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Abstract Coding artefacts, including ringing and block-
ing artefacts, are often introduced when document images
are compressed using the JPEG standard. These artefacts
severely impact visual perception of the image content.
Although a number of methods have been presented to deal
with coding artefacts, most of them are dedicated to natural
images; few works have investigated to work on document
content. The current work is an attempt to fill this lack. In
contrast to all the approaches taken by previous works, we
propose to post-process the coding artefacts by estimating the
quantization noise, which is not available on the decoder’s
side. The estimatednoise is thenused to reconstruct the image
with better quality. A number of experiments were conducted
to show the efficiency of the proposed method in comparison
with the state-of-the-art methods.

Keywords Compression artefacts · Artefact post-
processing · Document decompression

1 Introduction

The JPEG standard [26] has been designed for colour
natural images, and most of the methods proposed to pro-
cess JPEG artefacts are dedicated to them [6,9,13–15,29,
30,33]. Document images are mostly composed of back-
ground/foreground regions, and the transform coding, as
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used in JPEG, is unable to process them properly [31]. As
a result, lossless compression techniques and formats (e.g.
TIFF, PNG, BMP) are mainly recommended in the technical
literature for document storage [24]. However, despite the
little ability of JPEG and transform coding to preserve the
document image content, the JPEG format still constitutes
a common target to design document analysis application
[10,12,16,28]. This can be explained by two main reasons:
(i) the lack of alternatives to the standard transform coding
methods for lossy document image compression [3] and (ii)
the desirable properties of the lossy compression methods,
such as JPEG and JPEG 2000, against lossless compres-
sion methods for document images [25] (e.g. control of
the compression rate/quality, standard-compliant format, low
computational cost).

At low-bit-rate coding, JPEG-encoded images are sub-
ject to heavy distortion by blocking and ringing artefacts.
Basically, blocking artefact refers to discontinuities of pixel
values along block boundaries due to the heavy quantization
of the transformed coefficients. On the other hand, ringing
artefact refers to the adding of spurious detail along the sharp
transitions of the image (i.e. edge locations). Transform cod-
ing methods produce very efficient representations of the
low-frequency information but cause rough approximation
of the high-frequency components such as edges. This mat-
ter is of particular importance for human visual perception
of decoded document images, because document content is
mostly composed of sharp edges such as text and graph-
ics/diagrams.

To address these issues, the design of dedicated methods
to process JPEG artefacts with document images constitutes
an alternative solution. However, there has been little effort
in the literature to deal with this aspect [16,18,20,28]. The
lack of efficient methods for decompressing JPEG docu-
ment images has motivated us to carry out this work. In
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Table 1 Notation and descriptions

Notation Description

T Forward discrete cosine transform (DCT)

T −1 Inverse DCT

f (x, y) An 8 × 8 image block in the spatial domain,
x, y ∈ {0, . . . , 7}

f̂ (x, y) Estimate of f (x, y)

Q(u, v) An 8 × 8 quantization matrix, u, v ∈ {0, . . . , 7}
F(u, v) DCT coefficient block, F(u, v) = T ( f (x, y))

round(s) Round s to the nearest integer

rclip(s) Round s to the nearest integer and then clip the
result into [0, 255]

Fq (u, v) Quantized coefficients,

Fq (u, v) = round
(

F(u,v)
Q(u,v)

)

Fd (u, v) Dequantized coefficients,
Fd (u, v) = Fq (u, v)Q(u, v)

F̂(u, v) Correction of dequantized coefficients, at
beginning F̂(u, v) = Fd (u, v)

Fn(u, v) Quantization noise,
Fn(u, v) = F(u, v) − Fq (u, v)Q(u, v)

F̂n(u, v) Estimate of Fn(u, v)

f̂n(x, y) Noise caused by rclip() operator

contrast to the approaches taken in the previous attempts
[16,18,20,28], we propose in this paper a new approach that
handles coding artefacts by estimating the quantization noise,
which plays a crucial role for improving the visual quality
of decoded images. Experiments showed that the proposed
methodprovides an encouraging improvement in imagequal-
ity compared with other state-of-the-art methods.

For the rest of this paper, we provide a review of related
work in Sect. 2. Our approach is presented in Sect. 3.
Experimental results are detailed in Sect. 4. Finally, Sect. 5
concludes the paper and gives several lines for future work.
For clarity of presentation, we use the notation defined in
Table 1 throughout the paper.

2 Related work

A large number of methods have been presented in the liter-
ature to handle JPEG coding artefacts. We categorize them
by domain (i.e. natural images versus document content) and
then by the approach taken in thesemethods. Inwhat follows,
we first describe the basic steps of the JPEG coding scheme
and then review the most representative methods for JPEG
artefact post-processing.

