obtained
by summing the weights w,. of constraints linked with
it. The obtained ws are at last normalized by the total
number of constraints n. to obtain the selection proba-
bilities ps of symbols. Using these probabilities, a symbol
model can be selected at random. This way, the system
increases the selection probabilities of symbols linked to
several constraints, or those linked to weak associated
constraints, like respectively ss and sg in Figure 11 (b).

3.8 Symbol Loader

Once a model is selected, we instantiate the correspond-
ing symbol by loading its model file. These model files
are kept inside our database as illustrated in Figure 6.
They are in a vector graphics format, describing the
symbols using geometrical primitives (straight lines, arcs
and circles) with their associated thickness attributes.
Once loaded, the symbols have to be adapted to the
background image. Indeed, these background images are
made from real-life document images (web images, dig-
itized documents, etc.) picked up at random. As they
are not adapted to our symbol library, we must apply a
set of geometric transformations (scaling, morphing and
random rotation) to the symbols before placing them on
the background.

Scaling aims to adapt the symbols to the size of the
background image. It employs a single parameter defined
in the positioning constraint, to scale the symbols in re-
lation to their gravity centers. In the same manner, the
morphing operation adapts the thickness of the symbols
to the background image. Figure 12 (a) gives two exam-
ples of a symbol placed on a background, without and

with thickness adaptation. In a last step, the symbols are
rotated. This rotation is done using a parameter that can
be null, a fixed value or a range. In the last case, the fi-
nal value is selected at random inside the range. A gap
can also be defined to sample the rotation values within
the range. The key objective of making these rotations
random, is to increase the variability of the documents.
Figure 12 (b) gives an example of a tub rotated in two
different ways using a same constraint. In this example,

the range is {Z, 237} with a 7 gap.

@ ‘\\)

)
I

Fig. 12 Geometric transforms (a) morphing (b) rotation

8.4 Symbol Control

Once a symbol is loaded our system initiates the posi-
tioning. The first step is to compute the control point
of the symbol as detailed in Figure 13. We define this
control point in relation to the bounding box of the sym-
bol. Indeed, the bounding box is a common way to han-
dle graphical objects inside a document analysis system.
The method we employ to compute it is given in Annex
Al. It takes into account the thickness of the lines and
permits also to apply an alignment rotation, both to the
symbol and the control point. It allows the symbol to be
aligned to the background elements. Figure 13 gives an
example of a symbol (a sofa) aligned to a background
element (a wall).

In our approach, we have made the computation of
control points fully independent of the symbol models.
Like this, we make the association of different models to
a single constraint easier i.e. it is not necessary for a user
to define a specific control point for each of the models.
For that purpose, we have defined the control points in
our constraints with polar coordinates as shown in Fig-
ure 14. The key process is then, starting from a control
point p defined in the polar space, to find for a given
symbol ; the right control point p; in its bounding box.
In the polar space the control points p are represented
using two coordinates (L, §). We use then some standard
geometric methods to find the right length and direction
(L;,0;) for a given symbol (see Annex A2).

Mathieu Delalandre et al.

bounding box
and control point

] boundingbox o confrolpoint —» alignment

Fig. 13 Symbol control

polar coordinates corresponding control poinis
ofa control point insymbols
in the constraint) P1
LA
)

gelo2z] Lelo]

0 control poinis

Fig. 14 Definition of control points

3.5 Shape Positioning

Once the control point is computed, we position the sym-
bol on the background. It is based on the matching of
the control point with a positioning one defined on the
background. The symbol will be then positioned so that
its control point matches with the positioning one. In or-
der to introduce some variability in the built documents,
we employ different possibilities to select the positioning
point in a constraint. It can be defined as being a fixed
point (z,y) or can be selected at random inside a straight
line (the point is selected at random along the line) or
a polygon (the point is selected at random inside the
polygon). Figure 15 (a) and (b) gives examples of ran-
dom positioning in both cases. To perform the random
selection, we employ different computational geometry
methods detailed in Annex A3.

3.6 Checking of Constraints

When a straight-line or a polygon is used to select the po-
sitioning point, their boundaries could also be employed

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 9

b
_ > | =

a) straight line (

puno.adyoeq aduqs

Fig. 15 Random positioning (a b) polygon

as delimiters to constraint the positioning of the whole
symbol. Figures 16 (a) (b) present some examples where
this option could be useful. In the case of Figure 16 (a),
the straight-line delimits the positioning of the sofa to a
wall part. In this way, a sofa will not be placed in front
of the room entrances. The case of Figure 16 (b) shows
how a polygon could constrain the positioning of a table
within a hall. Then, this table will not obstruct the way
to the window or be placed along the flat’s wall.

|

(3@ (b}
Fig. 16 (a) line delimiter (b) polygon delimiter

In our system, we allow the user to choose if a con-
straint has to be used as delimiter or not. Such a choice
will depend on the context of the constraint and the user
will decide then in regard to his domain know-how. How-
ever positioning might fail. Such failures appear when
parts of a symbol overflow the area of the constraint.
To check it, we use overflow tests between the symbols
and the straight-line/polygon shapes defined in the con-
straints (Figure 17). Both are based on some standard
overlapping and line-intersection methods as detailed in
Annex A4. A positive result will cancel the positioning.
Afterwards the document generation will initiate a new
building loop.

