
Building Synthetic Graphical Documents for
Performance Evaluation

Mathieu Delalandre1, Tony Pridmore2, Ernest Valveny1,
Hervé Locteau3, and Eric Trupin3

1 CVC, Barcelona, Spain
{mathieu;ernest}@cvc.uab.es

2 SCSIT, Nottingham, England
tony.pridmore@nottingham.ac.uk

3 LITIS, Rouen, France
{herve.locteau;eric.trupin}@univ-rouen.fr

Abstract. In this paper we present a system that allows to build synthetic graph-
ical documents for the performance evaluation of symbol recognition systems.
The key contribution of this work is the building of whole documents like draw-
ings or maps. We exploit the layer property of graphical documents by positioning
symbol sets in different ways from a same background using positioning con-
straints. Experiments are presented to build two kinds of test document databases
: bags of symbol and architectural drawings.

1 Introduction

Performance evaluation of graphics recognition systems goes back to the middle of
90’s [1]. At this period the graphics recognition community focussed its researches on
the evaluation of vectorization processes for document re-engineering. In recent years
there has been a noticeable shift of attention towards the evaluation of symbol recog-
nition [2], especially through the four International Contests on Symbol Recognition
at ICPR 20004, and GREC 2003, 2005 and 20075. Performance evaluation is divided
into two main topics: ground-truthing and performance characterization. The first one
is concerned with the production of test document databases and their corresponding
ground-truth [3], while the second deals with the matching of system results to that
ground-truth [4]. In this paper we are more interested in ground-truthing, focussed on
the symbol recognition. Three main approaches exist in the literature: based on paper,
CAD6 and synthetic documents.

The approach based on paper documents is the most common [3]. Representative
documents are obtained from paper archives and digital libraries, and ground-truth is
created and edited manually using suitable GUI7. This kind of ground-truthing results

4 http://www.ee.washington.edu/research/isl/IAPR/ICPR00/
5 http://epeires.loria.fr/
6 Computer Aided Design
7 Graphic User Interface

in realistic and unbiased data but raises different problems: how to define the ground-
truth, how to deal with the errors introduced by the users, the delay and the cost of
the groundtruth acquisition, etc. In many cases these problems render the approach
impractical.

A complementary approach that overcomes these problems is to work directly from
CAD documents. As these documents are already in a vector graphics form (SVG,
CGM, DWG, etc.), it is possible to take advantage of a groundtruth already existing. The
CAD documents are next converted into images for the evaluation. Such approach has
been used in the past to evaluate the raster to vector conversion processes [5]. It avoids
the groundtruthing step required with the scanned images but it still involves collecting
the initial documents. This collecting process takes into account several issues [6]: the
copyrights, the format registration (to valid, to convert, etc.), the database organization,
finding the duplicates, editing the metadata, etc.

A final approach, which avoids all the difficulties, is to create and use synthetic
documents. Here, the test documents are built by an automatic system which combines
pre-defined models of document components in a pseudo-random way. Test documents
and ground-truth can therefore be produced simultaneously. In addition, a large num-
ber of document can be generated easily and with limited user involvement. In the past
some systems have been proposed to generate synthetic documents to evaluate the vec-
torization systems [7]. Concerning the symbol recognition this topic is emerging and
only the systems described in [8] [9] [2] exist in the literature. Figure 1 gives some
examples of document obtained with these systems.

Fig. 1. Examples of synthetic document
(a) segmented symbol (b) random symbol set

The systems proposed by [9] and [2] support the generation of degraded images
of segmented symbols as shown in the Figure 1 (a). The symbol models are described
in a vector graphics format, the vector graphics files are then converted into images.
Two kinds of noise are added: binary [9] [2] and vectorial [2]. The system described
in [8] employs a complementary approach to build documents composed of multiple
unconnected symbols. The Figure 1 (b) gives an example of document generated by
this system. Each symbol is composed of a set of primitive (circles, lines, squares, etc.)
randomly selected and mildly overlapped. They are next positioned on the image at a

random location and without overlapping with the bounding boxes of the other symbols.
Finally, noise is added to the generated images using a binary distortion method.

