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Fast RT-LoG operator for scene text detection

Cong Nguyen Dinh · Mathieu Delalandre · Donatello Conte · The Anh Pham

Abstract This paper proposes a new real-time Laplacian of
Gaussian (RT-LoG) operator for scene text detection. This
method takes advantage of the Gaussian kernel distribution
in the spatial/scale-space domains and kernel decomposition
with the box filtering method. Two levels of optimization
are given. The first level of optimization within the spa-
tial domain is obtained by box mutualization. The second
level of optimization within the spatial/scale-space domains
is performed using a mixed method for box selection. The
proposed RT-LoG operator is evaluated on the ICDAR2017
RRC-MLT dataset in terms of robustness and time process-
ing. The results are compared with the state-of-the-art real-
time operators for scene text detection. The proposed opera-
tor appears as the top performance with the best trade-off be-
tween robustness and time processing. The proposed opera-
tor can support approximately 30 frames per second (FPS)
up to the Quad-HD resolution on a regular CPU architecture
with a low-level latency. In addition, the proposed operator
can support the full pipeline for scene text detection. Our
system is competitive with the top accurate systems of the
literature while processing with a difference of two orders
of magnitude in term of processing resources.
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1 Introduction

Scene text detection in natural images is an active topic in
the image processing and pattern recognition fields. Recent
contributions are discussed in surveys [1, 2], and the inter-
national contest dedicated to this topic is detailed in [3]. The
fundamental and earliest problem investigated in the litera-
ture is to make text detection methods robust against vari-
abilities and deformations of text entities in images, which
covers different aspects, such as texture and illumination
changes, the different scales of characters, the background
/foreground transitions, as shown in Fig. 1.

However, another core problem is to adapt the methods
to be time-efficient and real-time, which involves an almost
complete reformulation of the methods [4]. The design of
real-time methods and systems is a well-known topic in the
literature [5]. There are two points, that distinguish the real-
time systems from another kind of systems, that are timeli-
ness and predictability.

Predictability is related to the design of methods with
sharp upper and lower bounds on the execution times. The
execution times of methods are guaranteed in order to pre-
vent from the trashing cases and missed deadlines within the
system. To be time-efficient, most of the image processing
algorithms apply a pruning strategy that is not suitable with
the predictability [6]. Hence, predictability requires to create
specific methods with a trade-off between the optimization
and the variation of the execution times.

The timeliness property looks for the respect of a dead-
line which describes the maximum time among the execu-
tion times. The results of the system have to be accurate
not only in their values but also in the time domain. For the
camera-based applications, the deadline depends on the kind
of applications and expected frame rate per second (FPS),
the image resolution and coding, the hardware architecture
and the complexity of the given algorithm.
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Fig. 1: Examples of text in natural scenes with specific
degradations (a) blurring (b) different sizes of character (c)
illumination changes.

To be time-efficient, a two-stage strategy is applied in
the literature: localization followed by text verification [1,
4]. Localization determines the positions of the candidate
text elements in the image at a low complexity level. The
main goal is to process with strong recall to not miss text
elements. Then, text verification specifies which candidate is
text or not. It filters out the false positives using verification
procedures and/or machine learning methods.

A core component of the two-stage strategy is the local
operator. The local operator extracts candidate keypoints at
the locations of text elements in an image. Different time-
efficient operators have been proposed in the literature for
scene text detection, such as the FASText [7], the Canny
Text [8], the Stroke Width Transform (SWT) [9], and the
BSV [10]. However, most of time-efficient methods are dom-
inated by the Maximally Stable Extremal Regions (MSER)
operator [11, 12]. All these operators can fit with the time-
efficient and real-time requirements. However, they are sen-
sitive to noise and/or or scale-dependent. They are little ac-
curate as an average.

The recent trend in the literature is to process with end-
to-end deep architectures and systems [2]. However, these
systems are time-consuming approach that is minimally com-
patible with a low-level energy consumption requirement on
the low-cost hardware architectures [13]. In addition, GPU-
based processing is not compatible with real-time constraints
due to the highly parallel computation and memory trans-
fer [14]. The GPU/CNN based systems are more dedicated
to offline recognition processing on a workstation and/or a
server [15, 16].

Thus, finding an accurate method and system, fitting with
the time-efficient and real-time constraints, is still an open
problem in the literature. We address this issue in this paper.
To design an accurate, time-efficient and real-time system
we have considered a two-stage strategy while designing a
new real-time operator. Recently, the Laplacian of Gaussian
(LoG) operator with a time-efficient and predictable imple-
mentation has received attention [17]. We call this operator
RT-LoG for short. Adaptation of this operator to scene text
detection, in order to make it scale-invariant, has been inves-

tigated in [18, 19]. In this paper, a novel RT-LoG operator is
proposed. Our contributions are follows.

• A state-of-the-art RT-LoG operator for scene text detec-
tion is discussed. Fast spatial filtering is obtained with
a difference of Gaussian (DoG) function approximation
and box filtering for Gaussian convolution. Following
the way, an estimator cascade methodology for optimiza-
tion is deployed. No pruning is applied and the process-
ing is achieved with sharp upper and lower bounds on
the execution times for predictability. Adaptation to text
detection is given by a scale-space representation with
the stroke model.
• A novel RT-LoG operator is proposed. This operator ap-

plies a two-step process for box selection within the spa-
tial and spatial/scale-space domains. The overall approach
results in a main optimization of the RT-LoG operator
for scene text detection.
• A performance evaluation is performed on the ICDAR

2017 RRC -MLT dataset in terms of robustness and time
processing. The results are compared with the state-of-
the-art time-efficient and real-time operators for scene
text detection. The proposed operator appears to have the
performance with the best trade-off between accuracy
and speed.
• Additional experiments are performed to evaluate the

frame per second (FPS) rates supported by the opera-
tor using a multithread/multicore support. These experi-
ments are performed on a regular CPU architecture with
standard resolution videos. The proposed RT-LoG oper-
ator is able to process at nearly 30 FPS up to the Quad-
HD resolution on a regular CPU architecture with a low-
level latency.
• Our operator is embedded into a full pipeline for scene

text detection. Compared to other operators in the litera-
ture, the proposed RT-LoG operator provides a meaning-
ful scale-space and contrast information that can drive
the full pipeline for detection. The system performs as
one of the strongest detection accuracy of the literature
with the support of the operator. It requires in addition
less than two orders of magnitude for the processing re-
sources compared to the competitors of the literature.

The remainder of this paper is organized as follows. In
section 2, the state-of-the-art is presented. Section 3 details
our method. The performance evaluation is discussed in sec-
tion 4. Finally, conclusions are presented and some perspec-
tives are proposed in section 5. For convenience, Table 1
gives the meaning of the main symbols used in this paper.

2 State-of-the-art

In this section, we briefly cover the family of the LoG op-
erator. Section 2.1 introduces the mathematical formulation
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Table 1: The main symbols used in the paper.