2.1 JPEG coding scheme

In the JPEGcoding scheme [26], an input image is partitioned
into non-overlapping 8×8 blocks, each of which is then indi-

Image 
blocks 

Encoded 
image 

Decoded 
image 

Inverse DCT Dequantization Entropy 
Decoding 

DCT  Quantization Entropy 
Coding 

Encoding phase 

Decoding phase 

Fig. 1 Workflow of the JPEG encoding and decoding algorithms

vidually compressed using a process pipeline consisting of
the following steps: discrete cosine transform (DCT), quan-
tization, and entropy coding. The first step of the DCT aims
at removing spatial redundancy from the input image. Next,
the quantization step produces a compact representation of
the coefficients by dividing them by pre-defined constants
(i.e. quantization values) and then rounding the results to the
nearest integer. The last step creates an organization of the
quantized coefficients in such a way that the length of the
encoded bit stream is minimized to be efficiently transmit-
ted via a network or simply stored in an external file. On the
decoder’s side, we apply these steps in an inverse manner to
reconstruct the image. Figure 1 illustrates the workflow of
both the encoding and decoding algorithms [16,26].

Mathematically, theDCT coefficients F(u, v) of an image
block f (x, y) are defined as follows:

F(u, v) = T ( f )

= e(u)e(v)

4

7∑
x=0

7∑
y=0

f (x, y)C(x, u)C(y, v), (1)

where e(s) =
{

1√
2

if s = 0

1 otherwise
and

C(m, n) = cos

(
(2m + 1)nπ

16

)
.

The inverseDCT (IDCT) is accordingly defined to recover
the original image by:

f (x, y) = T −1(F)

= 1

4

7∑
u=0

7∑
v=0

e(u)e(v)F(u, v)C(x, u)C(y, v) (2)

In the JPEG encoding algorithm, the quantization step
takes as an input a quality parameter q (1 ≤ q ≤ 100)
with the sense that the higher the value of q, the better the
reconstructed image. Setting q = 1 corresponds to the worst
case, in which much of the image detail is lost, while q =
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(a)                                       (b) 

Fig. 2 Ringing artefact in JPEG coding algorithm (q = 9): a original
text; b reconstructed text

100 results in very good image quality for the cost of a low
compression rate. Usually, q is set in the range of [40, 80],
which often produces a desirable compromise between image
quality and compression rate.

The parameter q is used to construct a quantization matrix
Q(u, v), which is then used to quantize the DCT coefficients.
In the JPEG scheme, Q(u, v) is fixed for both encoder and
decoder for a given q. Specifically, the quantized coefficients
Fq(u, v) are created as follows:

Fq(u, v) = round

(
F(u, v)

Q(u, v)

)
, (3)

where round(·) denotes the rounding operator.
In other words, we can establish the following relation in

the quantization process:

F(u, v) = Fq(u, v)Q(u, v) + Fn(u, v), (4)

where Fn(u, v) is called the quantization noise, and Fn(u, v)

∈ [− Q(u,v)
2 ,

Q(u,v)
2 ] because of the rounding effect [16].

Because only Fq(u, v) is transmitted to the decoder, the
decoding algorithm reconstructs the image f̂ (x, y) in the
following manner:

f̂ (x, y) = rclip
(
T −1

(
F̂(u, v)

))
, (5)

where F̂(u, v) = Fd(u, v) = Fq(u, v)Q(u, v), and rclip(s)
rounds s to the nearest integer and then clips the result into
the image intensity range of [0, 255].

Although the JPEG coding algorithm produces very high
compression rates, the decoded images are subject to severe
distortion by blocking and ringing artefacts. These artefacts
can seriously impact human visual perception as shown in
Fig. 2. In considerations of existing approaches for han-
dling these artefacts, much attention has been paid to natural
images, while little effort has been devoted to document
images. These approaches are reviewed in the following sec-
tions.

2.2 Artefact post-processing for natural images

For natural images, the common approaches include maxi-
mum a posteriori estimation (MAP) [28,29,32], projection

Table 2 Characterization of different JPEG decoding approaches for
natural images

Approach Original signal model

MAP Gibbs [28,29], BS-PM [32]

POCS Neighbouring constraint sets [15,30,33]

TV Gradient magnitude sum [6–8]

SRLD Learned dictionaries [9,13,14,22,23]

onto convex sets (POCS) [15,30,33], sparse representation
based on a learned dictionary (SRLD) [9,13,14], and total
variation (TV) regularization [6–8]. Table 2 presents themain
characteristics of these methods.

Given an observed image Y (i.e. the image decompressed
by the baseline JPEG), the MAP-based approach solves the
inverse problem of finding the original image X that corre-
sponds to the maximum a posteriori probability P(X |Y ). In
doing so, differentmodels have been employed to account for
the prior distribution P(X), such as the Gibbs model [28,29]
and the block similarity prior model (BS-PM) [32]. After
building the prior models, image reconstruction is done by
an iterative process that consists of two steps: updating the
latent variables and sanity checking based on the quantization
constraint. Because the optimization algorithm must operate
on both the spatial and frequency domains for all the image
blocks of the input image, computational complexity is one
of the main issues of the MAP-based methods. In addition,
the choosing of an appropriate model to represent the prior
distribution of the original coefficients is not trivial.

