
Accurate junction detection and characterization in line-drawing images

The Anh Phama,b, Mathieu Delalandrea, Sabine Barrata, Jean-Yves Ramela

phamtheanh@hdu.edu.vn, {mathieu.delalandre, sabine.barrat, jean-yves.ramel}@univ-tours.fr

aLaboratory of Computer Science (LI), Francois Rabelais University, Tours city, France.
bHong Duc University, Thanh Hoa city, Vietnam.

Abstract

In this paper, we present a new approach for junction detection and characterization in line-drawing images. We formulate this
problem as searching for optimal meeting points of median lines. In this context, the main contribution of the proposed approach
is three-fold. First, a new algorithm for the determination of the support region is presented using the linear least squares tech-
nique, making it robust to digitization effects. Second, an efficient algorithm is proposed to detect and conceptually remove all
distorted zones, retaining reliable line segments only. These line segments are then locally characterized to form a local structure
representation of each crossing zone. Finally, a novel optimization algorithm is presented to reconstruct the junctions. Junction
characterization is then simply derived. The proposed approach is very highly robust to common geometry transformations and
can resist a satisfactory level of noise/degradation. Furthermore, it works very efficiently in terms of time complexity and requires
no prior knowledge of the document content. Extensive evaluations have been performed to validate the proposed approach using
other baseline methods. An application of symbol spotting is also provided, demonstrating quite good results.

Keywords:
Junction Detection, Junction Characterization, Dominant Point Detection, Graphical Documents, Line-Drawings

1. Introduction

A junction point, by definition in the computer vision (CV)
field [1], is formed by the intersection of at least two homoge-
neous regions. As a result, the junctions are often detected by
finding the prominent points in the image at which the bound-
aries of the adjacent regions meet. The edges meeting at a junc-
tion point are regarded as the arms of the junction and are used
to characterize junctions into different types such as L-, T-, or
X-junctions. Even though much of work for junction detection
has been proposed in CV [2, 3, 4, 5, 6], it is difficult to directly
apply these methods for the same problem in document image
analysis (DIA) for several reasons. First, most of these meth-
ods are scale-dependent, and restricted to limited experiments
without comparative evaluation with other methods. Few [2, 6]
discuss junction characterization, which is very important for
junction features. Second, all of these methods are limited to
single junction detection. Finally, the conception of a junction
in DIA is different from that in CV, making CV methods un-
suitable.

In DIA, the junction points are treated as the intersections of
at least two line segments and the problem of junction detec-
tion is usually formalized as finding the intersections of median
lines in images. This point, in fact, constitutes the main chal-
lenge of junction detection in DIA as the task of extracting the
median lines is not trivial. For these reasons, dedicated methods

∗2013 Elsevier Ltd. All rights reserved.

[7, 8, 9, 10, 11] have been proposed in DIA, in which the junc-
tion detection problem has been mainly considered as a post-
processing of a vectorization process. Although most of these
well-known techniques for junction detection are vectorization-
based systems, such methods rely on vectorization, which is
known to be sensitive to setting parameters, and present diffi-
culties when heterogeneous primitives (e.g., straight lines, arcs,
curves, and circles) appear within a single document. Knowl-
edge about the document content must be included, making the
systems less adaptable to heterogeneous corpus.

In this work, we directly address the problem of junction de-
tection by searching for optimal meeting points of median lines.
At first glance, it seems that our approach would directly en-
counter the well-known problem of junction distortion. How-
ever, it is important to note that, apart from distorted zones (i.e.,
the areas where several line segments meet), the median lines
are known to be very representative for the rest of line seg-
ments. This point suggests that if we can successfully remove
the distorted zones, the remaining disjointed strokes would be
not subjected to the problem of junction distortion. We there-
fore present a new algorithm to precisely detect and conceptu-
ally remove the distorted zones. The remaining line segments
are then locally characterized to form structural representations
of the crossing zones. Finally, an optimization algorithm is pro-
posed to reconstruct the junctions.

We review the related work for junction detection in Section
2. The details of the proposed approach are presented in Sec-
tion 3. Junction characterization and matching are presented in
Section 4. A complexity evaluation of the proposed system is

Pattern Recognition 47 (2014) 282 – 295

given in Section 5. Experimental results are investigated in Sec-
tion 6. An application of symbol spotting is provided in Section
7. Key remarks and future works are given in Section 8.

2. Related work

2.1. Junction detection techniques in CV

The methods for junction detection in CV are often classified
into two categories: edge grouping and template matching [1].
For the former approaches of edge grouping, Bergevin et al. [2]
first detect edge points by applying several local oriented-based
filters. The detected edge points are then used in conjunction
with two criteria (i.e., spatial dispersion and occupancy rate) to
generate hypotheses about junction branches from which junc-
tion points will be constructed. Deschênes et al. [3] estimate
the local curvature at each point and then update the estimated
curvatures by propagating the orientation vectors staring from
the low curvature end-points. Next, the junctions are identi-
fied by extracting the local maxima from the updated curva-
tures. Köthe [4] introduces an integrated system for edge and
junction detection with boundary tensors computed based on
the responses of polar separable filters. To improve the perfor-
mance, higher order filters should be incorporated; however, in
this case, it is difficult to design robust filters. Maire et al. [5]
first detect contours by combining local and global features to
form a globalized probability of boundary (gPB). The resulting
contours are then used to localize the junctions based on an op-
timization process. Recently, Xia [6] introduces the concept of
meaningful junctions based on the a contrario detection theory.
Compared to other junction detection methods, this approach
requires fewer parameters while providing accurate junctions
with respect to a globally visual perception grouping.