Symbols Meaning Symbols Meaning
Continuous/discrete domain Φ(k) A function to control the slope in the stroke model

f (x,y) An image function/raster f (x) The function for spatial / scale-space selection
g(x,y) A Gaussian function/operator Discrete domain
Π, ‖Π‖ Π a step function / box filter , ‖Π‖ the radius of the box O Complexity

w Stroke width parameter with w ∈ [wmin,wmax] N Size of the image
a Signal amplitude ω2 Size of operator (width × height)

α,β,γ Some parameters i, j, l i, j matrix/vector indexes, l predefined indexes
⊗ The global convolution product [σ0, . . . ,σm] A filter bank including (m+1) discrete filters

Continuous domain ̂ Estimator
σ The scale of the Gaussian and LoG functions n Number of box filters

gxx (either y) Second partial derivative of the g function λ,δ Weighting parameters
∇2 Laplacian A,B,C The matrices for the global products
r Radius of a region P The size of matrices
k Parameter to control approximation between LoG, DoG B0,C0,B1,C1 The subsets of the A,B,C matrices

σ̃,kσ̃ The scales of the DoG operator [Lσ0 , . . . ,Lσm ] The global convolutions obtaining on [σ0, . . . ,σm]
σs The optimum scale of the LoG operator for the stroke model ◦ Element-wise multiplication

h, hs, he Response with the stroke model, hs / he the stroke / edge optimums s0,s1,s2,s3 Vertices of an arbitrary rectangle within integral image
ϖ The stroke model function σs = ϖ(w) MSE Average of mean square error

Fig. 2: The pipeline for LoG operator.

of the operator and presents method for adaptation with text
elements in the scene of a text image. Sections 2.2 and 2.3
provide two levels of optimization based on spatial/scale-
space domains, respectively.

2.1 Introduction

The LoG operator is defined as the Laplacian of Gaussian
function and is derived from the Gaussian function. The Gaus-
sian function is given in Eq. (1) in a multivariate form with
a vectorial notation.

g(p|µ,Σ) = 1

(2π)
α

2
√
|Σ|

e−
1
2 (p−µ)T Σ−1(p−µ) (1)

In the two-dimensional case, p is a point, and µ is the
mean. Σ is the diagonal covariance matrix with Σ−1 the in-
verse and |Σ| is the determinant, where the σx and σy pa-
rameters inside Σ are the standard deviations for dimensions
x and y, respectively. α= 2 is a weighting parameter, consid-
ering σx = σy = σ, µ = 0 and a scalar notation, the Gaussian
function Eq. (1) becomes Eq. (2),

g(x,y|σ) = 1
2πσ2 e−

x2+y2

2σ2 (2)

where x and y are the spatial coordinates.

The LoG operator is a compound operator resulting from
the Laplacian ∇2 of g(x,y|σ), as noted Eq. (3),

∇
2g(x,y|σ) = gxx(x,y|σ)+gyy(x,y|σ)

=
1

2πσ4

(
x2 + y2

σ2 −2
)

e

(
− x2+y2

2σ2

)
(3)

where gxx(x,y|σ) and gyy(x,y|σ) are the second order deriva-
tive of Gaussian functions based on the dimensions x,y.

The LoG-filtered image h(x,y) Eq. (4) is obtained from
the global convolution ⊗ between the initial image f (x,y)
and the LoG operator ∇2g(x,y|σ).

h(x,y) = ∇
2g(x,y|σ)⊗ f (x,y) (4)

As shown in Fig. 2, LoG filtering must be embedded
in a full pipeline to design an end-to-end operator. The re-
sponse of the LoG filtering Eq. (3) is highly dependent on
the σ parameter. To deal with this problem, the standard ap-
proach is to handle the operator in the scale-space domain
with a filter bank [σ0, ...,σm] with σ0...σm as the scale pa-
rameters. The maximum response is then selected from the
LoG-filtering images at the different scales (step C). After
that, the final keypoints are obtained with a non-maximum
suppression (NMS) and a thresholding step (steps D, E). The
final keypoints are expressed as the centroid coordinates and
a radius with a normal value r =

√
2σ for a circular blob.

The operator shown Fig. 2 can be made real-time with
optimization in the spatial and scale-space domains (steps
A, B of Fig. 2). This process requires specific approaches
for the fast spatial filtering and an efficient scale-space rep-
resentation. We detail these issues in the following sections.
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2.2 Fast LoG Filtering

The strategy for fast LoG filtering is to apply an estimator
cascade methodology, such as LoG ≈ DoG ≈ D̂oG where
DoG and D̂oG are two operators to approximate the LoG
operator. LoG filtering is not separable; it is therefore time-
consuming at complexity O(Nω2) with N and ω2, which are
the image and mask sizes, respectively. The first level of ap-
proximation is acquired via reformulation of the LoG func-
tion into the DoG function.

The DoG function is inspired from the heat equation
[20]. In Eq. (5), normalization of the LoG function Eq. (3)
with a scale parameter σ gives the derivative of the Gaus-
sian function in the scale-space domain. The left term of
Eq. (5) can be reformulated as a local derivative of Gaus-
sian function ∂g(x,y|σ)

∂σ
with k as a parameter and a step offset

(k− 1)σ. The approximation of the derivative in this equa-
tion improves as (k−1)σ goes to 0 when k comes to 1.

σ∇
2g(x,y|σ) = ∂g(x,y|σ)

∂σ

≈ g(x,y|kσ)−g(x,y|σ)
(k−1)σ

(5)

With the reformulation of Eq. (5), the LoG function can
be approximated by means of the DoG function, as noted
Eq. (6),

g(x,y|kσ)−g(x,y|σ)≈ (k−1)σ2
∇

2g(x,y|σ)

=
1

2π

(
1

(kσ)2 e

(
− x2+y2

2(kσ)2

)
− 1

σ2 e

(
− x2+y2

2σ2

))
(6)

with a normalization factor (k−1)σ2.
The σ parameters within the LoG and DoG functions

in Eq. (6) are equal when k goes to 1. Otherwise, if k > 1,
a slightly gap appears between the parameters. We obtain
σ ≈ σ̃, where σ̃ is the parameter used in the DoG function.
The relation between σ, σ̃ is given in Eq. (7). For the sake of
notation, in the remainder of the paper, we define the scale
parameters of the DoG operator as kσ̃ and σ̃.

σ
2 = 2

(
k2

k2−1
lnk
)

σ̃
2 (7)

The DoG function is computed with two Gaussian fil-
ters. With convolution, Gaussian filtering can be implemented
in a separable manner at a complexity O(Nω) with N and ω2

as the image and mask sizes, respectively. When ω is large,
it is still a time-consuming task. Several methods have been
proposed in the literature to accelerate Gaussian filtering and
make it independent of the filter size at a complexity O(N).
These methods attempt to improve computational efficiency
in the expense of accuracy. These methods referred to as fast
Gaussian filtering methods and support the design of a dif-
ference of Gaussian estimator D̂oG.

Table 2: Time optimization and accuracy of fast Gaussian
methods: (SII) Stacked Integral Image, (VYV) Vliet Young
Verbeek, (KII) Kernel Integral Image, (TCF) Truncated Co-
sine Functions, (+++) best case, (+) medium case.

Category Method Time optimization Accuracy
Box ++ +++

Box filter SII +++ ++
KII + +

Deriche ++ ++
Recursive filter TCF +++ +++

VYV + ++

A survey with a performance evaluation can be found
in [21, 22]. Two main categories are investigated including
the box and recursive-based filters. Selection of a suitable
method depends on the application use-case, which is sup-
posed to be solved in terms of a good trade-off between
speed and accuracy. Table 2 provides a global comparison
of the methods.