In contrast to the MAP-based approach, the POCS-based
methods [15,30,33] work by building a set of constraints,
each of which is described by a closed convex set. The origi-
nal image is then estimated as the intersection of these convex
sets. The POCS-based methods are traditionally subject to
intensive computational overhead and to a variety of param-
eters used to define the constraints.

Sparse representation is also a promising approach for
handling JPEG artefacts [9,13,14]. The basic idea is to con-
struct a dictionary consisting of the basis vectors such that an
input image patch can be represented by a few vectors from
the dictionary. The dictionary can be learned using a train-
ing dataset consisting of noise-free image patches [13,14] or
using the observed image itself [9,13]. The denoising process
is then performed by minimizing an objective function. The
K-singular value decomposition (K-SVD) algorithm [1] and
the orthogonal matching pursuit (OMP) algorithm [19] are
often applied for both dictionary learning and image denois-
ing. One of the benefits of the K-SVD algorithm is that it has
the capability of discarding noise content from the corrupted
image when learning the dictionary [1,13].

Other sparsity-based techniques based on estimation of
the quantization matrix have been studied in [22]. In this
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Table 3 Characterization of
different decoding approaches
for JPEG document images

Method Text model Non-text model Treated artefacts Time cost

[28] Bimodal function GMRF model Ringing and blocking High

[18] Laplacian model Gaussian model Ringing and blocking High

[16] Not applicable Binarization Ringing Low

[20] Bimodal Laplacian Total block variation Ringing and blocking Low

work, the quantization matrix on the decoder’s side is esti-
mated by using the first few singular vectors obtained from a
singular value decomposition process. The estimated quanti-
zation matrix can be used to set parameters for compression
artefact reduction [23].

The last well-known approach is based on total variation
(TV) regularization, which has been widely applied for deal-
ing with JPEG coding artefacts [6–8]. Given an observed
image Y , the key idea of a TV-based method is to look for a
signal X which has lower variation and is not very far from Y .
This involves minimizing a proper objective function that is
often composed of a regularization term and a data fitting
term. Generally, the TV-based approach gives quite good
visual quality improvement, but its performance is highly
dependent on the choice of value for the parameter λ, which
is often varied from one image to another.

2.3 Artefact post-processing for document content

Table 3 presents themain decoding approaches for document
images. A typical compound document can be composed of
different content such as background, text, and/or graphics.
Therefore, the first step in these approaches is to classify
the image blocks into different groups such as background,
text/graphics, and picture blocks. Image reconstruction is
then performed separately for each type of block. It is worth
highlighting that all the methods discussed in the present
material are completely different from what goes under
the name ‘DjVu’, such as [4]. Specifically, all the methods
presented in the current paper can be considered as post-
processing techniques that are applied on the decoder’s side
after the input images have already been compressed. Hence,
the decoder has no information in advance about the original
image. In contrast, the DjVu method falls into the category
of a pre-processing scheme and hence has complete prior
knowledge about the clean signal, enabling it to perform both
rate-distortion optimization on the encoder’s side as well as
post-processing on the decoder’s side.

One of the most notable attempts for improving the visual
quality of JPEG documents is presented in [28]. In this work,
the authors proposed using the Gaussian Markov random
field (GMRF) model to represent the background blocks,
while the text and graphics blocks are represented as a
bimodal function that accounts for the two dominant inten-
sities of these blocks. Artefact reduction is then performed

by using aMAP-based algorithm. Their experimental results
showed a significant improvement of visual quality compared
with the baseline JPEG.

In [16], a different approach is presented, in which
the prior knowledge of the DCT coefficient distribution
is exploited. Specifically, the authors suggested using the
Laplacian and Gaussian models to represent the DCT coeffi-
cient distribution of text blocks and pictorial blocks, respec-
tively. Thesemodels are then used to compute the centroids of
the code blocks, fromwhich the reconstruction of the original
image is performedby shifting the dequantized coefficients to
these centroids. Experimental results showed a slightly better
result when comparedwith the baseline JPEG algorithm. The
highest improvement in peak signal-to-noise ratio (PSNR),
for example, for a simple text image is just 0.4 (dB) when
the image is compressed at a quite high quality (q = 40). In
addition, the estimation of parameters for the two models is
done based on the quantized DCT data and is not sufficiently
accurate.

The last method noted is presented in [18] and specifically
addresses the ringing artefact. It is based on the observation
that the ringing artefact is more dominant in background
regions than in text regions. Therefore, the first step is to
segment the image into foreground and background regions
by using the Otsu technique [17]. Ringing cleansing is then
performed by changing the values of all the noisy pixels in
the background regions to the same value, which is that esti-
mated to be themost frequent grey level of the background. In
addition, a simple morphological operator is applied to pre-
vent cleansing on the pixels in proximity to the text’s edges.
Consequently, the text pixels are not subject to ringing reduc-
tion.