All these systems are interesting, but in order to do a complete evaluation of graph-
ics recognition systems we need whole documents. Indeed, real-life documents (engi-
neering and architectural drawings, electrical diagrams, etc.) are composed of multiple
objects constrained by spatial relations (connectivity, adjacency, neighbourhood, etc.).
The design of a suitable process to build such documents is a challenging task. Indeed,
realistic documents cannot be produced without human know-how into the process. In
our work we have considered a shortcut way to solve this problem. Our key idea ob-
serves that the graphical documents are composed of two layers : a linear layer (the
background) and a symbolic one. We use this property to build several document in-
stances: ie symbol sets positioned in different ways using a same background as shown
in the Figure 2. In this way, the building process of whole document is made easier and
can be considered as a problem of symbol positioning on a document background.

Fig. 2. Two document instances

The main architecture of our system is presented in the Figure 3. It uses as entry
data a background image, a database of symbol model and a file containing the posi-
tioning constraints. These positioning constraints are edited by a user overlaying the
background image and using the models of the symbols to include in the document.
Based on these entries two main processes are used to produce the document instances:
a symbol factory and a symbol positioning. In what follows we present each of them
in the sections 2 and 3. In section 4 we present the building manager supervising these
two processes. Section 5 describes some initial experiments and results we are able to
produce. Finally, in section 6 we conclude and give our perspectives.

2 Symbol Factory

Following the systems proposed by [9] and [2] we use geometrical primitives (straight
lines, arcs and circles) and their associated thickness attributes to describe the symbol
models. Each model is stored in an individual file kept inside a database. The user
accesses the contents of the database by defining in the file of positioning constraints
the models he wants to use. Obviously, in order to produce different document instances,
these models are selected at random. The user controls the selection probabilities in the
file of positioning constraints. Once selected we load the symbols from their model files,

Fig. 3. Our system

scale them to adapt them to the background size, and compute their bounding boxes.
Indeed, the bounding boxes are a common way to handle graphical objects inside a
document analysis system. In ours we use them during the positioning process presented
in the next section.

3 Symbol Positioning

The goal of our system is to place randomly symbols on a given background. In order to
do that, we use positioning constraints that will determine where and how the symbols
could be placed. A natural way to define these constraints is to use some of the graphics
primitives composing a symbol: these primitives can be exploited next to position the
symbol on the background. Some examples could be the two connection points of a
resistor, the top line of a bed, the two borders of a frame, etc. This definition makes
complex the addition of new models in the system: the user has to define the constraints
proper to a model before using. Also in order to position a symbol on the background,
primitives corresponding to the constraints must be edited on the background. This
process could take lot of time to the user in regard to the number of model and associated
constraint. In our work we have considered another approach. We have defined generic
constraints fully independent of models. The parameters of the constraints are computed
in an automatic way function of models. It is then not necessary to worry about the
models to handle during the edition of constraints.

Our constraints are taken at random from the symbols produced by the factory.
The links between the constraints and the symbols are defined in the file of positioning
constraints edited by the user. Next, the key mechanism of positioning the symbols
on the background according to the constraints is detailed in the Figure 4. It raises on
the matching between two points: a control point on the symbol and a positioning one
defined on the background. The symbol is then positioned in order to fit the control point
with the positioning one. To make more flexible our approach we have defined three
possibilities to select the positioning points: using a fixed position on the background,
or taking a random point in a geometrical shape. In the the first case the constraint
defines a fixed value (x; y) where the symbol must be positioned. In the second case,
the constraint defines a geometrical shape were points could be selected at random and
used for the positioning. We have used two types of shape, either a straight line (the

point is selected at random along the line) or either a polygon (the point is selected at
random inside the polygon). We will talk next about fixed, sliding and zone constraint
to refer these three different positioning processes.