Regarding later approaches to template matching, Baker et
al. [12] argue that most of the features in the real world are para-
metric, such as edges, corners, junctions, and circles. In their
work, a feature model is first represented by a densely sampled
parametric manifold in a subspace of Hilbert space. Next, given
a local image window, an intensity vector constructed from this
window is projected to the subspace yielding a candidate fea-
ture point. The candidate points are finally verified using a dis-
tance threshold. Parida et al. [1] formalize the junction model
as an energy function. A matching process is then performed
by minimizing the energy function to yield the best fitted junc-
tion parameters. The results applied for several synthesized and
real images show the performance of the proposed method to
some extent. Sluzek [13] combines local operator and template
matching to detect junctions. The local operator is applied to
every edge point to compute its 1D profile within a local circu-
lar window. These profiles are matched with the junction tem-
plates to obtain final junctions. Tabbone et al. [14] carry out an
in-depth study of the behavior in the scale space of linear junc-
tion models (e.g., L, Y, and X), nonlinear junction models, and
linear junction multi-models. Based on these behaviors, they
conclude that the extrema of the Laplacian of a Gaussian func-
tion can be good starting points for detecting junctions. How-
ever, no experiment has been performed to validate their work.

2.2. Junction detection in DIA
In the domain of DIA, most of the proposed methods for

junction detection are concerned with the post-processing of
vectorization results. These methods address the problem of the
correction of the vectorization results to ensure a correct detec-
tion of junction points and vectors using contextual information
about line drawings. Therefore, the junction detection method-
ology becomes pre-processing dependent, as the employed data
structures and techniques are directly derived from the vector-
ization step. Junction detection has been addressed in the con-
text of skeleton-based [10, 15, 8], contour-based [16, 17, 18],
and direct vectorization [9, 7, 11].

For the skeleton-based approaches, Liu et al. [10] intro-
duce a new set of candidate junction points, computed based on
crossing-points obtained from skeletons and dominant points
obtained from a polygonal approximation step. A heuristic cri-
terion, called Criterion A, is then proposed to correct spurious
junctions. The basic idea of Criterion A is that two junctions
P1 and P2 are merged if we can find a sufficiently long straight
line segment P∗Pb fully included in the black region of the im-
age. The authors suggest choosing P∗ from those points on the
branch P1P2 and choosing Pb from those points on every branch
of P1 or P2 (except P1P2). Although the authors proved the ef-
ficiency and accuracy of this criterion on a Chinese character
dataset, our experiments carried out on Kanungo noise symbols
have shown that it performs poorly and often produces false
merging of the junctions.

Hilaire et al. [15] detect junctions based on topological cor-
rection of vectorization results. In their work, every skeleton
segment is classified into either short or long primitive by sim-
ply comparing its length with the local line-thickness. Next,
the long primitives are clustered into different groups by cal-
culating the intersection zones from the uncertainty domains.
Finally, junction points are reconstructed from the primitives in
each group. This work, as discussed by the authors themselves,
has several weaknesses, including being time-consuming, be-
ing sensitive to interrupted patterns, and featuring the ambigu-
ous step of merging junction points. A further extension of this
work has been made in [8], where the main improvement re-
lies on the process of skeleton optimization. The improved
algorithm traverses all possible paths in a connectivity graph,
starting from a long segment and leading to either another long
segment or the last segment of a sequence of the short ones. A
heuristic rule, which is quite similar in spirit to Criterion A, is
designed to check whether the first segment could join the final
one of the considering path. Using this rule, it is agreed that
multiple solutions could be outputted by the proposed system.

To avoid the distortion problem resulting from the skele-
tonization step, some works [17, 18] detect junctions from
contour-based vectorization. In [17], the lines are tracked us-
ing two contour followers on opposite sides of each line. When
arriving at a junction location, the tracking algorithm detects
the relevant branches by constructing a series of circles central-
ized at the current interrupted point with increasing radii. The
intersections between these circles and the contours of the line
structures are used to identify the branches involved at the con-
sidering junction zone. Next, the user is asked to determine the

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

2

branches for the continuation of the line tracking process. This
approach requires the intervention of the user in both seed ini-
tializing and junction handling. In addition, it is sensitive to
contour noises and the tracking length is difficult to maintain
properly. The work in [18] formulates the junction detection
problem as an identification of relations (i.e., intersection, suc-
cession, parallelism) between contour primitives (i.e., quadri-
laterals). Such an approach is therefore quite sensitive to con-
tour noises and presents some difficulty in terms of correctly
interpreting the pair of matched contours.