Recently, an advanced document decoderwas presented in
[20], which proposed decoding background blocks directly
in the transform domain, while the text blocks are efficiently
decoded by minimizing the total probability entropy of the
image content. This total probability entropy function was
designed to account for the error cost of making the decision
for each pixel (i.e. background or foreground). Promising
results were reported in the paper, and the proposed method
is very time-efficient.

Concluding remarks: There has been much effort rep-
orted in the literature towards improving the quality of
encoded JPEG images, but most of these methods are dedi-
cated to natural images and are subject to high computational
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complexity. To the best knowledge of the authors, few meth-
ods have been presented to address the same problem for
document content. The most notable work [28] provides
a significant improvement of visual quality, but it is too
costly. The recent document decoder [20] works very well
for low-bit-rate document compression but is less effective at
intermediate and higher bit rates. On the other hand, simple
computation methods, such as [16,18], do not give suffi-
ciently satisfactory results. In this work, our aim is to propose
a novel method for improving the quality of JPEG document
imageswhen compressed at intermediate and higher bit rates.
In what follows, we describe the proposed approach in detail.

3 Post-processing of JPEG coding artefacts

We present in this section our approach for post-processing
the JPEG coding artefact. Section 3.1 introduces our appr-
oach, andSect. 3.2 presents our algorithm,which is employed
to post-process the JPEG artefacts. For clarity of presenta-
tion, we use the notation defined in Table 1 throughout the
section.

3.1 The proposed approach

As discussed in Sect. 2 (Related work), because of the omis-
sion of quantization noise, the reconstructed image is subject
to different coding distortions, mainly blocking and ringing
artefacts. The lower the value of parameter q, themore severe
the distortion. To address this issue, we propose to estimate
the quantization noise for post-processing of the decoded
images. In this way, the quality of the JPEG images will be
dependent on the accuracy of the quantization noise estima-
tion process. Unfortunately, as we have no prior knowledge
of either the quantization noise or the original image, the
estimation of quantization noise must rely mainly on the
dequantized DCT coefficients Fd(u, v). In the next subsec-
tion, we present an algorithm to tackle this task.

The basic idea of our approach is based on the observation
that if we know Fn(u, v), we can reconstruct a better quality
image f̂ (x, y), and vice versa. If f̂ (x, y) is given, we can
easily compute Fn(u, v) by applying the quantization step
(see Eq. 4). The workflow of our approach is depicted in
Fig. 3. As in the JPEG document decoders from the literature
[16,20,28], our first process is to classify theDCTblocks into
text and non-text blocks. For smooth blocks, quantization
noise is almost zero or close to zero. Hence, it is unnecessary
to handle noise compensation for smooth blocks. For non-
smooth blocks, an expectation maximization (EM) process
is employed to reconstruct the original text blocks.

To be more specific, if we again perform encoding of the
image f̂ (x, y) with the same quantization matrix Q(u, v),
we would expect to extract some approximation F̂n(u, v) of

Image 

DCT data 

Smooth 
blocks 

Text 
blocks Block 

classification 

Dequantized DCT 

Decoded 
blocks 

Clipping 
noise 

Estimated quantization 
noise 

Combination 

Decoded image 

Inverse DCT 

DCT 

EM-like 
process 

Fig. 3 Workflow of the proposed approach

the quantization noise. This is easily seen because f̂ (x, y) is
supposed to be close to the original image f (x, y). Hence,
F̂n(u, v) is expected to resemble Fn(u, v). The extracted
noise is then used to enhance the quality of the image f̂ (x, y).
After that, the whole process can be repeated a number of
times until the desired result is obtained. Formally, we can
derive the following expression from Eq. (5):

f̂ (x, y) = T −1
(
F̂(u, v)

)
+ f̂n(x, y), (6)

where f̂n(x, y) denotes the clipping noise caused by the
rclip(·) operator. By applying DCT to the left term of (6),
we obtain:

T
(
f̂ (x, y)

)
= T

(
T −1

(
F̂(u, v)

)
+ f̂n(x, y)

)
. (7)

Based on the DCT given in Eq. (1), it is straightforward
to derive the additive property of the DCT for two functions
f (x, y) and g(x, y) as follows:

T ( f + g) = e(u)e(v)

4

7∑
x=0

7∑
y=0

f (x, y)C(x, u)C(y, v)

+ e(u)e(v)

4

7∑
x=0

7∑
y=0

g(x, y)C(x, u)C(y, v)

= T ( f ) + T (g). (8)

Hence, we can simplify Eq. (7) to the following expres-
sion:

T
(
f̂ (x, y)