Another particularity related to the use of straight-
lines or polygons in the constraint, is that more than one
symbol could be positioned. Figure 18 gives some exam-
ples of that. In the case of Figure 18 (a) several sinks
are placed along a wall using a straight-line. Concern-
ing the case of Figure 18 (b), the furniture composing a
living-room is placed at random inside a polygon. Thus,
in our approach we have allowed the user to specify a
maximum number (between 1 to n) of symbols to posi-

— v] TS
overflow ,:
) ‘ I|'

Fig. 17 Overflow of symbols

tion per constraint. When a constraint becomes “full”,
the positioning is canceled.

O&

Fig. 18 multiple positioning (a) straight-line (b) polygon

3.7 Space Management

In addition to the checking, the system also continu-
ously monitors the document space. Indeed, during the
building process the document is filled gradually. The
system has to ensure that any new generated symbol
falls entirely within the image and do not overlap with
the existing symbols. Such detection is achieved using
overlapping tests (see Annex B5) between the bounding
box of the new symbol and all the already positioned in
the document.

However, it could appear than some symbols have to
be mildly overlapped. This case appears when we want
to make connect some symbols on the background. Fig-
ure 19 (a) gives examples of that in a bathroom and
in a cellar. In order to take into account these cases in
our system, we work with two building layers as illus-
trated in Figure 19 (b). In the first layer we forbid the
overlapping as detailed previously. In the second layer
we allow a mildly overlapping between symbols. We use
the line width of symbols as a threshold to control the
overlapping degree. At the end, the symbols placed in
this second layer are overlayed to the first layer and the
background, to produce the final document. The selec-
tion of a given layer for a constraint is set up by the user.
Like this, the mildly overlapping between symbols will
be allowed according to his needs.

3.8 Stopping Criterion

Our building system starts with empty documents and
fills them in a pseudo-random way with generated sym-

10

@)

()

Layer1 Layer2 Layer1-2
withoutoverlap with mildly overlap withbackground

Fig. 19 (a) side by side symbols (b) building layers

bols. The building process is stopped when the maxi-
mum number of symbols to position in the document
is reached. This number corresponds to the sum of the
maximum numbers of allowed symbols per constraint.
However, in some cases a complete satisfaction of all
constraints could be difficult to achieve. The user could
define a large number of symbols per document, that
will be hard to achieve without relaxing the defined con-
straints. The system must then detect and count these
cases, and stop the building if necessary in order to avoid
an infinite building process.

To achieve this, we use the checking and space man-
agement tests presented in subsections 3.6 and 3.7.
When the results of these tests are negative, we trigger
a building failure as shown in Figure 7. We count then
these building failures and compare them to a threshold
set up by the user. He defines it in relation to the edited
constraints, the considered domain and background im-
age, his satisfaction requirement, etc. If the number of
building failures becomes greater than this threshold, we
stop the process.

3.9 Generation of Test Images

Once vector graphics are documents obtained, we con-
vert them into raster images for performance evaluation.
However, to test recognition systems one needs noisy im-
ages. In our system, we use two different workflows to
add noise to the images (Figure 20): scan-based and web-
based. The first one aims to distort the images in a way
similar to the scanning process, whereas the second pro-
duces low-resolution and lossy compressed images as the
ones found on the Web.

We exploit three processing steps to produce the
scan-based images: scaling, rasterization and image
degradation. Vector graphics documents are first scaled

Mathieu Delalandre et al.

vector graphics
docnments segiichased
ectol ics —
: : : graphl [mage _’ﬁ
de ents Degradation
. > .
Scaling Rasterization _ideal
images
Lossy
Compression
groundirnth b basei
groundiruth images

Fig. 20 Generation of test images

with their corresponding groundtruth. Indeed, our syn-
thetic documents are produced from pre-defined back-
ground images. These are selected at random from dig-
ital libraries and therefore appear at different scales.
Thus, we resize all the produced documents in order
to put them at a same scale in our datasets. The
groundtruth data are also resized in order to keep them
valid. Next, we rasterize the vector graphics documents
using tools such as ImageMagick® or Inkscape®. Raster-
ized images are obtained in gray-level, we binarize them
using a fixed threshold. In a final step we employ the im-
age degradation algorithm of [33]. This algorithm tries
to reproduce the process of printing and acquisition. It
has been used in different applications of DIA (especially
OCR), and in all the past contests on symbol recogni-
tion [18-21]. Figure 21 (a) gives examples of degraded
images using this algorithm.

@

Jif}

()

scale1/1 scale 1/2 scale 1/4

Fig. 21 Image degradation
(a) Kanungo (b) Low resolution

Web-based images are produced using a similar work-
flow. Vector graphics documents are also scaled with
their corresponding groundtruth to make them homoge-
nous, and are next rasterized. However, they are scaled
at lowest levels to obtain low resolution images as the
ones found in the Web. Figure 21 (b) gives some exam-

8 http://www.imagemagick.org/
9 http://www.inkscape.org/

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 11

ples of degradation at lowest resolutions (from scales 1/1
to 1/4). In a final step we compress the rasterized images
with the jpeg lossy compression algorithm.

4 Graphics User Interface

In previous section 3 we have presented our system to
generate synthetic documents and their corresponding
groundtruth at the symbol-level. The system relies on
the use of positioning constraints. It employs different
entry data, a background image, a set of symbol models
and a file describing the positioning constraints. As pre-
sented previously, the positioning process exploits var-
ious operations (scaling, morphing, random and align-
ment rotation, etc.). Therefore, a constraint file is ex-
pected to contain a lot of data depending on the num-
ber and the complexity of constraints. Thus, it can be
difficult to edit it manually.