In this paper, we prefer to employ the box filtering method
Eq. (10), which is considered one of the most accurate meth-
ods for stroke detection [19] and is competitive with recur-
sive filters [21, 22]. The box filtering method sums up the
averaging filtering to approximate a Gaussian filter ĝ(x,y|σ),
as noted in Eq. (8) with a desired standard deviation,

ĝ(x,y|σ) =
n

∑
i=0

λiΠi(x,y) (8)

where Πi(x,y) is a box filter function with a predefined size
and a value 1 if (x,y) are located inside the box or 0 other-
wise. The λi parameters weight the box filters Πi(x,y). n+1
is the number of box filters.

From Eq. (8), it is possible to approximate the DoG op-
erator by the D̂oG operator in Eq. (9) with two sets of box
filter function. As the k parameter in Eq. (5) is supposed to
be low1, a similar number of filters can be applied to esti-
mate the two Gaussian kernels,

D̂oG = ĝ(x,y|kσ̃)− ĝ(x,y|σ̃)

=
n

∑
i=0

λiΠi(x,y)−
n

∑
j=0

λ jΠ j(x,y)
(9)

where λi,λ j are the weighting parameters, n+1 is the num-
ber of boxes. kσ̃, σ̃ are the scale parameters.

The DoG-filtered image is approximately achieved by
global convolution Eq. (10) between the input image f (x,y)
and the D̂oG operator,

(ĝ(x,y|kσ̃)− ĝ(x,y|σ̃))⊗ f (x,y)

= ĝ(x,y|kσ̃)⊗ f (x,y)− ĝ(x,y|σ̃)⊗ f (x,y)

=
n

∑
i=0

λiΠi(x,y)⊗ f (x,y)−
n

∑
j=0

λ jΠ j(x,y)⊗ f (x,y)
(10)

1 In practice, k ∈]1,
√

2].
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where ⊗ is the global convolution product.
Obviously, the Πi(x,y)⊗ f (x,y) and Π j(x,y)⊗ f (x,y)

products of Eq. (10) can be obtained with the integral image
at a complexity O(N) with N the image size. As a result,
approximation of the DoG operator can be achieved with
2(n+ 1) accesses to the integral image where n+ 1 is the
number of box filters.

A core problem with Gaussian kernel approximation is
to fix the n, Πi(x,y), and λi parameters of Eq. (8). The ap-
proach used in the literature [17] is the minimization of the
Mean Square Error (MSE) of Eq. (11), which can be achieved
by any appropriate numerical method for regression. In [17],
the LASSO algorithm is used to solve this problem,

MSE = ∑
(x,y)∈[0,ω]

(g(x,y|σ)− ĝ(x,y|σ))2 (11)

where ω2 is a size of Gaussian operator.

2.3 Scale-space representation

As discussed in section 2.1 and Fig. 2, detection using the
LoG operator relies on the scale parameter σ. The opera-
tor must be controlled with a filter bank at different scales
[σ0, ...,σm] for optimum detection. The design of a time-
efficient and well-adapted filter bank is referred to as a scale-
space representation problem in the literature. The traditional
and baseline approach is to control the scale-space with an
exponential model as the SIFT descriptor. For stroke detec-
tion, the literature reports a linear model in which parameter
σ is derived from the stroke with parameter w. This method
is introduced and defined as the stroke model [18], and opti-
mization of the model for stroke detection is investigated at
the experimental level in [19].

Fig. 3 illustrates the model. The general idea is to assess
for the convolution response between a LoG-based operator
and a stroke signal modeled as a unit step function. We can
then express the null cases with the derivatives to obtain the
minimum/maximum of the convolution product. Assuming
that these minimums/maximums are located at the center of
the stroke w/2, we can present the standard deviation σ as a
function σ = ϖ(w).

Assuming the image signal is a function2 a⊗Π(x), where
Π(x) is the step function Eq. (12) and a as the signal ampli-
tude, the convolution product with the LoG operator ∇2g(x)
is given in Eq. (13).

Π(x0− x) =

{
0 x < x0

1 otherwise.
(12)

h(x0) = a(Π⊗∇
2g)(x0)

= a
∫ +∞

−∞

Π(x0− x)∇2g(x)dx
(13)

2 For simplification, considering the 1D case.

Fig. 3: LoG responses at different scales to (a) a step func-
tion (b) a boxcar function of size w = 21.

As Π(x0− x) is located at x0, the convolution product
Π(x0 − x)⊗∇2g(x) over x equals the summation ∇2g(x)
centered at x0.

With normalization and approximation of ∇2g(x), as given
in Eq. (6), Eq. (13) is reformulated into Eq. (14),

(k−1)σ2h(x0)

≈
∫ +∞

−∞

a(g(x0− x|kσ̃)−g(x0− x|σ̃))dx
(14)

where a is the signal amplitude, h(x0) is the convolution
product of a(Π⊗∇2g)(x0), k is the parameter that approx-
imates the step offset, and σ̃ is the scale parameter of the
DoG function. From the derivative of Eq. (14), the local ex-
tremal optimum is obtained as Eq. (15) with the k parameter
at locations x1,2.

x1,2 =±kσ̃

√
2lnk
k2−1

(15)

As given in Eq. (15) and illustrated in Fig. 3 (a), it is
noted that the x1,2 locations depend on the σ parameter. While
bringing x2 = x0+w/2 to the center of the stroke with w the
stroke width parameter and using Eq. (15), we can obtain
the optimum scale σs Eq. (16),

σs = ϖ(w) =
1
2k

√
k2−1
2lnk

w = Φ(k)w (16)

where ϖ(w) is a linear function that has a slope controlled
by Φ(k) derived from the step offset k.

As illustrated in Fig. 3 (b), two responses, he and hs ap-
pear within the model at the x1,2 locations with σs.

The response he characterizes the edge of the stroke and
is obtained with Eq. (17) while bringing σs in Eq. (16) back
to Eq. (14) and approximating the Gaussian integral at any
location in Eq. (14) with the er f (x) Gaussian error function
er f (x) = 2√

π

∫ x
0 e−t2

dt.

he =
a
2

(
er f

(
k

√
lnk

k2−1

)
− er f

(√
lnk

k2−1

))
(17)
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Fig. 4: LoG responses at different signal amplitudes and
widths of the box function with k =

√
2.

For simplification of notation, Eq. (17) is given by con-
sidering x0 = 0. In this equation, a is the signal amplitude
and k is the offset parameter.

A peak response hs appears at the middle of the stroke
w/2 with w the stroke width. This response decreases while
shifting the scaling parameter σ around the σs optimum Fig. 3
(b). It is worth noting that no mathematical formulation for
hs is proposed in [18]. The results from the proposed proof
interpolate the stroke response from a step function. Sim-
ulation reveals a value hs that is independent of the scale
parameter σ and proportional to the signal amplitude a, as
illustrated in Fig. 4.

The optimization within the scale-space considering the
stroke model is attained while applying quantifying to σs =

ϖ(w) in Eq. (16) with w ∈ [wmin,wmax] as a discrete value.
The size of the filter bank is then correlated to the stroke
width gap of the considered detection problem, thereby yield-
ing m = wmax−wmin. With a DoG formulation, this requires
2(m+1) Gaussian kernels for detection.

3 Proposed method

As discussed in section 2, the RT-LoG operator for scene
text detection relies on box filtering and the stroke model. In
this paper, we propose a new method that takes advantages
of the Gaussian kernel distribution and decomposition with
box filtering to achieve the strongest optimization. Section
3.1 provides the problem statement. Then, sections 3.2 and
3.3 detail the two main optimization stages offered by our
method.