)
= T

(
T −1

(
F̂(u, v)

))
+ T

(
f̂n(x, y)

)

= F̂(u, v) + T
(
f̂n(x, y)

)

= F̂(u, v) + F̂n(u, v). (9)
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Fig. 4 a A test image used in our study; b mean square error (MSE) between original quantization noise and estimated noise against the coding
quality; c MSE between original quantization noise and estimated noise against parameter K for three coding qualities

Here, we denote F̂n(u, v) = T
(
f̂n(x, y)

)
as the estimate of

quantization noise.
Combining (4) and (9), we can compute the mean square

error (MSE) between the original image and the recon-
structed one in the frequency domain as follows1:

MSE
(
T ( f ), T ( f̂ )

)
= 1

N
‖T ( f ) − T ( f̂ )‖22

= 1

N
‖Fn − F̂n‖22

= MSE
(
Fn, F̂n

)
, (10)

where N is the total number of samples in f . Here, MSE is
employed to simply justify the difference between the orig-
inal image and the reconstructed one. It is a common score
and is closely related to the peak signal-to-noise ratio (PSNR)
[5,16]. According to Parseval’s theorem and because of the
unitary property of the DCT [5,16,21], MSE in the trans-
formed domain behaves in the same manner as it does in the
spatial domain. Hence, the closer f̂ is to f , the lower the
MSE is. As a result, the estimated noise F̂n will approach the
original noise Fn depending on how close f̂ is to f . When
the original image is compressed at very low bit rates (e.g.
< 0.1 bpp), the reconstructed image f̂ would be far from
f , and thus, the estimate of the quantization noise would be
not sufficiently accurate. However, for higher bit rates, the
decoded image is supposed to be close to the original one.
Consequently, we can make use of this fact to estimate F̂n as
the compensation of quantization noise for the decoder.

Figure 4b shows the fitness of quantization noise estima-
tion as an MSE function of coding quality (i.e. parameter
q). We compute the MSE between Fn and F̂n by using Eq.
(10). As expected, the error greatly decreases as parameter
q increases. Given a sufficiently high value of q (q > 40,
for example), we can assume that the estimated noise F̂n

1 The indexes are removed for simplification.

is accurate enough for optimizing the decoding process. In
practice, the proposed algorithm performs very well even for
much lower values of q (e.g. q = 20) as we will see in the
experimental section.

3.2 The post-processing algorithm

To support our approach, we propose a three-step algorithm
as shown in Fig. 3, including block classification, text block
processing, and combination. The block combination step
results in a simple combination of text and smooth blocks
in the spatial domain. We detail here the block classification
and the text block treatment.

Block classification: Compound documents can be com-
posed of text, graphics, pictures, and background infor-
mation. Optimal algorithms for decompression of JPEG
documents [16,28] often perform a block classification step
to cluster the image blocks into different categories such as
text blocks, pictorial blocks, and background blocks. In this
work, we simply classify the image blocks into two classes:
smooth blocks (i.e. areas of highly correlated information)
and non-smooth blocks (i.e. text blocks, graphics, pictures).
Artefact filtering is carried out only for non-smooth blocks.
For block classification, we employ a simple and efficient
criterion based on AC energy, which is computed as the sum
of the squares of the AC coefficients of the block [11].

For a smooth block, the AC energy is fairly low because
most of the AC coefficients are zero. In contrast, the AC
energy of a non-smooth block is relatively high. Conse-
quently, block classification is done by thresholding the AC
energy. The block classification thus turns into a traditional
binary classification problem with a precision/recall evalua-
tion protocol. In our context, it is preferable not to miss the
true text/graphics blocks (i.e. true positives) because these
blocks account for the foreground content that characterizes
the main information of a document. It does not matter if
some smooth blocks aremisclassified as text/graphics blocks
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(i.e. false positives) except that this will increase the compu-
tational overhead.

Post-processing of text blocks: As explained previously,
the treatment of text blocks is performed in an EM fashion
in which the two variables f̂ (x, y) and F̂n(u, v) recursively
update each other. During each iteration, each one updates
and enhances the other. The process is repeated a specified
number of times or until a satisfactory result is obtained.
This process takes as an input the quantized data Fq(u, v)

of each non-smooth block. Its output is the decompressed
image with higher quality. It is assumed that the quantization
matrix Q(u, v) is known at both encoding and decoding. The
main step of the process is outlined as follows.

For each non-smooth block:

1. Initialization:

– Set F̂ (0)
n (u, v) = 0 for each (u, v) ∈ [0, 7] × [0, 7].

– Set F̂ (0)(u, v) = Fd(u, v) = Fq(u, v)Q(u, v).

2. Loop: for each iteration t = 1, . . . , K :

– Update f̂ (x, y) for given F̂n(u, v) using Eq. (5):

f̂ (t)(x, y) = rclip
(
T −1

(
F̂ (0)(u, v) + F̂ (t−1)

n (u, v)
))

.