In order to help the user, we have developed a GUI
allowing different editing tasks: loading and attaching a
background image, loading a model database, creating
and placing constraints, linking constraints to models,
setting constraints, saving and loading constraint files,
etc. Figure 22 gives a snapshoot of this GUI with some
edited constraints. In practice it is difficult to edit the
constraints without observing their effect on document
building. In order to make the editing easier, we have
plugged our GUI to our building engine as shown in Fig-
ure 23 (a). Using this plugin, the editing of constraints
is done in interaction with the user in three steps: (1)
editing process in progress (2) running of the engine (3)
display of the building result. This last step relies on a
building viewer presented in Figure 23 (b).

Symbol
Models ST I

[

=1

Background
3) Image
display

(2)run

@ ®)
Fig. 23 (a) GUI/Engine plugging (b) building viewer

An editing process could take 1 to 3 hours per back-
ground, depending on the number and complexity of
constraints (from 20-40). A user must be familiar with
the document domain (architectural, electrical, etc.). In
addition, he must be trained about the constraint mech-
anism employed in our system, that involves some skills
in computer science. Thus, this system is mainly in-
tended for people working on the computer vision field,
interested in the performance evaluation aspects. At this

time, it has been employed by different Master and PhD
Students following a short training (half a day).

Once all the constraints are edited from a background
image, the user can produce a full database of synthetic
documents using the main GUI. It is only necessary to
specify the total number of documents to be generated
and stored in the database. The system will export the
test documents to a directory with the corresponding
groundtruth files. Groundtruth files contain metadata
about the symbols composing the test documents: lo-
cations of bounding boxes, labels, orientations, scaling
and morphing parameters. Annex D gives an example of
the content of groundtruth files. Test documents are in
a vector graphics format (i.e. with vectorial data for the
symbol layer and a raster image for the background). In
a final step, we use batch processing to rasterize the vec-
tor graphics documents and to add noise to the obtained
images, as explained in subsection 3.9.

5 Experiments and Results

In this section we present the experiments performed and
the results obtained with our system. The main objective
of these experiments is to create collections of test doc-
uments, with the corresponding groundtruth, to be used
in evaluation frameworks of symbol recognition & spot-
ting systems. To achieve this, we set up our system so
that it generates different collections of test documents.
Our key objective is to highlight the flexibility of our
approach!®. Table 3 gives the details about these collec-
tions in terms of the numbers of datasets, images, sym-
bols placed on the documents and models used. All these
collections are free and downloadable from our website'!.
In next subsections 5.1 to 5.3, we will present the collec-
tions of documents we have produced, and how we have
set up our system to do it. In subsection 5.3, we will
highlight how our approach is suitable for performance
evaluation, by presenting characterization results of a
spotting system obtained on our document collections.

Collections Datasets Images Symbols Models

bags 16 1600 15046 25-150
floorplans 10 1000 28065 16
diagrams 10 1000 14100 21

36 3600 57211

Table 3 Collections of test documents

5.1 Bags of Symbols

We have built a first collection composed of “bag of sym-
bols” documents. Figure 24 presents some examples of

10 Our system has been also used to produce geographic
maps to evaluate text/graphics separation algorithms.
" http://mathieu.delalandre.free.fr/projects/sesyd/

12

Mathieu Delalandre et al.

|#:| generation of graphical groundTruth editor (3gTed). | (B
File
D ’ 33475858 305 95107
%‘ wtap | 320
E | | o) resize
| P———
| = - S
B 5 e o (EREN ~ O
_..{_I_) g e
— | — 185 roll drestion 30 —
! e |
L .I' 9 | G 3! e
‘ i | .] lL—] roll Fange 30 -
e \
1 A e
i | L ? Fed) et | 12
.'] — LArTs
i 1 du s Pt
| —
[on
= BT 1]
Fd
=S -_-r'—‘ T |
' Sink3.5v 2
sinkd.svy |
sofat.svy |
sul'nlmp _-:.
- e [
m = =
. (2] 2] 55
wickh: 40382 height: 18852
| Mew | documents i:+l 000 Buld |
Fig. 22 GUI to edit the positioning constraints
these bags. In them, the symbols are positioned at ran- @ D\ ®)

dom on an empty background, without any connection,
and using different rotation or scaling parameters. These
bags present an “easy” localization problem. The key
idea of this collection is to establish a bridge with the
datasets provided during the past contests on symbol
recognition held during the GREC'? Workshop [19,8,
21], composed of only one segmented symbol per image.

To produce this collection, we have used the sym-
bol model library'? created during the previous editions
of the GREC contest. This library is composed of 150
models of architectural and electrical symbols. Based
on this library, we have set up our system with a sin-
gle square zone constraint surrounding an empty back-
ground. In order to produce bags of a reasonable size,
we have resized the original symbol models of the past
contest editions'® from 512 x 512 to 256 x 256 pixels.
Based on this symbol size, we have generated bags of

12" Graphics Recognition
13 http://epeires.loria.fr/

O oS
s

© @11:} @ B @ @
ap | |27@
286 |©4p

(a) none transformation (b) rotated
(c) scaled (d) rotated & scaled

1024 x 1024 pixels composed of around 10 symbols each.