To avoid the problems resulting from skeletonization- and
contour-based vectorization, direct vectorization methods have
been proposed in [7, 9, 11]. Dori et al. [7] propose a di-
rect vectorization system based on pixel-tracking called sparse
pixel vectorization (SPV). During the tracking, the widths of
the tracked lines are estimated and compared to a threshold.
If the width run conflicts the width preservation, a junction
recovery process is triggered. The junction recovery process
works as an iterative search along the junction area, composed
of three steps: reverting back to the last medial point, updat-
ing the tracking step length with half the length of the previous
step, and exploring the new tracking position. The authors in
[9] propose a region-based vectorization system called maximal
inscribing circle (MIC). A MIC is defined as a maximal-radius
circle fitting inside a line segment in the sense that it has at least
two contact points with the border of this line segment. The
line segments are then tracked using the MIC(s), followed by a
labeling algorithm to analyze different detected lines, identify
junction zones, and construct spatial relations among them. A
final approach is related to an object-oriented vectorization sys-
tem [11]. In this method, a raster image is progressively sim-
plified by erasing recognized bars (e.g., lines, circles) to elim-
inate their interference with subsequent recognition. However,
the deletion operator at junction zones is not trivial. At such a
junction zone, the authors suggest detecting the contours of the
branches involved in this zone and then analyzing their trends
to calculate the part of the junction zone to be preserved. No ad-
ditional suggestions for improving this process are presented.

In summary, the common major problems with direct vector-
ization are the tracking initialization and reading order. Direct
vectorization is a recursive process, wherein next tracking steps
are initiated from the previous ones. Depending on how the
system drives the tracking, detection results can change signif-
icantly. In addition, as we have mentioned before, these meth-
ods are sensitive to the error-prone caused by the vectorization
process. The achievements above convince us that a robust ap-
proach for junction detection in DIA is possible. In this paper,
we attempt to create such an approach with the following major
features: junction distortion avoidance, accurate junction detec-
tion, efficiency, and robustness. We will justify these features
in the following sections.

3. The proposed approach

We directly formulate the problem of junction detection as
searching for optimal meeting points of line-like primitives
from input images. However, as it is impossible to obtain ideal

line primitives (i.e., 1-pixel-thick lines) from a digitalization
process, the intersection areas of the line primitives can not
converge or contract to one pixel as expected. Therefore, to
achieve exact junction localization, the line primitives must be
represented in suitable forms that facilitate the step of finding
their intersections. Apart from the major drawback of junction
distortion, median axis lines have been known to be very good
representations of such line primitives. Naturally, if we can
identify and remove all distorted zones, the remaining line seg-
ments could be well represented as the mean of the median lines
with little (or even without) disturbance concerning with the is-
sue of junction distortion. We therefore develop our approach
based on this idea.

Figure 1: Overview of the proposed approach.

It is noted that similar ideas have been explored in the liter-
ature, e.g., [19, 15, 8]. However, the approaches taken in those
works are quite different from ours. In particularly, the works
in [15, 8] partition skeletons into reliable and unreliable line
segments relying solely on a single line-thickness criterion: if
the length of one segment is less than the line thickness, it is
considered to be a short segment and vice versa. The short seg-
ments are treated as unreliable segments and thus removed. Us-
ing such a threshold is too vulnerable and would lead to many
mis-classifications among unreliable/reliable segments. Fan et
al. [19] partition images into irregular regions and regular bars;
however, their approach is based on run-length tracking, which
is sensitive to slanted bars and complicated crossing areas.

In our approach, a distorted zone is identified by addressing
two probing questions: where such a zone is likely to appear
and how large this distortion zone would be. Naturally, the dis-
torted zones occur at crossing locations and these zones would
be restricted to small areas fitting inside the crossing structures
(see Figure 1). The former fact indicates that we could make use
of candidate junctions to determine the locations of distorted
zones, whereas the latter observation suggests that a maximal
inscribing circle [9] would be useful to determine the areas of
the distorted zones. Next, the reliable segments are extracted
and then locally characterized to form a local structure repre-

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

3

sentation of every distorted zone. Accurate junction localiza-
tion and characterization are then achieved based on a novel
junction optimization algorithm. The overall approach is out-
lined in Figure 1.

3.1. Pre-processing

Our method is applied to binary images. These images could
be obtained following some enhancement processes, such as
noise filtering and binarization, depending on the specific ap-
plication. Next, the median lines are pre-extracted using the
technique presented in [20] because it is probably argued as
one of the most robust techniques for skeleton extraction in the
literature. In addition, this method is time-efficient, supporting
all our processes at a low time cost.

3.2. Detection of Candidate Junctions

In the second stage, candidate junction points are detected
from the median lines extracted previously. These candidate
junctions, in combination with the line thickness information,
are used to detect distorted zones and drive our junction opti-
mization process in the next stages of our system (see Figure
1). In our case, the candidate junctions are classified into 2-
junctions and n-junctions (i.e., the junctions formed by n arms
with n ≥ 3). The n-junction candidates are easily extracted by
detecting the crossing-points obtained from the skeletonization
step.