3.1 Problem statement

Box filtering results in application of Eq. (10) for a filter
bank [σ0, . . . ,σm], with σ0, . . . ,σm the scale parameters, ob-
tained with the stroke model Eq. (16). This process can be

formalized as a global product Eq. (18) achieving an element-
wise multiplication ◦ between two matrices f⊗B,C of scalar
values. Then, row summing is attained through multiplica-
tion with a column vector of 1.

A = (( f ⊗B)◦C)1 (18)

In Eq. (18), A,B and C have the same form as,

A =

Lσ0

Lσi

Lσm

B =

Π00 . . . Π0n
... Πi j

...
Πm0 . . . Πmn

C =

λ00 . . . λ0n
... λi j

...
λm0 . . . λmn

 .
B is a matrix of box filter functions Πi j in which f ⊗B

results in a matrix of scalar values corresponding to the spa-
tial products f ⊗Πi j. C represents the weight parameters
λi j. Within the matrices B,C, the columns refer to the scale-
space and filter bank, respectively, whereas the rows are re-
lated to the spatial convolution and the boxes used within
the D̂oG operator Eq. (10). The matrices B,C have a size
(m+ 1,n+ 1) of i ∈ [0,m] and j ∈ [0,n], where m+ 1 and
n+ 1 are the size of the filter bank, and number of box fil-
ters, respectively.

The global convolution of Eq. (10) using the above ma-
trix notation can be reformulated as Eq. (19). For simplifi-
cation of notation, we note l = n+1

2 is the middle index for
the rows. In addition, the subtraction operation in Eq. (10) is
embedded in range the [l,n] of the λi j weights in C.

Lσi =
l−1

∑
j=0

f ⊗Πi jλi j +
n

∑
j=l

f ⊗Πi jλi j (19)

The left j ∈ [0, l[ and right j ∈ [l,n] parts of matrices B,C
are related to the gkσ̃ and gσ̃ distributions within the D̂oG
operator Eq. (9), respectively. The global product Eq. (18)
results in a vector A of size (m+ 1) containing the global
convolutions Lσi at the different scale i ∈ [0, . . . ,m].

The global product of Eq. (18) requires P = (m+ 1)×
(n+ 1) operations for element-wise multiplication ◦ plus P
operations for row summing. Considering a 128-bit CPU ar-
chitecture with a 32 bits of Integer coding, 4 elements are
processed at a time with vectorization. Vectorization can be
applied to the ◦ product and the row summing with accumu-
lation, which can be attained in P/2 operations.

The global product of Eq. (18) also requires establish-
ment of matrices f ⊗B,C. Matrix C is obtained offline with
regression and MSE minimization of Eq. (11). Matrix f ⊗B
must be computed online from the integral image to obtain
the different averaging products f ⊗Πi j. These products are
acquired while summing the integral image values. The in-
tegral image can be obtained by O(2N) operations with re-
currence [23] where N is the image size. Then, the averaging
products f ⊗Πi j are collected with Eq. (20) as illustrated in
Fig. 5. The summing operations can be supported by vec-
torization, resulting in ≈ P operations. However, as shown
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in Fig. 5, the integral image values cannot be accessed in
a continuous fashion in memory. This process requires 4P
accesses to constitute the vectors s0, ...,s3 used in Eq. (20),

f ⊗

Π0 j
...

Πm j

=


s0

0
...

s0
m

−
s3

0
...

s3
m


+


s2

0
...

s2
m

−
s1

0
...

s1
m


 (20)

where s0, ...,s3 are the vertexes of integral boxes, and m+1
is the number of scales.

Fig. 6 presents the overall pipeline, which is composed
of fours steps, (I) to (IV). The first (I) step is the box selec-
tion step, which is performed offline to constitute the B,C
matrices. The next steps are done online with (II, III) ac-
cess to the integral image to obtain the vectors and averag-
ing products Eq. (20) and (IV) the global product Eq. (18).
Table 3 recapitulates the total amount of online operations
(steps II, III, and IV). It can be seen that the complexity of
the pipeline is mainly dominated by steps (II) and (III) to at-
tain the averaging products f ⊗Πi j. These products depend
on the number of used boxes Πi j and the size P of matrices
B and C, which are obtained by the box selection method (I).

Fig. 5: Computing the averaging products in the scale-space
domain using an integral image: (a) the image (b) the corre-
sponding integral image (c) the local box functions.

Fig. 6: The pipeline to obtain the D̂oG product, (I) is an of-
fline process whereas (II) (III) (IV) are the online processes.

In this paper, we propose a new approach for box selec-
tion as illustrated in Fig. 7. Our approach applies a two-step

Fig. 7: Spatial/scale-space optimization for the box selection
step (I) presented in Fig. 6.

Table 3: The number of operations for the online processes
in the pipeline of Fig. 6.

Access (II) Averaging (III) Product (IV)
4 P ≈ P P/2

Fig. 8: The box functions to approximate two Gaussian ker-
nels kσ̃ and σ̃ with σ̃ = 3.2 and k =

√
2.

Fig. 9: Box selection with mutualization for the D̂oG.

process for optimization within the spatial domain (I1) and
spatial/scale-space domains (I2). The first step (I1) takes ad-
vantage of box selection with mutualization within the D̂oG
product. The output serves as parameter training for the sec-
ond step (I2) proposing a global spatial/scale-space model
for selection. The overall method substitutes the box selec-
tion step (I) in the pipeline of Fig. 6 resulting in a large op-
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Fig. 10: The (a) standard approach (b) proposed approach.

timization. We detail the selection within the spatial domain
(I1) and the spatial/scale-space domains (I2) in next sections
3.2 and 3.3, respectively.

3.2 Optimization within the spatial domain

As we presented in section 2.2 and Eq. (8), we can approx-
imate a Gaussian filter using a set of box functions. These
box functions are then convolved and summed to get a D̂oG
product Eq. (9). The standard approach discussed in [17] is
to apply two separate approximation processes to the Gaus-
sian kernels kσ̃ and σ̃ where σ̃ is the scale parameter and
k is the parameter to approximate the step offset. However,
given that the k parameter is supposed to be low for the local
derivative Eq. (5), the two Gaussian distributions are close,
as shown in Fig. 8. Thus, a common set of boxes could be
used to approximate the two kernels. We develop these as-
pects here.

We can assume in Eq. (19) that we have Πi j = Πi j+l
with l = n+1

2 with n+ 1 the number of box filter function.
Then, we can reformulate Eq. (19) into Eq. (21), where δi j =

(λi j + λi j+l) are new coefficients obtained with a numer-
ical method for regression and minimization of the MSE
Eq. (11).

Lσi =
l−1

∑
j=0

f ⊗Πi jλi j +
n

∑
j=l

f ⊗Πi jλi j

=
l−1

∑
j=0

f ⊗Πi j(λi j +λi j+l) =
l−1

∑
j=0

f ⊗Πi jδi j

(21)

To mutualize boxes, such as Πi j = Πi j+l ∀ j ∈ [0, l[, a
new pipeline for box selection must be fixed. We propose
a new strategy in Fig. 9. This strategy applies local mu-
tualization with a close-loop methodology, which relies on
the general observation that matrix B is composed of pairs
of boxes. A pair of boxes is a group of the closest boxes
in B, such as ‖Πi j‖ ≈ ‖Πi j+l‖ ∀ j ∈ [0, l[, with ‖Πi j‖ rep-
resenting the radius of the box function Πi j. The pairs of
boxes still fit within the constraint (‖(Πi j‖ ≈ ‖Πi j+l‖) <

‖(Πi j+1‖ ≈ ‖Πi j+1+l‖).