This corresponds to a symbol density of 0.625 (251%222210),

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 13

which respects a well-balanced partitioning between the
background and the foreground parts as shown in Figure
24.

Using these size parameters we have generated 16
datasets of 100 bags each. This corresponds to an overall
number of 1600 bags composed of around 15000 symbols
as indicated in Table 3. These 16 datasets have been
generated by respecting the protocol used during the
previous runs of the contest'3. First we have used differ-
ent model numbers (25, 50, 100 and 150) in order to test
the scalability of the methods. Next we have applied and
combined different geometrical operations as illustrated
in Figures 24 (a), (b), (¢) and (d). These transforma-
tions have been set up as follows: from 0 to 2 x 7 for the
random rotation with a gap of 2%~ and from 75 % to

1000~

125% for the scaling with a gap of 0.05 % (7505)-

5.2 Architectural Floorplans

Our second collection aims to provide whole documents
using filled backgrounds. For that purpose, we have dedi-
cated this collection to architectural floorplans. We have
chosen architectural floorplans in recognition of their in-
teresting properties concerning the connectivity and the
orientation of symbols. Figure 25 presents some exam-
ples of floorplans automatically produced by our system.

In order to generate these floorplans, we have de-
fined first a set of architectural symbol models. Our set
is composed of 16 models, Figure 26 gives their thum-
bviews and labels. In this set, the sizes of the symbols
respects existing proportions appearing in real-life floor-
plans. We give in Figure 26 the scales of thumbviews!*
regarding the real sizes of symbols in floorplans.

Then, we have used these models and some back-
ground images in order to produce our constraints. Fig-
ure 27 (a) explains the process we use. First, to create
our backgrounds we have picked-up at random some im-
ages of real floorplans (digitized documents, web images,
etc.). We have next cleaned these images by deleting ele-
ments like texts, symbols, arrows, dimensions, etc. Once
the background images are obtained, we use our GUI to
edit the constraints and to link them to the symbol mod-
els. As we want the documents to be as real as possible,
we use during the editing step, the original images in
order to reproduce the domain rules in the constraints.
Figure 27 (b) gives some examples of the original floor-
plans, and the documents we have built from them. The
initial information concerning the types and the loca-
tions of symbols has been preserved in the constraints.

We have created our whole floorplan collection us-
ing 10 different backgrounds. However, to address the
time complexity problem of symbol recognition & spot-
ting processes, we restrict ourselves to background im-
ages composed of a small number of rooms. Like this,

14 Ratios of thumbview sizes to corresponding symbol sizes
in floorplans.

Fig. 25 Examples of built floorplans

we produce floorplan images of reasonable dimensions.
The number of edited constraints per background image
changes from 21 to 41. Using these constraints, we have
generated 100 instances of documents per background.
Our final collection of documents is composed of 1000
images and around 28 000 symbols to locate as indi-
cated in Table 3. This corresponds to a mean number
of 28 symbols per image, with a minimum of 18 and a
maximum of 40. In a final step, we have scaled all the
produced images to make their resolution homogenous
across the whole database. The scaling parameter has
been defined in order to reach a symbol size of 192 x 192
for the smallest symbol models and 460 x 460 for the

14

doorl door2

0.83 041
-_——
- 1=

sink1 sink2 sink3 sink4
1.00 0.50 0.71 1.00

oo

sofal sofa? tablel table2
0.83 0.41 0.83 0.50

: L 8 lI

table3 tob windowl window2
0.41 0.50 0.83 0.83

Fig. 26 Thumbviews of architectural models
labels with scales*

biggest ones (corresponding respectively to the scaling
parameters 1.0 and 2.4 of Figure 26).

5.8 Electrical Diagrams

Our last collection is concerned with electrical diagrams.
Our key objective here is to show that our approach is
not domain dependent, and could be applied therefore
to build other document types. Figure 28 shows some
examples of diagrams we produce.

To build these diagrams we have first created a model
library of electrical symbols. Figure 29 gives thumbviews
of them, our set is composed of 21 models. Then, the pro-
cess we have used to construct this collection is similar to
the one of floorplans. In a first step, we have picked-up at
random some images of real diagrams and cleaned them
to obtain the backgrounds. The obtained background
images contain only wires joining empty symbol places.
Next, we have used our GUI to edit constraints for the
obtained backgrounds by reproducing domain rules of
original diagrams.

We have generated our whole collection of diagrams
from 10 different backgrounds. We restrict ourselves to
diagrams composed of a few number of components, in
order to address the time complexity problem of the sym-
bol recognition & spotting processes. Then, in the case
of diagram collection the number of edited constraints
per background image varies from 7 to 26. Using these

Mathieu Delalandre et al.

C
DA e
L___1

cleaning

@

7o = o

<\/ L=
| ‘
- | l _ 10'1

(b)

Fig. 27 (a) edition process (b) real-life vs. built documents

constraints, we have generated 100 instances of docu-
ments per background. Our final collection of documents
is composed of 1000 images and around 14 000 symbols
to locate as indicated in Table 3. This corresponds to
a mean number of 14 symbols per image, with a mini-
mum of 7 and a maximum of 26. In a final step, we have
scaled all the produced images to make their resolution
homogenous across the whole database. The diagrams
have been produced in order to respect a mean symbol
size of 192 x 192 (from 57 x 57 for the smallest ones to
288 x 288 for the biggest ones).