The 2-junction candidates are detected as the dominant
points of the median lines. A large number of works in the
literature have addressed the problem of dominant point de-
tection from digital curves. Recent surveys of this work are
presented in [21, 22]. In general, the approaches for dominant
point detection are categorized into two classes: multi-scale
and single-scale. Although the former approaches [23, 24] have
been known to be robust to noise, they often produce high false
positive rates. This matter is realized based on the fact that
curve smoothing and curvature estimation are two of the most
critical stages of a dominant point detector [21, 25]. However,
the choice of an appropriate smoothing scale is not trivial and
the use of a multi-scale framework to smooth the curve does not
solve the problem of scale selection. For the single-scale-based
approaches [26, 27, 25], the major challenge is the determina-
tion of the region of support (ROS) or local scale. In our work,
the candidate 2-junctions are detected by exploiting Teh-Chin’s
method [25] with a major change in the step of determination
of ROS. The key idea in Teh-Chin’s work relies on the obser-
vation that ROS could be determined by measuring the sudden
change of the chord length: given a point pi of a digital curve,
the chord length lk is defined as the Euclidean distance from
pi−k to pi+k, given a parameter k > 0. By applying the Teh-
Chin’s criterion, the ROS at pi is determined as: ROS (pi) = k
if lk ≥ lk+1 and l j−1 < l j for any j: 1 ≤ j ≤ k. This criterion
could be useful for continuous curves but is fragile in the case
of digital curves. Figure 2 shows several examples in which
that Teh-Chin’s method fails to correctly determine the ROS.

Our solution to the problem of ROS determination relies on
the observation that for every point pi of a curve, there exists a

R

(a) (b) (c)

(d) (e) (f)

ld lk
pi

pi+k
pi+d

pi-k
pi-d

pi
q2 q1

lk

lk+d
lk= lk+1

pi

pi
pi pi

pi

. . .

. . .

Figure 2: Some examples in which Teh-Chin’s technique fails to correctly de-
termine the ROS. Top row: (a) ROS (pi) = d for any point pi on a circle with
radius R, where ld = 2R; (b) ROS (pi) = +∞ (i.e., pi is the middle point of seg-
ment q1q2 and thus lk+d > lk for any k, d > 0); (c) ROS (pi) = 1 (i.e., lk+1 = lk).
Bottom row: expected ROS for each case in the top row.

trailing line segment (i.e., the segment composing of the points
{pi, pi−1, . . . , pi−kt }) and a leading line segment (i.e., the seg-
ment composing of the points {pi, pi+1, . . . , pi+kl }), where kl > 0
and kt > 0, such that both line segments together constitute
a meaningful view of that point regardless of how smooth the
curve is. This observation is especially true at dominant points
on the curve, where a dominant point is usually treated as the
point at which two edges meet and form a vertex. This fact sug-
gests that the ROS of a point could be determined by finding
the straight lines fitted to the leading and trailing segments of
that point. It turns out that this task could be efficiently accom-
plished using linear least squares (LLS) line fitting technique. In
the proposed approach, given a curve consisting of N ordered
points p1, p2, . . . , pN , the ROS at a point pi is determined as
follows:

• Step 1: Start with kl = 1 and gradually increase kl in incre-
ments of one to estimate the straight line d f of the form
y = α + βx, which provides the best fit for the points
{pi, pi+1, . . . , pi+kl }. The parameters α and β are derived
by minimizing the following objective function:

Q(α, β) =

i+kl∑
j=i

(y j − α − βx j)2 (1)

Next, we define the distance error h(p j, d f) computed
as the Euclidean distance from a point p j(x j, y j) to the
straight line d f as follows:

h(p j, d f) =
|βx j − y j + α|√

β2 + 1
(2)

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

4

The step of searching the local scale on the leading seg-
ment of pi will be terminated at some point pi+kl if either
of the two following conditions is satisfied:

1
kl

i+kl∑
j=i

h(p j, d f) ≥ Emin (3)

h(pi+kl , d f) ≥ Emax (4)

The first condition (i.e., Condition (3)) requires that the
average distance error associated to the fitting line is less
than Emin pixels. The second condition (i.e., Condition
(4)) is designed to limit the maximum distance error from
a point p j to d f : no point is Emax pixels away from d f

(Emax > Emin). The value sl = kl − 1 is then treated as the
local scale on the leading segment of pi.

• Step 2: Repeat Step 1 to find the optimal scale st = kt − 1
with respect to the trailing segment {pi, pi−1, . . . , pi−kt }.

• Step 3: The ROS of pi is finally computed as: ROS (pi) =

Min(st, sl).

Our empirical investigation showed that the values of Emin

and Emax produce a negligible impact on the detection rate pro-
vided that Emin ∈ [1.2, 2.0] and Emax ∈ [1.5, 3.0]. In our im-
plementation, we fixed the following setting for all the exper-
iments: Emin = 1.3 and Emax = 1.8. Once the ROS is deter-
mined, we then apply Teh-Chin’s algorithm to detect the dom-
inant points from skeleton branches. Figure 3 shows the domi-
nant points and the corresponding ROS(s) detected from an im-
age. The detected points, in combination with crossing-points
(i.e., skeleton points with at least three 8-connected neighbors),
are treated as the candidate junctions and will be used to detect
distorted zones in the next stage.

Figure 3: Left: an original image; Right: the detected dominant points (small
dots) and the corresponding local scales (small circles).