– Update F̂n(u, v) for given f̂ (x, y) using Eq. (9):

F̂ (t)
n (u, v) = T

(
f̂ (t)(x, y)

)
− F̂ (t)(u, v),

where

F̂ (t)(u, v) = round

⎛
⎝T

(
f̂ (t)(x, y)

)

Q(u, v)

⎞
⎠ Q(u, v).

3. Output: f̂ (K )(x, y) is the optimal decoding block.

Here, it is unnecessary to explicitly compute the estimated

noise by F̂n(u, v) = T
(
f̂n(x, y)

)
. Instead, F̂ (t)

n (u, v) is

computed by performing requantization of the currently fit-
tingDCTdata to save processing time in the iteration process.
Figure 4c shows the fitness of quantization noise estimation
as an MSE function of the parameter K (i.e. the number of
iterations). We compute the MSE between Fn and F̂n for all
the non-smooth blocks of the input image in Fig. 4a. The
parameter q is set to 20, 30, and 40 in this test. As can be
seen, the MSE for all three cases is reduced quickly at early
iterations (i.e. K < 10) and gradually decreased after that.
We can also see that the MSE in the case q = 40 is much
lower than that in the others (i.e. q = 20 and q = 30) for all
the iterations.

In practice, we can generalize the computation of F̂ (t)

(u, v) in the decoding algorithm by the following expression:

F̂ (t)(u, v) = round

⎛
⎝T

(
f̂ (t)(x, y)

)

Q̂(u, v)

⎞
⎠ Q(u, v), (11)

where Q̂(u, v) is chosen to be close to Q(u, v). Note that
in the JPEG scheme [26], the quantization matrix Q(u, v)

is defined as a function of parameter q (1 ≤ q ≤ 100) as
follows:

Q(u, v; q) =
⎧
⎨
⎩
round

(
50Q0(u,v)

q

)
if q < 50

round
(
2(100−q)Q0(u,v)+40

100

)
if q ≥ 50

,

(12)

where Q0(u, v) is the standard quantization matrix given as
follows:

Q0(u, v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4 Experimental results

4.1 Experimental settings

4.1.1 Comparison methods

For comparative evaluation, we selected four representa-
tive methods dedicated to post-processing JPEG artefacts in
the literature. These methods are described in Table 4 and
include the classical JPEG decoder [26], the morphological
artefact post-processing method [18] (‘Mor’ for short), the
total variation (TV) method [6], and dictionary-based sparse
representation (‘Dic’ for short) [9]. Here, the JPEG decoder
serves as a baselinemethod for all the other systems. TheMor
method is specifically designed to work on document images
and thus was deemed useful for our subjective comparison.
The last twomethods (i.e. TV andDic)were selected because
they are considered to be the state-of-the-art methods dedi-
cated to natural images. Hence, it would be interesting to see
how well they perform on document images.

As evaluation metrics, peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) [27] were selected for per-
formance evaluation. These metrics have been commonly
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Table 4 Methods for comparative evaluation

Method Description Code

JPEG [26] Classical JPEG decoder C++

Mor [18] Dedicated to document images C++

Our method Dedicated to document images C++

TV [6] Dedicated to natural images MATLAB

Dic [9] Dedicated to natural images MATLAB

Table 5 Datasets used for evaluation

No. Dataset # Images Description

1 MAR-Full 293 Biomedical journal
documents (300 dpi)

2 MAR-Text 536 Text zones of MAR-Full
(300 dpi)

3 MAR-LowRes 293 Low resolution (150
dpi) of MAR-Full

4 ADM-Doc 684 Administrative
documents (roughly
200 dpi)

used for quality assessment of JPEGartefact post-processing;
see [6,9,16,28] for examples. Detailed descriptions of these
metrics are given in their corresponding references.

4.1.2 Datasets

Table 5 describes the four datasets used for our exper-
iments. We selected a public dataset, namely Medical
Archive Records (MAR), from the U.S. National Library
of Medicine.2 This dataset is composed of 293 real docu-
ments that have been scanned at 300-dpi resolution in TIF
format, covering different types of biomedical journals. The
average image size is 2544 × 3296. A common property of
these images is known as an unbalanced distribution between
background (homogeneous regions) and foreground (text,
graphics, etc.). Thismay lead to bias in computing the evalua-
tion scores because all of the selected criteria are pixel-based
metrics. Therefore, we created another dataset by extracting
all the text zones from the full MAR dataset. This process
resulted in 536 text zones, each of which is quite balanced in
density between foreground and background. For clarity, we
denote this dataset as MAR-Text and the original dataset as
MAR-Full.

To obtain deep insights into the performance of all the
methods, we also created a low-resolution version of the
MAR-Full dataset. The goal is to study the robustness of
the methods when images are acquired by low-resolution
devices. To this end, we converted the images in the MAR-

2 https://www.nlm.nih.gov/.