5.4 Application to Performance Evaluation

In past subsections 5.2 and 5.3, we have illustrated how
our system can produce documents that look realistic,
by reproducing domain rules of true-life documents in
positioning constraints. Using these constraints our sys-
tem generates document instances i.e. different symbolic
layers on a same background. In this subsection, we illus-
trate how these documents are suitable for performance
evaluation. To do it, we have employed them to evalu-
ate the symbol localization system of [15]. This system
detects parts of documents that may correspond to sym-
bols, without a priori knowledge about the type of the

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 15

1

—Hh
—|i

Fig. 28 Examples of built diagrams

document. It provides a set of ROIs'® corresponding to
potential symbols, without any information about their
classes. It relies on a structural approach using a two-
step process.

First, it extracts topological and geometric features
from an image, and organizes them through an ARG
(Figure 30). The image is first vectorized into a set of
quadrilateral primitives. These primitives become nodes
in the ARG (labels 1, 2, 3, 4), and the connections be-
tween them, arcs. Nodes have, as attributes, relative
lengths (normalized between 0 and 1) whereas arcs have
the connection-types (L junction, T junction) and rela-
tive angles (normalized between 0° and 90°).

In the second step, the system looks for potential
ROIs corresponding to symbols in the image. It detects
parts of the graph that may correspond to symbols i.e.
symbol seeds. Scores, corresponding to probabilities of
being part of a symbol, are computed for all edges and
nodes of the graph. They are based on features such as
lengths of segments, perpendicular and parallel angular
relations, degrees of nodes, etc. The symbol seeds are
detected next during a score propagation process. This
process seeks and analyses the different shortest paths
and loops between nodes in the graph. The scores of all
the nodes belonging to a detected path are homogenized

15 Regions Of Interest
16 Attributed Relational Graph

T
|
|
T
I
I
I

|
|
1
1
1
1
1
1
1
1
1
r
1
1
1
1
1
1
1
1
1
1
1
|
L

—_———————y

.‘

Graphic symbol Vectorized Attributed relational graph

Fig. 30 Representation phase of [15]

(propagation of the maximum score to all the nodes in
the path) until convergence, to obtain the seeds.

To evaluate this system we have constituted a dataset
of synthetic documents using our collections. Table 4
gives details about it. It is composed of architectural
floorplans and electrical diagrams. We have selected 100
drawings produced using 5 different background images
(20 drawings are generated per background image) for
each domain. Thus, the whole dataset contains 200 doc-
uments composed of 3861 symbols (2521 architectural
and 1340 electrical). These symbols belong to 16 and 17
architectural and electrical models, respectively appear-
ing in the selected backgrounds.

Our key objective here is to illustrate that our docu-
ments are suitable for performance evaluation. To do it,
we propose to analyze the variability of the localization
results, obtained by the system [15], on our dataset. We
compute for each test image a symbol detection rate.

16

Drawing level Symbollevel
g Setting | backgrounds 5 models 16
é Dataset | images 100 | symbols | 2521
g Setting | backgrounds 5 models 17
b
g’ Dataset | images 100 | symbols | 1340

Table 4 Dataset used for experiments

single an object in the results matches with a
single object in the groundtruth
misses an object in the groundtruth doesn’t

match with any object in the results
an object in the results doesn’t match
with any object in the groundtruth

an object in the results matches with
multiple objects in the groundtruth
(merge case) or an object in the
groundtruth matches with multiple ob-
jects in the results (split case)

false alarm

multiple

Table 5 Matching cases between groundtruth and results

This rate is obtained by comparing the bounding boxes
of the localization results and the groundtruth (see An-
nex B5 for details about the overlapping test). We ex-
ploit the overlapping relations to identify matching cases
as detailed in Table 5. The detection rate of a given

document corresponds to d = =, with s the number
of single localization, and n the number of symbols in
groundtruth.

Figure 31 presents plots of results we have obtained
on architectural floorplans and electrical diagrams. In
these plots, the detection rates are grouped per drawings
produced from the same background image. Each curve
gives the rates for a set of document instances (i.e. doc-
uments generated from a same background). Each set is
composed of 20 document instances, and each plot gives
results for 5 sets for an overall number of 100 documents.
To draw the curves, we have sorted the detection rates
per set from highest to lowest values.

These curves illustrate the variability of synthetic
documents produced using our system. Variations in the
symbol layer impact in a significative way the results of
the system, despite the use of a same background image
to produce the drawings. In order to quantify this vari-
ability, we present in Table 6 a statistical analysis. For
each drawing set, we have computed the mean detection
rates pp and their corresponding standard deviations op.
0p is the mean standard deviation of the drawing sets,
whereas o, is obtained from the whole dataset (compar-
ing documents generated from different backgrounds).
In these experiments we obtain &, =~ %ow. These re-
sults show that our method can produce, for a given
background, drawings with different features. Depend-
ing on the number and type of symbols and constraints,

Mathieu Delalandre et al.