3.3. Distorted Zone Detection

The candidate junction points we have detected previously
are used in conjunction with the line thickness information to
first detect distorted zones and then conceptually remove these
distorted zones to eliminate their interference in terms of the
distortion of median lines. In our approach, a distorted zone is

identified by tackling two probing questions: where is such a
zone likely to occur and how large this distortion zone would
be. Naturally, the distorted zones occur at junction locations,
and these zones would be restricted to small areas fitting in-
side the crossing structures. Furthermore, line thickness is also
one of main causes of skeleton/junction distortion (i.e., thin ob-
jects are not or weakly subjected to skeleton distortion). Rely-
ing on these observations, the distorted zones could be easily
identified by using the information of the line thickness at the
candidate junction points detected in the previous steps. More
precisely, we define a distorted zone ZJ for a given candidate
junction point J as the area constructed by a circle centered at
J whose diameter equal to the local line thickness computed at
J. This definition is actually a variation of the maximal inscrib-
ing circle, as presented in [9]. By making use of line thickness
information, these maximal inscribing circles are easily deter-
mined with a high degree of accuracy. We call several distorted
zones that intersect together a connected component distorted
zone (CCDZ). Once the CCDZ(s) have been detected, the skele-
ton segments lying inside these zones are treated as distorted
segments and thus removed. From this point, our subsequent
stage of junction reconstruction proceeds based on the reliable
line segments only. Figure 4 (left) shows the reliable segments
remaining after removing all distorted zones (marked as gray
connected components).

Figure 4: Left: an input image with the detected CCDZs (gray connected com-
ponents) and reliable line segments (thin white lines). Right: the local topology
defined for a CCDZ.

3.4. Junction Reconstruction

The junction reconstruction exploits candidate junction
points to remove possible false alarms, merge candidate junc-
tion points, and correct final junction locations. This recon-
struction is initiated in a first step by extracting local topolo-
gies, corresponding to sets of segments belonging to the same
distorted zone or set of intersecting distorted zones. These local
topologies will drive a second step in our junction optimization
process. We will present these two steps in the following sub-
sections.

3.4.1. Extraction of local topology
This step defines and constructs the local topology at each

CCDZ. In particularly, given a CCDZ, its local topology is de-
fined as the set of local lines segments, {PiQi}i=1,...,n, stemming
from this CCDZ. That is, for each reliable skeleton segment

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

5

stemming from a CCDZ, we characterize the first part of this
segment by a local line segment starting from the extremity
linked to the CCDZ. By defining and analyzing these local ge-
ometry topologies, we have significantly simplified the com-
plexity of the objects of input images; thus, the proposed ap-
proach is able to work on any type of shape rather than straight
lines and/or arc primitives exclusively. Moreover, this step can
be performed efficiently by reusing the results of the ROS deter-
mination stage applied at each extremity of each reliable skele-
ton segment stemming from the CCDZ. As a result, for each
CCDZ, we obtain a list of local line segments describing its
local geometry topology. In addition to these local lines, the
foreground pixels lying inside the CCDZ are also recorded for
use as a local search neighborhood for the subsequent step of
junction optimization. In summary, the local topology associ-
ated with a CCDZ is now represented by a list of n local lines,
{PiQi}i=1,...,n, and a set, Zd, containing the foreground pixels lo-
cated inside the CCDZ. Figure 4 (right) illustrates a local topol-
ogy extracted for a CCDZ.

3.4.2. Junction optimization
The goal of this step is to reconstruct the junction points for

a specific CCDZ represented by n line segments {PiQi}i=1,...,n
and a set, Zd, of foreground pixels lying inside the CCDZ. We
accomplish this goal by clustering the line segments into differ-
ent groups such that the clustered lines in each group will be
used to form a junction point. Concerning this problem of clus-
tering segments, the authors in [15], as discussed above, cal-
culated the intersection zones from the uncertainty domains of
the long primitives. This approach is subjected to the constraint
that each primitive is allowed to be clustered in one group only,
increasing the difficulty of the subsequent junction linking step.
Another approach to segment clustering was presented in [5]
based on the idea that if we know the position of the junction,
the associated line segments passing through this junction could
be easily identified and vice versa. However, this work assumed
that each neighborhood (see Figure 5) contains one junction
only, and this approach is subjected to high computation load
because the optimization step must include sufficiently large
neighborhoods likely containing junctions to reduce the error
introduced by the previous step of contour detection. In addi-
tion, the reweighting step does not consider the weights accu-
mulated during the previous iterations. This omission may lead
to incorrect convergence, as shown in Figure 5.

We therefore develop an integrated solution for both cluster-
ing and optimizing tasks to address the aforementioned weak-
nesses, described below. In particularly, the proposed algorithm
is able to handle the following issues simultaneously: (1) each
neighborhood can contain multiple junctions, (2) each line seg-
ment can be clustered into more than one group, and (3) junc-
tion linking and characterization are automatically derived.

The key spirit behind our algorithm is as follows. Starting
from a CCDZ (e.g., Figure 7(c)), a new junction point is con-
structed by iteratively searching for a foreground pixel of the
CCDZ such that the distance error, computed as the sum of
weighted Euclidean distances from this pixel to the line seg-
ments of the CCDZ, is minimized (e.g., Figure 7(d)). To achieve

(a) (b) (c)

Expected

junctions

Junction after

convergence in [5]

Neighborhood

1

2

3

4

Figure 5: Incorrect convergence of the junction optimization step in [5]: (a)
four line segments with the same length; (b) the detected junction, which is the
same distance from the lines 1 and 2; (c) expected junctions.

this goal, each line segment has to be assigned with a proper
weight in the sense that the lines, which are close to the junc-
tion, would have higher weights than the ones away from the
junction. This implies that the weights are set mainly relying
on the distances from the junction to the lines. In practice, a
smooth function (e.g., Gaussian function) should be used to up-
date the weights. As the algorithm evolves, the junction tends to
converge towards the lines with higher weights and move away
from the lines with lower weights. Hence, the junction would
converge to a fixed point after several iterations (e.g., Figure
7(d)). Once a newly optimized junction is derived, the weights
are re-assigned in such a way that higher weights are given to
the lines which have not been involved in constructing the junc-
tions previously. The optimization process is then repeated to
find a new junction (e.g., Figure 7(e, f)). This continues until
every line segment has been participated in constructing at least
one junction. A final post-processing step is then applied to
make the topology of the obtained junctions be consistent (e.g.,
Figure 7(g)). The proposed algorithm works as follows.