The local mutualization combines the pair of boxes while
minimizing the MSE for the D̂oG function. Fig. 10 shows
the process by which three pairs of boxes (green, cyan, and
brown) are merged. We detail that process here.

∗ Initialization: apply the method for regression to the σ̃

and kσ̃ Gaussian kernel distributions to obtain the B,C
matrices.
• Step 1: for a pair of boxes Πi j,Πi j+l ∀ j ∈ [0, l[ to fix a

set of solutions for mutualization ‖Πuv‖∈ [‖Πi j+l‖,‖Πi j‖].
∀ Πuv, apply sub-steps 1 to 3.
− Sub-step 1: substitute the Πi j,Πi j+l functions with

Πuv in B.
− Sub-step 2: apply the method for regression to refine

the λi j coefficients for the σ̃ and kσ̃ Gaussian kernel
distributions.

− Sub-step 3: compute the MSE between the DoG and
D̂oG functions, as noted in Eq. 11.

• Step 2: the lowest MSE from sub-step 3 is used to fix
the Πuv solution. Then, repeat step 1 for the next pair of
boxes.

This procedure is repeated to approximate all the ker-
nels of the bank filter [σ0, ....,σm] with σ0, . . . ,σm the scale
parameters, as shown in Fig. 9. The output coefficients λi j
of the selection are processed via matrix addition to get C0
while applying Eq. (21). Matrices B0,C0 have size P/2 com-
pared to the brute-force strategy developed in section 3.1,
which requires P elements. Matrix B0 is used in the second
step of selection to optimize in the spatial/scale-space do-
mains, as shown in Fig. 7. We detail these aspects in next
section 3.3.

3.3 Optimization within the spatial / scale-space domains

In section 3.2, optimization in the spatial domain was dis-
cussed. Optimization can also be extended in the scale-space
domain. Therefore, we indicate these aspects here. The scale-
space domain and filter bank used in the global product Eq.
(18) are based on the stroke model Eq. (16). As the stroke
model is a linear function, the Gaussian kernels in the scale-
space domain have a compact distribution, as shown in Fig.
11 (a). Approximation of the Gaussian kernels with a box
filter Eq. (8) can result in a large number of duplicate boxes
at the different scales. Redundant and close averaging prod-
ucts will appear when computing the f ⊗B components in
the global product in Eq. (18).

To address this problem, we propose a mixed spatial and
scale-space method for box selection. This method is shown
in Fig. 11 (b,c). This method takes advantage of the linear
distribution of Gaussian kernels in the scale-space domain to
drive box selection. The linear distribution results in a large
number of overlapping boxes among the Gaussian kernels.
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A compact set of boxes could then be generated to obtain
the global product of Eq. (18).

Fig. 11: (a) the Gaussian kernel distributions based on the
stroke model (b,c) shared box functions between Gaussian
kernels.

Fig. 12: Spatial/scale-space selection.

Fig. 12 details our overall approach. Our spatial/scale-
space model is interpolated with the set of boxes B0 obtained
with mutualization, as shown in Fig. 9. A normalization of
radius is performed on the B0 matrix. The selection output
is reprocessed with regression to refine the coefficients λi j
to obtain the C1 matrix. These different aspects are clarified
in next paragraphs.

Radius normalization: We define R as a matrix of scalar
values provided by the radius ‖Πi j‖ of the Πi j functions
in the B0 matrix. The radius can be expressed as Eq. (22)
with the application of normalization parameters ai j to the
scale parameters σi, Φ(k) derived from the step offset k from
Eq. (16).

As the Gaussian distributions have a regular range of
[−πσ,πσ], the scale parameters σi can be weighted with the
π value to bound the normalization parameters ai j ∈ [0,1].
A final reformulation can be obtained with the stroke model
Eq. (16). In the normalized form of the stroke model, the R
matrix is given in Eq. (23), where r() is a replicate function

of a column vector, n+ 1 is the number of boxes at each
scales, m+1 is the number of scale parameters.

‖Πi j‖ = ai jπσi = ai jπΦ(k)wi (22)

R = πΦ(k)

a00 . . . a0n
... ai j

...
am0 . . . amn

◦ r


w0

...
wm

 ,n+1

 (23)

Spatial/scale-space model: We fix R̂ as the spatial/scale-
space model for a radius that will approximate the R matrix.
To fit the box selection approach shown in Fig. 11 (b,c), con-
straints are applied to the R̂ matrix Eq. (24). We first nor-
malize the spatial distribution of the box functions in the
kernels over all the scales with a single set of normalization
parameters (â0, . . . , ân). The âi coefficients in the R̂ matrix
are the approximation of the ai j coefficients in the R matrix.
Therefore, we constrain the spatial/scale-space distributions
within the stroke model while establishing equality between
the diagonal elements in the matrix. We achieve the relation
â j+∆wi = â jwi+∆ with ∆ as the offset between the elements
of the R̂ matrix. In this relation, we have wi+∆ = wi+∆ with
quantization of the stroke model described in section 2.3.

For a proper reformulation, we fix i = j = 0, â0 = γ,α =

1/w0 and ∆ = x to obtain the linear function Eq. (25).

R̂ = πΦ(k)



â0w0 â1w0 â2w0 ... ânw0

â0w1 â1w1 â2w1 ...
...

â0w2 â1w2 â2w2 . . .
...

. . . . . . . . . . . . ânwm


(24)

f (x|α,γ) = γ+αγx (25)

This function Eq. (25) is illustrated in Fig. 13 and de-
termines the spatial / scale-space distributions of the boxes.
Here, f (x|α,γ) returns an estimation âi for the normalized
parameters ai j with x as the index / offset of the box func-
tion in R̂. This function is controlled with two parameters
α,γ.

Interpolation and selection: Our model of Eq. (24) re-
quires the α,γ parameters to be fixed. These parameters con-
trol the distribution over the spatial and scale-space domains
for optimizing the box selection. However, box selection
must also guarantee the accuracy of the approximation of
the Gaussian kernels. To address this problem, we interpo-
late the α,γ parameters from the B0 matrix. Indeed, this ma-
trix provides a box selection for the accurate approximation
of the D̂oG products, as detailed in section 3.2.

The B0 matrix is first processed with normalization Eq.
(23). Then, a quantization process is applied, such as Lloyd’s
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Fig. 13: The function f (x|α,γ) for spatial / scale-space se-
lection.

algorithm, to get the prominent coefficients ai j in the R ma-
trix. The ai j coefficients are normalized over the scales for
the kernel distributions, and we obtain a vector of (n+1) co-
efficients (a0, ...,an) with the corresponding offsets (0, ...,n).
With the reformulation of Eq. (25) and changing the variable
γ−1 = 1/γ, we obtain a system of a linear equation Eq. (26).
This system can be solved by using any linear solver [24].

γ
−1

a0
...

an

−α

0
...
n

=

1
...
1

 (26)

The application of the function Eq. (26) to a discrete
interval (0,1,2,...) results in a set of estimation of normal-
ized coefficients (â0, â1, â2, . . .). These coefficients control
the spatial/scale-space selection of the boxes where the ra-
dius is obtained with Eq. (27). Due to the equality of diag-
onal elements in R̂, the number of box functions to gener-
ate with the approach is (m+ n+ 1). This corresponds to
P = 1

2 (m+n+1) elements that is� (m+1)(n+1),

‖Πi‖= πΦ(k)âiw0 (27)

where ‖Πi‖ is the box radius, Φ(k) is derived from the step
offset k from Eq. (16), âi is the estimation of the normalized
coefficients ai.