floorplans
detection rate/background

0,9 +

% 0,8 —_*&\
_é 0,7 s ——
o :
2 06 +

©

0,5 7

04 + — —
1 23 456 7 8 9 10111213 14 1516 17 18 19 20

number of the document instance [1-20]

electrical diagrams
detection rate/background

N\
e

0,8 - =

0,6 7

detection rate
=]
~

05 1

04 4 . r r
123456 7 8 910111213 14 15 16 17 18 19 20

number of the document instance [1-20]

each color corve corresponds to docoments
produced from a same backgronnd

Fig. 31 Localization results (plots)

floorplans diagrams
Hy Oy Hy o
bl | 08552 | 00273 || b1 | Loooo | 0,0000
bz | 07691 | 00428 || b2 | 0,9300 | 0,0506
b3 | 07503 | 00620 || b3 | 03260 | 0,1167
b4 | 06018 | o025 || ba | 07679 | 0,0952
b5 | 05539 | 00654 || b5 | 05038 | 00517
o, =01247 0, =0,0602 o, =01568 0O, =0,0628
5
S P2 AETY S
H :Zﬂﬁ =" - % :ZUM

=l H =l

Table 6 Localization results (tables)

these features can significantly affect the performance of
symbol localization and thus, be used for performance
evaluation.

6 Conclusion and Perspectives

In this paper, we have presented a system for the gener-
ation of synthetic documents for the performance evalu-
ation of symbol recognition & spotting systems. Our key
contribution is the building of whole documents (draw-
ings, maps, diagrams, etc.) and, our underlying aim, to

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 17

make these documents more realistic. To do it, we have
exploited the layer property of graphical documents in
order to position symbol sets in different ways using the
same backgrounds. This way, we obtain a large amount
of documents that look realistic by simply providing, a
small number of constraints, and a few predefined back-
grounds. The groundtruth (the locations and the labels
of symbols) becomes automatically available along with
the produced documents. We have employed this system
to produce documents of architectural and electronic do-
mains which proves the flexibility of our approach. In
addition, using these documents we have done perfor-
mance evaluation experiments of a symbol localization
system. They show that the different parameters used in
our system result in generated documents with different
features, that are reflected in variation of the localization
results of the system.

As a continuation of this work, our challenge is the
comparison of synthetic documents with real ones in
terms of performance evaluation. The goal will be to
compare localization results, of one (or several) sys-
tem(s), on real and on synthetic documents. The gen-
eration parameters (number and type of symbols, con-
straints and noise) used in our system, should estab-
lish some kind of relation and comparison to the same
parameters in real documents. However, this is not an
straightforward task due to the lack of groundtruthed
datasets of real documents and characterization meth-
ods. To the best of our knowledge, it is not possi-
ble to achieve such a comparison today, because no
groundtruthed dataset of real scanned documents exists.
In addition, performance characterization metrics must
be reformulated to take specificities of whole documents
into account. With whole documents, characterization
becomes harder because it has to be done between sym-
bol sets. These symbol sets can have different sizes, and
gaps can also appear concerning the locations of sym-
bols. Different matching cases then exist, and the char-
acterization methods must be able to detect them prop-
erly. Some recent research work on these problems can be
found in [34,35]. Additional methods should be proposed
by the graphics recognition community and compared,
in order to identify the best-suited one for performance
characterization.

7 Acknowledgements

This work was partially supported by the Spanish
project TIN2006-15694-C02-02, the fellowship 2006 BP-
B1 00046 and by the Spanish research programme Con-
solider Ingenio 2010: MIPRCV (CSD2007-00018). The
authors wish to thank Jean-Yves Ramel (LI laboratory,
Tours, France) for his collaborations and help about this
work.

References

1. E. Greengrass, Information retrieval: A survey, Tech.
Rep. TR-R52-008-001, Center for Architectures for Data-
Driven Information Processing (CADIP), University of
Maryland, US (2000).

2. N. Thacker, A. Clark, J. Barron, j.R. Beveridge,
P. Courtney, W. Crum, V. Ramesh, C. Clark, Perfor-
mance characterisation in computer vision: A guide to
best practices, Computer Vision and Image Understand-
ing (CVIU) 109 (2008) 305-334.

3. H. Muller, W. Muller, D. Squire, S. Marchand-Maillet,
T. Pun, Performance evaluation in content-based image
retrieval: Overview and proposals, Pattern Recognition
Letters (PRL) 22 (5) (2001) 593-601.

4. R. Haralick, Performance evaluation of document im-
age algorithms, in: Workshop on Graphics Recognition
(GREC), Vol. 1941 of Lecture Notes in Computer Sci-
ence (LNCS), 2000, pp. 315-323.

5. A. Chhabra, Graphic symbol recognition: An overview,
in: Workshop on Graphics Recognition (GREC), Vol.
1389 of Lecture Notes in Computer Science (LNCS),
1998, pp. 68-79.

6. L. Cordella, M. Vento, Symbol and shape recognition, in:
Workshop on Graphics Recognition (GREC), Vol. 1941
of Lecture Notes In Computer Science (LNCS), 1999, pp.
167-182.

7. J. Lladés, E. Valveny, G. Sanchez, E. Marti, Symbol
recognition : Current advances and perspectives, in:
Workshop on Graphics Recognition (GREC), Vol. 2390
of Lecture Notes in Computer Science (LNCS), 2002, pp.
104-127.

8. K. Tombre, S. Tabbone, P. Dosch, Musings on sym-
bol recognition, in: Workshop on Graphics Recognition
(GREC), Vol. 3926 of Lecture Notes in Computer Sci-
ence (LNCS), 2005, pp. 23-34.