Let wi be a weight assigned to the line segment PiQi with
1 ≤ i ≤ n, and ΩJ be a set of optimal junctions found during
the optimization process. At the beginning, ΩJ ← ∅ and wi ←

|PiQi|, and all line segments {PiQi} are marked as unvisited.
The followings are the main steps of the proposed algorithm
with respect to those in Figure 6.

• Step 1: Search for an optimal junction J:

J = arg min
J∈Zd
{

n∑
i=1

wi · d(J, PiQi)} (5)

where d(J, PiQi) is the Euclidean distance from J to PiQi.

• Step 2: Update the weights {wi}:

wi = wi · exp(
−π · d(J, PiQi)2

S CCDZ
) (6)

where S CCDZ is the area of the CCDZ.

• Step 3: Enact a penalty (i.e., smaller weight) for the line
segment farthest from J: wimax = wimax

τ
, where imax =

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

6

No

 Convergence test?

No

CCDZ: n lines {PiQi}, and weights {wi}

Optimal Junctions

 All lines processed?
Yes

Optimal
junction localization

Weight updating

New junction and
cluster creation

Topology verification

Weight reinitiating

Yes

Figure 6: Outline of our junction optimization algorithm.

arg maxi{d(J, PiQi)} and τ > 1. If there are several line
segments having the same greatest distance from J, one is
randomly selected to assign a penalty.

• Step 4: Repeat steps {1, 2, 3} until J converges to a fixed
point or a given number of iterations has been reached.
Then, insert the newly obtained junction to ΩJ: ΩJ ←

ΩJ ∪ {J}, and go to Step 5.

• Step 5: Determine the line segments that pass through the
junction J and mark them as visited. A new cluster is con-
structed corresponding to these line segments. If all line
segments have been marked as visited, go to Step 7. Oth-
erwise, go to Step 6 to look for other junctions.

• Step 6: Reinitiate the weights: wi = 1 if the label of PiQi

is visited; otherwise:

wi =

L∏
k=1

exp(
π · d(Jk, PiQi)2

S CCDZ
) (7)

where L is the number of times that steps {1, 2, 3, 4, 5} have
been fulfilled, and Jk is the optimal junction found during
the corresponding cycle. Return to Step 1.

• Step 7: Topology consistency verification by resetting the
weights: wi = 1 if the line PiQi is involved in only one
cluster; otherwise wi = w∞ = K ·

√
H2 + W2, where W

and H are the width and height of input image respectively,
and K = |ΩJ |. Then, apply Step 1 to the line segments in
each cluster to obtain the final junctions. In this way, the
lines assigned with the weight w∞ are fixed in one place.

The distance error minimization in Step 1 has been used in
several works [15, 5]. Hilaire et al. [15] employed least squares
error minimization to find the optimal position of the junction,

but this process is performed separately from segment cluster-
ing. Maire et al. [5] developed this idea by incorporating a
reweighting step like that in Step 2 but differing in that it does
not incorporate the weights accumulated during the previous
iterations and requires a training step to empirically derive a
parameter controlling the decay of distance tolerance.

Our investigation has shown that Step 1 will quickly con-
verge to the optimal junction if the weights are updated taking
into account the weights derived during the previous iterations.
In addition, we avoid the training step by normalizing the dis-
tances, d(J, PiQi), based on the area of the CCDZ (i.e., the fac-
tor π · d(J, PiQi)2/S CCDZ is equal to the ratio of the area con-
structed by a circle with radius of d(J, PiQi) centralized at J and
the area of CCDZ). Step 3 enacts a penalty (the parameter τ = 2
in our implementation) for the line segment farthest from J. If
there are several line segments with the same greatest distance
from J, one is randomly selected to assign a penalty. This step
is used to allow the optimization process to quickly converge
to a correct junction location. More importantly, it acts as a
trigger to break the balance state or incorrect convergence, if
any, as discussed in Figure 5. Note that if one line segment is
penalized, it does not imply that this line segment will not pass
through the latest optimal junction.

Step 4 is used to repeat the three steps above until the op-
timal junction is found. The obtained junction is then added
to the set ΩJ (e.g., the junction J1 in Figure 7(d)). Next, the
line segments that actually form this junction are determined by
looking for the lines whose distances from the detected junc-
tion tend to form a monotonically decreasing order (e.g., the
lines {1, 3, 4} in Figure 7(d)). This is accomplished because at
each iteration, the optimal junction would converge towards the
lines with higher weights and move away from the lines with
lower weights. Therefore, the distances from the optimal junc-
tion in each iteration to the line segments are recorded and then
used to determine the real lines passing the most recently found
junction. The obtained lines are then associated to a new clus-
ter, and marked as visited (i.e., already involved in at least one
junction). If all lines have participated in constructing at least
one junction, the algorithm terminates after checking topology
consistency in Step 7. Otherwise, Step 6 is invoked to initiate
a new cycle to find other junctions (i.e., a cycle is composed of
the first five steps {1, 2, 3, 4, 5} to completely find a new optimal
junction).