Fig. 4. Constraint mechanism

Also, in order to extend the positioning possibilities we also permit on a symbol to
define a particular control point and to apply a rotation transformation. The symbol is
then positioned in four steps: it is rotated (using a parameter that can be null, a fixed
value or a range), its control point is computed, a slope parameter (between 0 and 2×π)
is used to incline both the symbol and the control point, and finally it is fixed on the
positioning point using the control one. The key step of this process is the computation
of the control point. This point is defined for every each constraint using unit polar
coordinates (ρ, θ) from the center of the bounding box. These unit polar coordinates
are used to compute the values of length and direction (l, α) used to project the center
of the bounding box to obtain a control point as explained in the Figure 5 (a). The α
value is equal to θ × 2π, l is computed in different ways (1,2,3 and 4) according to the
size of the bounding box sides and weighted at last by ρ. The Figure 5 (b) gives some
examples of positioning around a point using ρ = 1 and θ = {0, 3

20 ,
6
20 ,

9
20 ,

3
20 ,

15
20 ,

18
20}.

The Figures 5 (c) and (d) gives examples using previous rotations of the symbol and
with control points defined by (ρ = 1.0, θ = 0.25) and (ρ = 1.0, θ = 0.75).

Fig. 5. Control point
(a) computation (b) (c) (d) examples of result

4 Building Manager

In the proposed system the factory and the positioning processes are managed by an
explicit document building process. It starts with empty documents and fills them with
symbols in a pseudo-random way. However, a positioning might fail. These failures
appear for example when a symbol is positioned to overlap an existing one, when parts
of a symbol overflow a constraint area, etc. The system must be able to identify these
failures in order to cancel the positioning. Moreover, users might define constraints that
could be hard to satisfy. The system must then detect these cases in order to avoid an
infinite building process. To solve these problems our building manager uses five tests,
four to check the positioning of symbols and one to stop the building process.

Our first positioning checking concerns the management of the free space of doc-
ument. Indeed, during the building process several symbols can share the same place.
In order to prevent such a case we test the overlapping between the bounding boxes of
symbols. This test is computed in three steps as explained in Figure 6: first between a
line and a point (a), then between two lines (b) and at last between the two bounding
boxes (c). We test then the overlapping between the new symbol we want to position
with all the symbols already positioned on the document. Any positive case produces a
building failure.

Fig. 6. Overlapping test
(a) line-point (b) line-line (c) box-box

Our second positioning checking deals with the sliding constraint as shown in the
Figure 7. The positioning process of this constraint could produce overflows of symbols
around the line borders (a). In order to limit the positioning to the line areas we have
defined an overflow test. This test is based on the covering between two lines (b). It
is just a logical adaptation of the overlapping test presented in the Figure 6. A symbol
can be considered as overflowing if any of the borders {right, up, left, bottom} of its
bounding box is not covered by the constraint line L (c). A positive case produces then
a building failure.

Our next positioning checking is related to the zone constraint. Indeed, in the same
way as in the sliding one, overflows of symbols can appear. The next Figure 8 (a) gives
an example of this case. It corresponds to a random fixed point generated too near
of the borders of a polygon. In order to detect such a case we exploit the bounding
box’s corners of the symbol as explained in the Figure 8 (b). We test then if these
corners are included in the polygon. Any false case will produce a building failure. This
inclusion test is based on the method presented in the Figure 8 (c). This method sums

Fig. 7. Sliding checking
(a) symbol overflow (b) covering test (c) overflow test

the trigonometric angles of successive vectors joining the random point and the polygon
ones. A 2× π value corresponds to an inclusion case.

Fig. 8. Zone checking
(a) symbol overflow (b) overflow test (c) trigonometric inclusion test

We also check the number of positioned symbol per constraint. Indeed, for every
each constraint a maximum number of symbol to position is defined. This number is
one for a fixed constraint and can be larger for a sliding and a zone constraint. In this
last case, it is defined by the user in the file of positioning constraints. During the build-
ing process, the system computes for each constraint the number of symbol already
positioned. When this number becomes greater than the maximum a building failure is
produced.

In the last test we control the progress of the building process in order to stop it
if necessary. Indeed, the system must detect the number of building failure in order to
avoid an infinite building process. To do this we use the number of symbol per document
as stop criterion. This number corresponds to the sum of the maximum numbers of
allowed symbol per constraint. If the number of building failures becomes greater than
this number,we stop the process.