9. S. Yoon, G. Kim, Y. Choi, Y. Lee, New paradigm for
segmentation and recognition, in: Workshop on Graphics
Recognition (GREC), 2001, pp. 216-225.

10. K. Tombre, B. Lamiroy, Graphics recognition - from re-
engineering to retrieval, in: International Conference on
Document Analysis and Recognition (ICDAR), 2003, pp.
148-155.

11. P. Dosch, J. Lladds, Vectorial signatures for symbol
discrimination, in: Workshop on Graphics Recognition
(GREC), Vol. 3088 of Lecture Notes in Computer Sci-
ence (LNCS), 2004, pp. 154-165.

12. S. Tabbone, L. Wendling, D. Zuwala, A hybrid approach
to detect graphical symbols in documents, in: Workshop
on Document Analysis Systems (DAS), Vol. 3163 of Lec-
ture Notes in Computer Science (LNCS), 2004, pp. 342
353.

13. D. Zuwala, S. Tabbone, A method for symbol spotting in
graphical documents, in: Workshop on Document Anal-
ysis Systems (DAS), Vol. 3872 of Lecture Notes in Com-
puter Science (LNCS), 2006, pp. 518-528.

14. H. Locteau, S. Adam, E. Trupin, J. Labiche, P. Heroux,
Symbol spotting using full visibility graph representa-
tion, in: Workshop on Graphics Recognition (GREC),
2007, pp. 49-50.

15. R. Qureshi, J. Ramel, D. Barret, H. Cardot, Symbol
spotting in graphical documents using graph representa-
tions, in: Workshop on Graphics Recognition (GREC),

18

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Vol. 5046 of Lecture Notes in Computer Science (LNCS),
2008, pp. 91-103.

M. Rusifol, J. Lladés, A region-based hashing approach
for symbol spotting in technical documents, in: Work-
shop on Graphics Recognition (GREC), Vol. 5046 of Lec-
ture Notes in Computer Science (LNCS), 2008.

E. Valveny, al., A general framework for the evaluation
of symbol recognition methods, International Journal
on Document Analysis and Recognition (IJDAR) 1 (9)
(2007) 59-74.

S. Aksoy, al., Algorithm performance contest, in: Interna-
tional Conference on Pattern Recognition (ICPR), Vol. 4,
2000, pp. 870-876.

E. Valveny, P. Dosch, Symbol recognition contest: A syn-
thesis, in: Workshop on Graphics Recognition (GREC),
Vol. 3088 of Lecture Notes in Computer Science (LNCS),
2004, pp. 368-386.

P. Dosch, E. Valveny, Report on the second symbol recog-
nition contest, in: Workshop on Graphics Recognition
(GREC), Vol. 3926 of Lecture Notes in Computer Sci-
ence (LNCS), 2006, pp. 381-397.

E. Valveny, P. Dosch, A. Fornes, S. Escalera, Report on
the third contest on symbol recognition, in: Workshop
on Graphics Recognition (GREC), Vol. 5046 of Lecture
Notes in Computer Science (LNCS), 2008, pp. 321-328.
D. Lopresti, G. Nagy, Issues in ground-truthing graphic
documents, in: Workshop on Graphics Recognition
(GREC), Vol. 2390 of Lecture Notes in Computer Sci-
ence (LNCS), 2002, pp. 46—66.

L. Yan, L. Wenyin, Interactive recognizing graphic ob-
jects in engineering drawings, in: Workshop on Graph-
ics Recognition (GREC), Vol. 3088 of Lecture Notes in
Computer Science (LNCS), 2004, pp. 126-137.

A. Chhabra, I. Phillips, The second international graph-
ics recognition contest - raster to vector conversion : A
report, in: Workshop on Graphics Recognition (GREC),
Vol. 1389 of Lecture Notes in Computer Science (LNCS),
1998, pp. 390-410.

J. Zhai, L. Wenyin, D. Dori, Q. Li, A line drawings degra-
dation model for performance characterization, in: Inter-
national Conference on Document Analysis and Recog-
nition (ICDAR), 2003, pp. 1020-1024.

B. Yanikoglu, L. Vincent, Pink panther: a complete en-
vironment for ground-truthing and benchmarking doc-
ument page segmentation, Pattern Recognition (PR)
31 (9) (1998) 1191-1204.

C. Lee, T. Kanungo, The architecture of trueviz: A
groundtruth/metadata editing and visualizing toolkit,
Pattern Recognition (PR) 36 (3) (2003) 811-825.

A. Antonacopoulos, D. Karatzas, D. Bridson, Ground
truth for layout analysis performance evaluation, in:
Workshop on Document Analysis Systems (DAS), Vol.
3872 of Lecture Notes in Computer Science (LNCS),
2006, pp. 302-311.

D. Kim, , T. Kanungo, Attributed point matching for
automatic groundtruth generation, International Journal
on Document Analysis and Recognition (IJDAR) 5 (1)
(2002) 47-66.

G. Ford, G. Thoma, Ground truth data for document im-
age analysis, in: Symposium on Document Image Under-
standing and Technology (SDIUT), 2003, pp. 199-205.

31.

32.

33.

34.

35.

Mathieu Delalandre et al.

L. Yang, W. Huang, C. Tan, Semi-automatic ground
truth generation for chart image recognition, in: Work-
shop on Document Analysis Systems (DAS), Vol. 3872
of Lecture Notes in Computer Science (LNCS), 2006, pp.
324-335.