In Step 6, the weights are reinitiated such that more priority
or higher weights are given to the lines that have not yet been
involved in junction construction (e.g., the lines {2, 5} in Figure
7(d)). To this end, the recorded distances that violate the mono-
tonic decrease are used to accumulate the weights for the lines.
In this way, these lines increasingly gain weight, and at the end,
when the weights are large enough, the optimization process
(i.e., steps {1, 2, 3, 4}) will be driven by these weights, leading
to a new junction convergence at the corresponding lines (e.g.,
J2 in Figure 7(e) and J3 in Figure 7(f)).

Step 7 is aimed at verifying the topology consistency of all
line segments in the obtained clusters. At this time, we obtain
K clusters, each containing one optimal junction. As one line
segment, say PiQi, can be clustered in several groups (e.g., the

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

7

3

4

(a) (b) (c)

(d) (e) (f) (g)

J1

J2

J1

1

2

3

4

5

1

Zd Zd

1

2

5

1

2

3

4

5

J2

J3

J1

J2

5 J3

J1

Figure 7: (a) An image with its skeleton; (b) the CCDZ(s) and the reliable
line segments; (c) the local topology configuration extracted for one CCDZ
(marked by Zd); (d) the first cycle of steps {1, 2, 3, 4, 5}: the junction J1 is found
corresponding to the cluster containing line segments {1, 3, 4}; (e) the second
cycle: the junction J2 is found corresponding to the second cluster comprised
of lines {1, 2}; (f) the third cycle: the junction J3 is found corresponding to the
third cluster of {1, 5}; (g) topology correction for three junctions.

line 1 in Figure 7(f)) and there is no warranty that all the opti-
mal junctions in these groups will form a straight line that fully
contains PiQi, such situations must therefore be identified and
corrected. This step could be easily processed by setting a large
enough weight for the line PiQi and then performing Step 1
once for each cluster. In this way, a small change in the dis-
tance error computed from each point J ∈ Zd to the line PiQi

will cause a large change in the objective function in Step 1.
The line PiQi is thus fixed in one place, and the new optimal
junctions found in the clusters, in which PiQi is involved, be-
come consistent (Figure 7(g)). Figure 7 demonstrates the steps
of our junction optimization algorithm, and Figure 8 shows all
the detected junctions and the corresponding local scales.

Figure 8: Detected junctions (red dots) and local scales (circles).

4. Junction characterization

One of the main advantages of our junction reconstruction
process is that the detected junctions could be automatically
characterized and classified into different types, such as T-, L-,
and X-junctions. More generally, we wish to characterize any
complicated junctions in the same manner based on the arms

 (a) (b) (c)

J1

1

2

3

4

5 J3

J2

J1

J3

J2

Figure 9: (a) A CCDZ cropped from Figure 7 with the superposition of three
clusters; (b) detected junctions {J1, J2, J3}; (c) the detected junctions are clas-
sified as a 3-junction even though J2 and J3 are constructed from two clusters,
{1, 2} and {1, 5}, respectively, each of which only contains two local line seg-
ments.

forming the junction. In our case, as each junction point is
constructed from the local line segments of one group, we can
consider these line segments as the arms of the junction point.
However, as each CCDZ can contain multiple junctions and
each local line segment of the CCDZ can participate in several
groups, the exact arms of a junction could therefore be greater
than the line segments forming this junction (Figure 9). Given
a local topology represented by n straight line segments {PiQi}

with 1 ≤ i ≤ n, the process of determination of the exact arms
of each junction is as follows:

• Let OJ be a set of arms of junction J where OJ ← ∅ at the
beginning for every junction.

• If the line segment PiQi is clustered in a group whose an
optimal junction J is then constructed, the line PiQi is
considered as one of the arms of the junction J: OJ ←

OJ ∪ {PiQi}.

• For each line segment PiQi that is clustered in several
groups, the corresponding junctions involved in PiQi are
sorted in the order of increasing distance to Pi. Then, for
each junction J except the last one in the list, the corre-
sponding set OJ is updated as: OJ ← OJ∪{JG}, where JG
is a straight line segment constructed at J with the same
length as PiQi but the point G lies in the opposite direc-
tion of vector ~PiQi.

Once we have correctly determined the arms of each junc-
tion, the junction characterization could easily be accomplished
as follows. Given a junction J associated with a set of m arms
{UiVi}i=0,...,m−1, the characterization of this junction is described
as {p, sp, {θ

p
i }

m−1
i=0 }, where:

• p is the location of J, and sp is the local scale computed as
the mean length of the arms of J;

• θ
p
i is the difference in degrees between two consecutive

arms UiVi and Ui+1Vi+1. These parameters {θp
i }

m−1
i=0 are

tracked in the counterclockwise direction and the θp
m−1 is

the difference in degrees between the arms Um−1Vm−1 and
U0V0.