5 Experiments and Results

In this section we present some initial experiments and results of our system. The main
objective of these experiments is to create databases of test document, with their corre-
sponding ground-truth, for the series of the Symbol Recognition Contests5. To do it we
have used the symbol model library defined for the previous editions of the Contests5.
It is composed of 150 models of architectural and electrical symbols. Based on this li-
brary we have edited several constraint sets in order to build test document databases
of different types. Obviously, the documents produced by our system are in a vector
graphics form. For the Contest these documents should therefore be converted into bi-
nary images; noise can then be added by the distortion methods used in the past editions
of the Contests [2].

We have edited a first set of constraint in order to build “bag of symbol” documents.
The Figure 9 presents examples of these bags. In them the symbols are positioned at
random on an empty background, without any connection, and using different rotation
or scaling parameters. So these documents look similar to the ones generated by [8] (see
Figure 1 (b)). However, they are composed of real-life symbols and not only of geomet-
rical shapes. The key idea of this data set is to create an intermediate level of evaluation
between the documents composed of a single segmented symbol (as proposed in the
past editions of the Contest5) and whole documents (drawings, maps, diagrams, etc.).

Fig. 9. Examples of bag of symbol
(a) none transformation (b) rotated (c) scaled (d) rotated & scaled

To generate these bags we have defined in our setting a single squared zone con-
straint surrounding an empty background. In order to produce bags of a reasonable size
we have resized the original symbol models of the past editions5 from 512 × 512 to
256 × 256 pixels. Based on this initial size we have generated bags of 1024 × 1024
pixels composed of 10 symbols each. This corresponds to a mean symbol density of
0.625 (1282×10

5122) which respects a good partitioning between the background and the
foreground parts as shown in the Figure 9.

Using these size parameters we have generated 16 databases of 100 bags each. This
corresponds to an overall number of 1600 bags composed of around 16000 symbols.
These 16 databases have been generated by respecting the protocol used during the pre-
vious editions of the Contest5. First we have used different model numbers (25,50,100

and 150) in order to test the scalability of the methods. Next we have applied and com-
bined different geometrical operations as illustrated in the Figures 9 (a), (b), (c) and (d).
These transformation has been set as follow: from 0 to 2× π for the rotation with a gap
of 2×π

1000 , and from 75 % to 125% for the scaling with a gap of 0.05 % (50%
1000).

Our second set of constraints deals with the building of whole graphical documents
using filled backgrounds. For that we have limited our experiments to the building of
architectural drawings. The next Figure 10 presents some examples of the drawings we
produce. We argue here that the positioning constraints presented in this paper are not
domain dependant and could be re-used to build other kinds of document (electrical
drawings, geographical maps, etc.). However, the future edition of the Contest8 will be
a kickoff concerning the evaluation of whole documents. It will constitute an important
gap for the systems and to limit it to a single domain seems to be fair. We have chosen
the architectural drawings in recognition to their interesting properties concerning the
connectivity and the orientation of symbols.

Fig. 10. Examples of built architectural drawing

To generate these drawings we have retained the size parameter defined for the bags:
256 × 256 pixels per symbol. Obviously, the use of filled backgrounds makes the im-
ages bigger in regard to the one of bags. In order to produce drawings of reasonable
dimensions we have fixed a limit of about 40962 pixels per image by considering only
the backgrounds composed of a small number of rooms (from 4 to 8). We have then
selected 10 real-life drawings and created the backgrounds by cleaning their text and
symbol parts with an image editor. Using these backgrounds we have defined sets of
constraint in order to generate databases of 100 images per background and with 14 to
28 symbols per image. This corresponds to an overall number of 1000 drawings com-
posed of around 18 000 symbols. Obviously, to generate these drawings we have se-
lected only the architectural models of the Contest library5. It corresponds to an overall

8 In 2009 at La Rochelle city (France)

number of 16 models. The Figure 11 gives snapshots of these models with their corre-
sponding labels. For all these models we have also defined resizing parameters, from
1.0 to 2.4, in order to respect the proportions between the symbols on the drawings. The
resizing parameter of 1.0 corresponds then to symbols of 256× 256 pixels.