I. Phillips, J. Ha, R. Haralick, D. Dori., The imple-
mentation methodology for the cd-rom english docu-
ment database, in: International Conference on Docu-
ment Analysis and Recognition (ICDAR), 1993, pp. 484—
487.

T. Kanungo, R. Haralick, h.S. Baird, W. Stuezle, D. M.
and, A statistical, nonparametric methodology for doc-
ument degradation model validation, Pattern Analysis
and Machine Intelligence (PAMI) 22 (11) (2000) 1209—
1223.

M. Delalandre, J. Ramel, E. Valveny, M. Lugman, A per-
formance characterization algorithm for symbol localiza-
tion, in: Workshop on Graphics Recognition (GREC),
Vol. 8, 2009, pp. 3—-11.

M. Rusinol, J. Lladés, A performance evaluation proto-
col for symbol spotting systems in terms of recognition
and location indices, International Journal on Document
Analysis and Recognition (IJDAR) 12 (2) (2009) 83-96.

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 19

Organization of the Annexes

Al Bl a%

A 4

B

A2 B2
>
B3 D

D Amnnexes referred in the paper
[] Amnexesmotreferred in the paper
(a)uses methods detailed in (b)

A3

I

Annex A: Positioning Methods

Al1: Computation of bounding boxes

boundingbox is a min-max of
straight-line corners, corners
are offsets of extremities in the
line direction at (+/-) /2

same as straight-line, in addition
we look for the cardinal
1 extremities of the arc

'Y

o«

~
N

See Annexes Bl and B2 for the point offset and di-
rection inclusion test within an arc.

A2: Computation of control points

how to get the direction &, from 0 ?

oot ts) 0 Lonfes 114
@ a,;g_m[m[g_a)x%] 0= ata{inle o)

how o get the length L, from I ?

20

AS8: Generation of random points

from 2 straight line from a polygon
X xgird, Fotdx
Yo /'
1
1
1
s trdl----e
-¥ Yo',
A il - 1 Y g
«"7 05
0 o
pis arandom offsetof s
Yohdyy
0<r, <1
we repeat the process
while P docsn’tinclude p

See Annexes B1 and B3 for the point offset and point
inclusion test within a polygon.

A4: Overflow tests

from a straight-line from a pelygon
P
L Ll
\
I,
bo
symbol overflows L. symbol overflows P
if L. doesn’t full overlap if P imtersects

right orup or left or bottom Ljorl,orlgorL,

See Annexes B5 and C for the overlapping tests and
line intersection methods.

Annex B: Computational Geometry Methods

B1: Point offset

L}

Xy
d, x'= x+cos{a)x/
y'=y+sinfa)x]

Mathieu Delalandre et al.

B2: Direction inclusion test within an arc

trigonometric

arc is directed to
20 because [is lower than y

See Annex B4 for the clockwise angle computation
between straight-lines.

B3: Point inclusion test within a polygon

See Annex B4 for the clockwise angle computation
between straight-lines.

B/: Clockwise angle computation between straight-lines

L, and L, are two lines and o their angle gap

d, and d, are the two lines” directions m [0- 2]
A=d —d,

if Ae [— ;r,O[v [;r,2:rr[
then 0=2r—«

if Ae [0, :r:[v[f 27:,77:[
then 0=«

Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems 21

B5: Overlapping tests

Loverlappif
dx, xdx, <0 ordy, xdy, < 0

L overlaps B L full overlaps B
ife orb are overlapped if ¢ and b are overlapped

Ll
R, overlapsR, if
L] R L L, overlapsL., orL, overlapsL,
and

Li| m, LyoverlapsL, orL, overlapsL,

Annex C: Line Intersection Methods

test of line infersection

L, and L., infersect if

dxl)(dyz 7dx2Xd.V1 #0

case of lime intersection

computation of line intersection

oblique-oblique

L Pi L

b y=mxxtp,

L y=m,xx+p,
pi x!-:p27pl
m —m,
y_:m.zxplfpzxml
m,—m
oblique-horizontal
L y=mxx+p,
By -_AP
m,
y.r:pl

—<symbols>

oblique-vertical
L
4] L,
11 x = pl

12 y:mzxerpz

Pi x,=p
Yi=mxp+p,
vertical-horizomtal

L
1 b

L, y= B

L x= Py

b x,=p

Yi=n

Annex D: Groundtruth Format

<symbol label="door1" x0="1289 66" y0="892 94" x1="1565 07"
v1="1166.71" scale="4 58" morph="5 28" direction="0.0"/>
<symbol label="door]" x0="1276.01" y0="1885.14" x1="1551 43"
v1="2158 91" scale="4 58" morph="5 28" direction="180.0"/>
<symbol label="window2" x0="4399 07" y0="77 82" x1="4622 73"
v1="12092" scale="3 62" morph="5 28" direction="0.0"/>
<symbol label="window1" x0="2438 16" y0="67.73" x1="2661 81"
¥1="128.33" scale="3.63" morph="5.28" direction="0.0"/>
<symbol label="door1" x0="985 83" y0="1136.97" x1="1259 59"
¥1="1512.39" scale="4 58" morph="5 28" direction="270.0"/>
<symbol label="door1" x0="985.31" y0="1567.07" x1="1259.07"
v1="1842 49" scale="4 58" morph="5 28" direction="270.0"/>

</symbols>