Regression and global product: As shown in Fig. 12,
the set of boxes (Π0, ...,Πm+n) is reprocessed with regres-
sion while shifting to any subset Πi,Πi+n to refine the λi j
coefficients and approximate the kσ̃ and σ̃ distributions. The
λi j coefficients are processed with matrix addition to ob-
tain C1 while applying Eq. (21). The B1 and C1 matrices are
pushed in the pipeline shown in Fig. 6 requiring (m+ n+
1) spatial products f ⊗Πi. The global product of step (IV)
is processed with shifting while applying B1 to get A with
Eq. (18).

Fig. 14: DoG approximation of the operators with complex-
ity (the x−axis is plotted in the logarithm domain).

Fig. 15: DoG approximation of the operators over scales at
the equal MSE.

4 Performance evaluation

In this section, we present the performance evaluation and
results of our method. Section 4.1 characterizes the D̂oG
operators with optimization in the spatial and scale-space
domains. Section 4.2 characterizes the operators for scene
text detection, whereas, section 4.3 addresses the processing
time aspects. Finally, section 4.4 highlights how the opera-
tor can support the full pipeline for scene text detection and
gives a comparison with the top systems of the literature.

4.1 Characterization of the D̂oG operators with
optimization

We characterize how the D̂oG operators discussed in this pa-
per approximate the DoG operator. The D̂oG operators are
given with and without optimization in the spatial and scale-
space domains, which results in two operators, the brute-
force RT-LoG operator detailed in section 3.1 and the pro-
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Fig. 16: Images from ICDAR2017 RRC-MLT dataset [3].

Fig. 17: The metrics of (a) Intersection over Union (IoU)
(ground truth is in green, detected boxes are in red) and (b)
Area under a Curve (AUC).

posed operator with spatial/scale-space optimization detailed
in sections 3.2, 3.3 and Fig. 7.

Fig. 14 shows our results. Comparisons with the DoG
operator are reported from the MSE Eq. (11). To consider
the scale-space aspect, the MSE was computed at every scale
over the range [σ0, . . . ,σm] and then averaged to obtain the
MSE. In the experiments, we bounded m = 40 with σ ∈
[2.1,19.1]. We compare the MSE obtained at every P value.
For the sake of graphical representation, the P values shown
in Fig. 14 are normalized with the scaling parameter (m+1)
and are displayed in the logarithm domain. The overall pro-
tocol characterizes the robustness of the methods against P
values. All the experiments are driven with the LASSO algo-
rithm for the box selection with regression, as done in [17].

As illustrated in Fig. 14, our approach results in one to
two orders of magnitude in terms of P differences between
the operators. The largest differences are obtained with a low
MSE and then for a high accuracy of the operators, which is
achieved when a deeper spatial filtering is applied with a
large value for n ∈ [5,∞[.

In addition, Fig. 15 details the MSE obtained at every
scale [σ0, . . . ,σm] by the two operators. For comparison, we
fixed the P parameter within the two operators to achieve
an equal MSE. As shown in Fig. 15, the proposed operator
results in a more stable response over all the scales due to
the mutualization process applied in the operator. With mu-
tualization, the DoG approximation becomes less sensitive
to quantization at the low level scales. This gap is reduced
when P is increased in the operators to get a lower MSE.

4.2 Characterization of operators for scene text detection

In this section, we present the performance evaluation for
scene text detection. Section 4.2.1 introduces the datasets.
Section 4.2.2 discusses the characterization metrics and sec-
tion 4.2.3 explains the protocol. The competitive operators
are introduced in section 4.2.4. Finally, the scene text local-
ization results are discussed in section 4.2.5.

4.2.1 Datasets

Several public datasets have been proposed for evaluating
the performance of text detection methods. We selected the
recent dataset of the international contest ICDAR2017 RRC-
MLT [3]. This dataset includes 7200 training images, 1800
validation images, and 9000 test images. The images are
given at different resolutions (VGA, HD, Full-HD, Quad-
HD, 4K). The groundtruth is given in term of bounding boxes.
Bounding boxes are represented by four corner points for
each text word. Fig. 16 shows examples of images. Com-
pared to other datasets in the literature, this dataset has a
particular focus on the multi-lingual text and offers a deeper
challenge in terms of scalability.

For the special purpose for the evaluation of processing
time, we used the Challenge 4 of ICDAR2015 dataset that
is more common in the literature [25]. This dataset contains
1000 training images and 500 test images at the HD resolu-
tion (1280 x 720).

4.2.2 Characterization metrics

For the characterization metrics, we followed the recom-
mendations of the international contest [3]. Characteriza-
tion is achieved at two levels while applying the Intersection
over Union (IoU) criterion and computing the F-measure.
The output of the text detection system is provided with
bounding boxes. Detection is obtained if a detected bound-
ing box has more than 50% overlap (the IoU criterion given
in Fig. 17 (a)) with a bounding box in the groundtruth, which
plays a rule as true posivitives (TP). The unmatched boxes
in the detection and groundtruth are false positives (FP) and
negatives (FN), respectively. The detection cases serve to
compute the regular metrics precision (P), recall (R) and F-
measure (F), as noted in Eq. (28).

P =
T P

T P+FP
R =

T P
T P+FN

F = 2
PR

P+R
(28)

The recall R measures the ability to detect the text of
operator while the precision P evaluates the ability not to in-
vent text. Moreover, one of the popular metrics of the method
assessment is the Area Under a Curve (AUC), as shown in
Fig. 17 (b). This metric is independent on any particular
threshold. We estimates the AUC scores under the precision-
recall curves.
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Table 4: The different real-time operators for scene text detection.

Operator Parameters Outputs

LoG-based operators

Proposed RT-LoG P = 45 (n = 4,m = 40), k =
√

2,σ ∈ [2.1,19.10] h(x,y), σs(x,y),w
Brute-force RT-LoG P = 410 (n = 4,m = 40), k =

√
2,σ ∈ [2.1,19.10] h(x,y), σs(x,y),w

SIFT k =
√

1.03,m = 80,σ ∈ [2.1,19.10] h(x,y), σ(x,y)
SWT σ0 = 0.9,T L = 70,T H = 250 mag(∇ f ), w
BSV σ0 = 0.9,T L = 0.007,T H = 0.012 h(x,y)

CC-based operators MSER T L = 60,T H = 14400, AreaVariation ∈ [0.1,1] Region size, CC
FASText The contrast intensity Corner point, circle size

Fig. 18: Comparison of operators (a) P/R with AUC (b) F-measure scores with normalized thresholds on ICDAR2017 RRC-
MLT dataset.

It is worth noting that some degraded texts in the dataset
are marked as “don’t care” boxes and are ignored in the eval-
uation process.

4.2.3 Characterization protocol

The groundtruth and metrics discussed in sections 4.2.1 and
4.2.2 are not adapted for the characterization of operators.
Indeed, the operators provide detection results at the key-
point level. To evaluate and compare operators for scene text
detection, their outputs must be processed to obtain the text
regions. For performance evaluation, a relevant method must
be established. This method has to be common to all the op-
erators and be used with the same conditions for training
and testing. To do that, a standard approach in the literature
is the character grouping which is achieved with different
algorithms, such as clustering, adaptive thresholding or the
minimum-area encasing rectangle [1].