Fig. 11. Architectural symbols(labels & resizing parameters)

We have then used these models and the resizing parameters in the constraints. The
number of constraints per background is about 20. These constraints can be of fixed,
sliding or zone type. We have used the fixed constraint to position the door and the
window symbols on the drawings. The sliding constraint has allowed us to connect the
symbols like the skins, the tubs or the beds along the walls. In each sliding constraint
the symbols are positioned in the direction of the line and rotated using a gap of π

2 in
order to respect the wall/symbol alignment. Finally, we have used the zone constraints
to define the boundaries of rooms in order to position the other furniture elements like
the armchairs, the tables or the sofas. Inside, the symbols have been rotated from 0 to
2× π with a gap of 2×π

1000 .

6 Conclusion and Perspectives

In this paper we have presented a system for the building of synthetic graphical docu-
ments for the performance evaluation of symbol recognition systems. Our main contri-
bution is to extend the past works in this field to the building of whole documents (draw-
ings, maps, diagrams, etc.). To do it we have exploited the layer property of graphical
documents in order to position symbol sets in different ways using the same back-
ground. Our approach raises on the use of constraint in order to coerce the positioning
of symbols. The system that we propose is composed of three components: a symbol
factory to select and to load the symbols, a symbol positioning to solve the constraints,
and a building manager to supervise the whole process. Experiments show how our
system allows to produce large databases of document that look real.

Concerning future perspectives different works are planned. In the short term we
plan to develop a GUI to edit the positioning constraints. It will speed up the editing
process and help users to build their own databases. Also, based on this GUI we want

to use our system to generate other kinds of document like electrical drawings or ge-
ographical maps. A more long-term perspective concerns the development of a perfor-
mance characterization method. Such methods are now required in order to compare the
system results with the ground-truth. However, when we work with whole documents
the characterization becomes harder because it has to be done between symbol sets.
These symbol sets can be of different size, and large gaps can also appear concerning
the locations of symbols. Different matching cases can appear and the characterization
method should be able to detect and handle them properly.

7 Acknowledgements

The authors wish to thank Karim Zouba and Murielle Ramangaseheno (LITIS, Rouen
University, France) for their contributions to this work. This work was funded by the
Spanish Ministry of Education and Science under grant TIN2006-15694-C02-02, and
supported by the EPEIRES5 project of the French Techno-Vision program 2005.

References

1. Kasturi, R., Phillips, I.: The first international graphics recognition contest-dashed-line recog-
nition competition. In: Workshop on Graphics Recognition (GREC). Volume 1072 of Lecture
Notes in Computer Science (LNCS). (1996)

2. Valveny, E., al.: A general framework for the evaluation of symbol recognition methods.
International Journal on Document Analysis and Recognition (IJDAR) 1(9) (2007) 59–74

3. Lopresti, D., Nagy, G.: Issues in ground-truthing graphic documents. In: Workshop on Graph-
ics Recognition (GREC). Volume 2390 of Lecture Notes in Computer Science (LNCS). (2002)
46–66

4. Wenyin, L., Dori, D.: Principles of constructing a performance evaluation protocol for graph-
ics recognition algorithms. In: Performance Characterization and Evaluation of Computer
Vision Algorithms. Springer Verlag Publisher (1999) 97–106

5. Chhabra, A., Phillips, I.: The second international graphics recognition contest - raster to
vector conversion : A report. In: Workshop on Graphics Recognition (GREC). Volume 1389
of Lecture Notes in Computer Science (LNCS). (1998) 390–410

6. Phillips, I., Ha, J., Haralick, R., Dori., D.: The implementation methodology for the cd-
rom english document database. In: International Conference on Document Analysis and
Recognition (ICDAR). (1993) 484–487

7. Wenyin, L., Zhai, J., Dori, D.: Extended summary of the arc segmentation contest. In: Work-
shop on Graphics Recognition (GREC). Volume 2390 of Lecture Notes in Computer Science
(LNCS). (2002)

8. Aksoy, S., al.: Algorithm performance contest. In: International Conference on Pattern Recog-
nition (ICPR). Volume 4. (2000) 870–876

9. Zhai, J., Wenyin, L., Dori, D., Li, Q.: A line drawings degradation model for performance
characterization. In: International Conference on Document Analysis And Recognition (IC-
DAR). (2003) 1020–1024