Full dataset to images having a resolution of 150 dpi. The
resulting dataset is termed MAR-LowRes. In addition to
these public datasets, we selected an internal dataset, ADM-
Doc, which is a subset of the Itesoft2 dataset used in [2]. This
dataset contains 684 administrative documents scanned at an
intermediate resolution of approximately 200 dpi.

There is a computational issue with the TV and Dic meth-
ods. Because of the high computational complexity of the
optimization algorithms designed in these methods, it is too
costly to run them on full datasets (e.g. approximately 40–50
min for decompressing an image of size 2544×3296). There-
fore,wewere not able to run thesemethods on all the datasets.
Instead, these two methods were evaluated on a small subset
consisting of 10 images randomly selected from the MAR-
Text dataset. The number of iterations was set to 50 for both
the TV and the Dicmethods, while the other parameters were
kept at their defaults.

4.1.3 Parameter settings

There are two parameters used in our algorithm. The first,
threshold TAC, is used to classify a block as a smooth or
non-smooth block. In our experiments, we set TAC = 25,
although it was found from our observations that any value
of TAC in [5, 50] will give little change in performance. The
second threshold, K , is the number of iterations used in our
post-processing algorithm. Setting a high value for K will
produce very good decoding quality at the cost of raising
computational overhead. Here, we set K = 15, and higher
values of K (K > 20) will also be considered in order to
determine themarginal performance of the proposedmethod.
For each dataset, we performed compression and decom-
pression for varying values of parameter q in the range of
{10, 15, 20, 25, 30, 35, 40, 45}. The final scores were then
averaged via the quality parameter q. For each value of q,
the quantizationmatrix was generated as Q(u, v; q) by using
Eq. (12), and then the corresponding Q̂(u, v) was chosen by
Q̂(u, v) = Q(u, v; q + 0.5) to compute the estimated quan-
tization noise.

4.2 Results and discussion

Figure 5 shows the PSNR scores on four datasets for three
methods: our method, Mor, and JPEG. The first remark we
can make here is that all three methods behave quite simi-
larly on all the datasets except MAR-LowRes. Specifically,
the proposed method performs best on all the tests with a
significant gap of visual quality (i.e. PSNR) compared with
the JPEG standard and the Mor method. On average, our
method, for example, gives a PSNR improvement of 6.2685
(dB), whereas the Mor method offers an improvement of
2.4301 (dB) over the baseline JPEG when each is applied to
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Fig. 5 PSNR scores of three methods (our method, Mor, and JPEG) on four datasets

theMAR-Full dataset. The same observation can be deduced
from the results on the MAR-Text and ADM-Doc datasets.

As briefly noted previously, the performance of the Mor
method is significantly decreased when applied to the MAR-
LowRes dataset (Fig. 5c). This time, the Mor method is
roughly in the same PSNR interval as the baseline JPEG. On
the other hand, the proposed method still outperforms the
others up to about 2.1 (dB) on average. The reason behind
this situation is attributed to the fact that when the images
are down-scaled, the resulting images are distorted by resiz-
ing effects (e.g. grey values around the text edges due to
interpolation, blurriness). Although the proposed method is
impacted in part by these additional distortions, it still main-
tains a high level of performance compared with the other

methods. This confirms the robustness and efficiency of the
proposed method.

There is a slight difference in the results between the
MAR-Text and MAR-Full datasets (Fig. 5a, b). The average
PSNR scores of the three methods on MAR-Text is approx-
imately 3.8 (dB) lower than those for the MAR-Full dataset,
although the former dataset is strictly extracted from the lat-
ter dataset. The main reason is the unbalanced distribution
between foreground and background for the images in the
MAR-Full dataset. When applied to the MAR-Text dataset,
the image content is quite balanced between text and back-
ground, while the artefacts are focused on the transitions of
background and foreground. The PSNR scores are thus less
impacted by the background information.
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Fig. 6 Visual results of three
methods: a JPEG-encoded text
image (q = 20); b original text
for the portion in (a); c
magnified version of JPEG
result; d result using our
method; e result using Mor
method (a) 

(b)  (c) (d) 

Missing 
bar

(e) 

Figure 6 illustrates a visual example of the results obtained
by the three methods. Figure 6a shows a text image that
is decoded by the JPEG standard with a coding quality of
q = 20. Figure 6b, c shows the magnified versions of the
original text and the JPEG decoding result, respectively, for
the clipped portion in Fig. 6a. Figure 6d,e shows the results
of our method and of theMor method for the clipped portion,
respectively. As can be seen, both the Mor method and our
method are able to remove the ringing artefact, and the results
obtained are quite close to the original text in Fig. 6b. How-
ever, the Mor method tends to remove true edges because of
the binarization effect. Figure 6e, for example, shows that
the horizontal line of the character ‘t’, marked by the dashed
circle, has been partially removed, while this edge line is pre-
served in our result. The same result was also observed for
the Mor method in the original paper (Fig. 6a in [18]).