To meet the needs of our performance evaluation, we
processed the outputs of the operators with a standard group-
ing method using fast K-means clustering [26]. K-means
clustering was applied to the operator and image features.

These features include the localization (x,y) of keypoints
and the color information of pixels f (x,y) as used in [27].

4.2.4 Comparative operators

We compare the proposed RT-LoG operator against LoG-
based operators introduced in Table 4. These operators in-
clude the SWT, BSV and brute-force RT-LoG operators. In
addition, we apply SIFT operator used as a baseline LoG-
based operator for scene text detection [28].

Several alternative time-efficient and real-time operators
can be used for scene text detection [1]. Recent works tend
to use Connected-Component (CC) analysis, which is mainly
dominated by the MSER (Maximally Stable Extremal Re-
gions) operator [12]. This operator, thus, represents a good
competitor. Different improvements of the MSER operator
have been proposed [29, 30]. We selected a general imple-
mentation of the MSER operator [31] along with the FAS-
Text operator [7], which provides adaptation to scene text
detection.
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Fig. 19: Visual examples of text detection result of the proposed RT-LoG operator, (green) true positive (red) missed case.

Table 5: Processing time of detectors in (ms) performing with the C++ on a Mac-OS and an Intel(R) Core(TM) i7-4770HQ
CPU 2.2 GHz with approximately a 32 GFLOPS SP performance on ICDAR2017 RRC-MLT dataset.

Operators
Resolutions

SD HD Full-HD Quad HD 4K

SIFT 150 890 3254 5909 8917
MSER 90 450 1660 2496 5357

Brute-force RT-LoG 75 288 784 1750 2706
Proposed RT-LoG 65 150 320 700 990

BSV 61 136 226 541 835
SWT 40 120 170 457 756

FASText 24 75 121 312 525

Fig. 20: (a) comparison of operators with the maximum F-measure scores against the average processing time (b) the maxi-
mum F-measure score corresponding to the number of boxes for the proposed RT-LoG operator on ICDAR2017 RRC-MLT
dataset.
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4.2.5 Performance evaluation for text localization

The results of the performance evaluation for text localiza-
tion are given in Fig. 18 (a) in terms of precision (P) and
recall (R). The P/R scores are obtained while relaxing the
thresholding on the operator responses and their parame-
ters, as detailed in Table 4. These results highlight the close
performance of the MSER, SIFT, brute-force RT-LoG and
proposed RT-LoG operators for in balance P/R scores. At
low precision, the brute-force RT-LoG operator attains the
strongest recall performance among all the operators, which
can be characterized by AUC scores.

Fig. 18 (b) provides the F-measure scores controlled with
the normalized thresholds, which are first applied to the re-
sponses of the methods and then the parameters. The peaks
within the curve correspond to the maximum F-measure score
attained by the different methods. The MSER, SIFT and RT-
LoG operators present a close performance with a F ≈ 0.15.
The brute-force RT-LoG operator achieves the strongest score,
with a slight gap compared with the proposed RT-LoG op-
erator. In both cases, the brute-force and proposed RT-LoG
operators are set as n+1 = 5 (the number of box filters for
spatial filtering), as shown Table 4.

For further experiments, shown in Fig. 20 (b) the relation
between the maximum F-measure score against the number
of box filters is determined. It can be seen that the number
of box filters could be fixed between 4 and 6 to reach a close
maximum for the F-measure score. This value ensures the
robustness of the operators while maintaining a low com-
plexity level for the processing time. Some visual examples
of detection with the proposed operator are shown in Fig. 19.

4.3 Processing time

This section investigates the processing time, which depends
on the complexity of the algorithms. For the FASText, RT-
LoG and MSER operators, the complexity is linear O(N)
with N the image size. The complexity is O(Nω) with a
small mask size (ω×ω) for the SWT and BSV operators.
The filter bank for the SIFT operator is set as suggested in
[19] and detailed in Table 4.

The parallelism support has a strong impact on the fi-
nal results, which includes the use of a vectorization/SIMD
architecture and intrinsic instructions, the multithread/ mul-
ticore or the GPU architectures. The different parallelism
levels can offer an increase of one to two orders of magni-
tude, depending the quality of the implementation.

For an objective comparison, we aligned the operators
at the same level of parallelism. The implementations are
given with a single thread with the vectorization/SIMD ar-
chitecture and intrinsic instructions. The goal is to exclu-
sively evaluate the complexity side of the operators, while

comparing the processing times. Table 5 presents the pro-
cessing times for different image resolutions. The proposed
RT-LoG operator performs better than the SIFT and MSER
operators. The proposed operator is almost five times faster
than the MSER operator and up to nine times compared to
the SIFT operator. The proposed operator has a near equal
performance compared to the those of the SWT and BSV
operators, with a slight gap. The FASText operator is the
fastest operator; it is one to three-fold faster compared to the
proposed RT-LoG operator. Among all the operators, our ex-
periments report minimal computational overhead with K-
means clustering compatibility with a real-time strategy.

For a global comparison, Fig. 20 (a) provides the av-
erage processing time of the operators, obtained from the
ICDAR 2017 RRC-MLT dataset against the maximum F-
measure scores derived as shown in Fig. 18 (b). As shown in
Fig. 20 (a), the FASText, brute-force and proposed operators
fix the top performance curve among all the operators. The
proposed RT-LoG operator appears as the top operator with
a balanced performance between accuracy and time process-
ing.

In addition, in Table 6, we provide the frame rates of the
RT-LoG operator using a multithread/multicore support. Ex-
periments are performed on a regular hardware architecture
using the Intel Core i7-4770HQ CPU, 2.2 GHz with approx-
imately a 32 GFLOPS SP3 performance. Our computer is set
with a time-sharing operating system Mac OS.

The frames are processed with gridding and each thread
takes in charge of a particular area. This is a standard strat-
egy for camera-based processing. The threads are synchro-
nized /waked-up at any new frame. The number of threads
has been set to 16 to reach the optimum performance while
reducing the context switch in the system. With such a strat-
egy, there is no guaranty to respect a deadline. The operating
system is not provided specific kernel mechanisms for time
management and for handling tasks with explicit time con-
straints. However, our operator and approach are supposed
to be deployed on mobile systems where the time-sharing
is the common model. Thus, our approach enters in a soft
real-time methodology.

Table 6: Frames per second (FPS) with the proposed RT-
LoG operator with multithreading/multicore, performing
with the C++ on a Mac-OS and an Intel(R) Core(TM) i7-
4770HQ CPU, 2.2 GHz with approximately a 32 GFLOPS
SP performance.

Resolutions Average FPS Minimum FPS
Full-HD 57 46.5

Quad-HD 29.6 25.75
4K 13.6 11

3 Single Precision.
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The FPS presented in Table 6 for standard video reso-
lutions. These FPS are derived from the distribution of the
response times obtained with the different threads. Exper-
iments have been obtained for long video sequences. As
shown in Table 6, the average FPS = 1/RT is computed
with RT the average response time. This average FPS can
be applied where a low-level latency is tolerated while pro-
cessing consecutive frames. The minimum FPS = 1/RTmax is
collected from the maximum response time. This FPS guar-
antees that there is null latency in the system. It can be seen
that there is a small gap between the average and minimum
FPS (15% to 20%). This can be explained by the predictabil-
ity of our operator. We have a sharp upper bound appearing
on the execution times.

The constraints RT ,RTmax expressed above can be used
as deadlines to target a null or a low-level latency with our
operator for processing. As highlighted in Table 6, while ap-
plying these constraints the proposed RT-LoG operator can
support approximately 30 FPS up to the Quad-HD resolu-
tion on a regular CPU architecture with a low-level latency.

4.4 Performance evaluation for scene text detection

The RT-LoG operator can support the full pipeline for scene
text detection. For the need of the comparison, the metrics,
protocol, and experiments, as detailed in sections 4.2.2, and
4.2.3, have considered the common outputs for the opera-
tors. They are the spatial coordinates (x,y) and the color in-
formation f (x,y) of pixels. However, compared to the other
operators, the RT-LoG operator provides additional mean-
ingful spatial, scale-space and contrast information Table 4.
This information includes the stroke width w, scale-space
σs(x,y) and the operator response h(x,y). As discussed in
[32], these features can drive a grouping method. They can
serve in addition for the scale prediction, the background/
foreground normalization, and contrast correction of char-
acters before a text verification stage.

Fig. 21 presents the general architecture of the system
proposed in [32] where the RT-LoG operator is embedded.
As highlighted from that, this system can achieve a strong
detection accuracy and is competitive with the top systems
of the literature performing with end-to-end CNN models
and GPU architectures. However, results reported in [32] are
obtained while using the brute-force RT-LoG operator. As
discussed in sections 4.2 and 4.3, the proposed RT-LoG op-
erator is two to three time faster for an approximately equal
performance for detection.

Table 7 reports the results from system in [32] while
embedding our proposed RT-LoG operator. The results are
compared against the state-of-the-art methods on ICDAR
2017 RRC-MLT dataset. Similar to [32], our system appears
in the top results of the literature for F-measure score. It in-
troduces a slight gap of less than 1.5 % error compared to the

Fig. 21: The general architecture of the system of [32].

Table 7: Comparison of methods (P) precision (R) recall and
(F) F-Measure on ICDAR2017 RRC-MLT.

Rank Methods P(%) R(%) F(%)
1 PMTD [33] 85.15 72.77 78.48
2 FCN-MOML [34] 82.66 72.53 77.26
3 R-CNN-PAN [35] 80 69.8 74.3
4 LOMO MS [36] 80.2 67.2 73.1
5 Brute-force RT-LoG [32] 65.2 82.1 72.6
6 MOSTD [37] 74.3 70.6 72.4
7 Proposed RT-LoG 64.5 80 71.4
8 Fots [38] 81.86 62.30 70.75
9 AF-RPN [39] 75 66 70
10 Attention Model [40] 72 63.5 67.48
11 SCUT DLVClab1 [3] 80.3 54.5 65

brute-force RT-LoG operator. Moreover, the RT-LoG based
systems achieve the strongest recall score of the literature.
These results are ensured that the use of the RT-LoG opera-
tor can allow a quite high detection of the text elements.

Most of recent works reported the FPS on the ICDAR
2015 dataset. Table 8 presents the results including our sys-
tem using the proposed RT-LoG operator. The evaluation
is performed with a full parallelism support on the CPU
while applying multicore/multithreading. For a fair compar-
ison, Table 8 details the test architecture of different sys-
tems (either GPU or CPU) with their relative performances
in TFLOPS SP. As emphasized in Table 8, our system has
the second highest FPS while processing with a difference
of two orders of magnitude in term of processing resources.
All the top systems perform with the end-to-end CNN mod-
els requiring a GPU architecture.

As given in Table 9, the implementation with the fast RT-
LoG operator attains a near 25% to 65% acceleration factors
for the FPS compared to the brute-force implementation cor-
responding to the HD and Full-HD resolutions, respectively,
whereas the operator is two to three time faster. This can
be explained that the overall processing time required by the
full pipeline are significantly dominated by the grouping and
verification steps with the CNN, as illustrated in Table 10.

Finally, Fig. 22 shows a general comparison of the per-
formances considering the F-measure scores, FPS and test
architectures. The overall pipeline embedded the proposed
RT-LoG operator has a close performance of the top perfor-
mances of literature for the F-measure scores and FPS while
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Table 8: Frame rate per second (FPS) among methods on the
Challenge 4 of ICDAR2015 dataset.

Methods

Processing
types FPS Architecture

Performances
TFLOPS SP

FOTs-RT[38] 22.6 TITAN-Xp
GPU 12.15

Proposed RT-LoG 20.2
CPU

2.2 GHz 0.032

Brute-force RT-LoG [32] 15.6
CPU

2.2 GHz 0.032

SSTD [43] 7.7
TITAN X

GPUs 6.691

EAST [42] 6.52
TITAN-Xp

GPU 12.15

MTS[41] 4.8
Titan Xp

GPU 12.15

MOSTD[37] 3.6
Tesla

K40m GPU 5.046

Table 9: Frame rate per second (FPS) between the brute-
force and proposed RT-LoG.

Resolutions
Methods Proposed

RT-LoG
Brute-force

RT-LoG
Acceleration

factors
HD 20.2 FPS 15.6 FPS 25%

Full-HD 13 FPS 8.4 FPS 65%

Table 10: Average processing time in milliseconds
(ms)/amounts of pixels, keypoints and RoIs of each step of
the proposed method.

Methods
Types

HD Data Full-HD Data

Proposed RT-LoG 180 ms 1.2 Mpixel 370 ms 2.2 Mpixel
Grouping 200 ms 5.2 Kkeypoints 360 ms 9.3 KKeypoints

Verification 336 ms 90 RoIs 420 ms 130 RoIs

Fig. 22: The details of F-measure scores and FPS from scene
text detection systems correspond to their architectures.

requiring a difference of two orders of magnitude in term of
processing resources.

5 Conclusions and perspectives

This paper presents a novel RT-LoG operator for scene text
detection. The proposed method achieves two levels of op-
timization. The first level takes advantage of box selection
with mutualization within the D̂oG product. The second level

is a mixed spatial/scale-space method for box selection based
on the linear distribution of Gaussian kernels in the scale-
space domain.

Our results show that the proposed RT-LoG operator ex-
hibits the best performance with a trade-off between speed
and accuracy among all the operators in the literature. The
processing is achieved with sharp upper and lower bounds
on the execution times for predictability. The operator pro-
cesses at approximately 30 FPS at the Quad-HD resolution
on a regular CPU architecture with a low-level latency. A 25
FPS can be reached with a null latency.

In addition, our operator provides meaningful spatial,
scale-space and contrast information compared to the other
operators in the literature. This results in a strong optimiza-
tion and support of a full system for scene text detection.
With a proper system, our operator is competitive in com-
parison with contributions of the literature using the end-
to-end CNN/GPU based systems, while processing with a
difference of two orders of magnitude in term of processing
resources. The proposed approach is able to process on a
low-cost hardware architecture with a high frame rate while
keeping a strong and competitive accuracy for detection.

Some perspectives can be further explored. The given
operator is not robust to illumination changes, which is a key
problem for scene text detection. Thus, a contrast invariant
operator with real-time implementation should be consid-
ered. This type of implementation would optimize the preci-
sion of the operator for detection, which remains as a chal-
lenge in the literature [44]. The sampling in the spatial/scale-
space domains could be further optimized. This informa-
tion needs to be elaborated in a sampling strategy related
to detection problems [6]. This strategy could result in a
strong time optimization of the operator but will relax the
predictability of processing. It will be more dedicated to
scene text detection in embedded systems with weak con-
straints for the soft real-time processing.
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