Figure 7 shows a comparison of the PSNR scores of five
methods: Mor, JPEG, TV, Dic, and the proposed method.
Here, we compute PSNR for a small subset consisting of
10 images randomly selected from the MAR-Text dataset.
Basically, the performance of the Mor method, JPEG, and
our method is the same as that presented in Fig. 5b. Interest-
ingly, the TV method performs quite well and even gives a
slightly better result than theMormethod. On the other hand,
the Dic method works less effectively and only slightly out-
performs the basic JPEG algorithm. All things considered,
the proposed method performs best and gives a substantial
PSNR improvement over all the other methods.

Table 6 shows the behaviour of the five methods accord-
ing to the SSIM metric. In this test, all the methods were
evaluated on the MAR-Text dataset, and the SSIM scores
were computed at four different coding qualities (i.e. q ∈
{10, 15, 20, 25}). In addition, we have provided the results
of our method (‘Ours’ for short) using two different settings
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Fig. 7 PSNR scores of five methods: our method, Mor, JPEG, TV, and
Dic

for the parameter K (i.e. the number of iterations used in
our post-processing algorithm). Generally, the SSIM results
are consistent with the PSNR scores as presented previously
for all the methods. Specifically, the JPEG decoder is out-
performed by the other four methods, whereas the proposed
method gives the best results for all the coding qualities. It can
be also observed that the performance gaps betweenMor, TV,
and the proposed method are less than those using the PSNR
score. This is partially explained by the intrinsic characteris-
tics of eachmetric. In addition, theSSIMmetric is designed to
work on scene or greyscale images.When working on binary
images, as in our case, the structural properties of the SSIM
metric are not fully exploited. Table 6 also reveals that the
proposed method works more effectively with higher values
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Table 6 Performance of five methods using structural similarity
(SSIM) metric

Method Coding quality (q)

q = 10 q = 15 q = 20 q = 25

JPEG [26] 0.8795 0.8972 0.9145 0.9230

Mor [18] 0.9491 0.9635 0.9751 0.9818

TV [6] 0.9423 0.9615 0.9761 0.9827

Dic [9] 0.9093 0.9253 0.9402 0.9536

Ours (K = 15) 0.9541 0.9652 0.9784 0.9843

Ours (K = 35) 0.9632 0.9765 0.9862 0.9895

Table 7 Post-processing times (ms)

Image size Mor TV Our method

K = 15 K = 35

512 × 512 14 588 40 100

1600 × 1200 68 4459 350 780

4200 × 2800 430 28,257 1220 2580

of parameter K . However, increasing the value of K forces
the proposed method to incur an extra overhead of computa-
tional cost. Details of this aspect are further investigated in
the following subsection.

4.3 Running time analysis

This section provides an evaluation of the processing time
of the methods studied. All the tests were run on a CPU
machine3 without parallel implementation. As the TV and
Dic methods are implemented in MATLAB, it is difficult to
directly compare these methods with the others. In general,
these two methods have been known to incur high overhead
for computational complexity; see [6,9] for examples. For
reference purposes, we have reproduced here the processing
time of the TV method (C++ code) reported in the original
paper [6]. For our method, we provide the running time for
two settings of parameter K (i.e. K ∈ {15, 35}) to determine
the time complexity of the post-processing algorithm.

The results are presented in Table 7 for different image
sizes. As we can see, the Mor method works very effi-
ciently because it is a non-iterative approach. The TVmethod
and our method are more computationally intensive because
of the recursive process used in the post-processing algo-
rithm. However, the computational overhead of the proposed
method is less than that of the TVmethod. Our method (with
K = 15) is roughly 12 times faster than the TVmethod. This
result is encouraging when considering the gain in the visual
quality performance of the proposed method.

3 Windows 7 (64-bit), Intel Core i7-4600U (2.1 GHz), 16 GB RAM.

5 Conclusions

In this paper, we have presented a new approach for post-
processing JPEG coding artefacts for document images. The
key idea is to produce a compensation for quantization noise
when post-processing the JPEG documents. This is done by
an expectationmaximization algorithm that recursively com-
putes the quantization noise and then reconstructs the image.
We have conducted a number of experiments to show the
robustness and efficiency of the proposed approach. One of
the major advantages of the proposed method is that, while
it can to a large extent remove the ringing artefacts, it does
not smooth out true edges as other methods do (e.g. the Mor
and TV methods). Although the proposed approach works
well for images that contain high variation of document con-
tent (e.g. binary text and graphics), it is less effective for
images that consist of content with little variation, such as
complex greyscale or colour document images. This would
be an interesting extension of the current work in the future.
Furthermore, noise estimation in the DCT space would be a
good idea to speed up the iteration process. Finally, extension
of this work to colour document images should be investi-
gated as well.
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