The description of each junction point derived in this way
is rather compact, distinctive, and general. The dimension of

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

8

this descriptor is limited to the number of arms of each junc-
tion point, and in practice, this value is quite small (e.g., 3 for a
T-junction, 4 for an X-junction). This point constitutes a great
advantage of the detected junctions that provides a very effi-
cient approach to the subsequent task of junction matching. In
addition, the junction descriptor is distinctive and general, such
that we can describe any junction points appearing in a vari-
ety of complex and heterogeneous documents. After this step,
junction matching can be performed by simply comparing the
descriptors of two junctions. Figure 10 shows the correspond-
ing matches of the junctions detected in a query symbol (left)
and those of an image cropped from a large document (right).
For simplicity, the matches are shown after performing geome-
try checking.

Figure 10: Corresponding junction matches between a query symbol (left) and
a cropped document (right).

5. Complexity Evaluation

In this section, we provide a detailed analysis of the com-
plexity of the proposed method given an image I of the size
M × N. In the pre-processing stage, before applying the (3,4)-
distance transform skeletonization algorithm, several basic pre-
processing steps, such as hole filling, small contour removing,
and image dilation, are performed, as discussed in the original
work of Di Baja [20]. Such steps can be processed in paral-
lel using one scan over the image. The skeletonization step is
then applied, which requires two scans of the image to calcu-
late the (3,4)-chamfer distance. In summary, the computation
complexity for the pre-processing stage is basically linear (i.e.,
O(MN)).

In the next stage of scale selection and dominant point de-
tection, the ROS determination step is applied for each skele-
ton point, thus using a single loop of length S , where S is the
number of skeleton points. The technique of least squares line
fitting is a second-order linear computation of the length that
it traverses. In practice, it is not necessary to traverse a full
skeleton branch; rather, a short path of the branch with a length
kρ = 50 (pixels) may be sufficient, for example. As the tech-
nique of least squares line fitting is performed in both directions
at each point, it is equal to a complexity of O(2S k2

ρ) in total for
this step. The 2-junctions are then detected as dominant points
by applying Teh-Chin’s algorithm, which is a sequential 4-pass
process, where the first pass is performed on the full length

of the median lines to detect a list of H candidate dominant
points and the other passes are conducted on one of these can-
didate points, where H is much smaller than S . Furthermore,
the crossing-points could be detected in parallel with a cost of
first-order linear polynomial time O(S). The overall computa-
tion complexity for these processes is essentially linear to the
length of the median points (i.e., O(S k2

ρ)).
For the last stage of junction reconstruction, let K be the

number of candidate junctions comprised of 2-junction points
and crossing-points. The distorted zone Zi defined at each can-
didate junction pi (1 ≤ i ≤ K) has an area of πr2

i /4 where ri is
the line thickness at pi. Given a distorted zone Zi, the maximum
complexity of the computation to find an optimal junction in Zi

is O(Tπr2
i /4) where the first factor, T , is the number of times

that steps {1, 2, 3} are repeated and the second factor, πr2
i /4, is

the number of foreground pixels in Zi (i.e., the local searching
neighborhood). Our investigation has shown that the number of
iterations, T , is very small and is typically less than 10. As Zi

can contain multiple junctions, say L junctions, it implies that
the junction optimization process applied to Zi will be termi-
nated after running L iterations of the steps {1, 2, 3, 4, 5}. The
value of L is also very small in practice, often 2; thus, for a
wide range of situations, we have set L = 5 in our implemen-
tation. Overall, the maximum complexity of computation for
this stage, applied to K distorted zones, is O(KLTr2) where r
is the average line thickness of the image I. In other words,
this stage is linear time complexity for the areas of the distorted
zones. Note that the distorted zones, in practice, could intersect,
resulting in connected component distorted zones and making
the searching areas much smaller.

6. Experimental results

6.1. Evaluation Metric and Protocol

We use repeatability criterion to evaluate the performance of
our junction detector because this criterion is standard for the
performance characterization of local keypoint detectors in CV
[28]. This criterion works as follows. Given a reference image
Ire f and a test image Itest taken under different transformations
(e.g., noise, rotation, scaling) from Ire f , the repeatability crite-
rion signifies that the local features detected in Ire f should be
repeated in Itest with some small error ε in location. We denote
D(Ire f , Itest, ε) as the set of points in Ire f that are successfully de-
tected in Itest in the sense that for each point p ∈ D(Ire f , Itest, ε),
there exists at least one corresponding point q ∈ Itest such that
distance(p, q) ≤ ε. Let nr and nt be the number of keypoints
detected by one detector from Ire f and Itest, respectively. The
repeatability score of this detector applied to the pair (Ire f , Itest)
is computed as follows:

r(Ire f , Itest, ε) =
|D(Ire f , Itest, ε)|

Mean(nr, nt)
(8)

Our strategy to perform evaluation in the experiments is as
follows. We first apply each detector to reference images and
test images in each dataset to obtain reference junctions (S r)

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

9

and detected junctions (S t), respectively. Then, groundtruth in-
formation is used to compute repeatability scores of this detec-
tor from two sets of junctions: S r and S t. The average score
on the entire dataset is finally outputted. We vary the value of
parameter ε in the range of [1, 8] to obtain a ROC-like curve of
the repeatability score.

6.2. Baseline Methods
To compare the proposed system with other methods, we

have selected two baseline systems [8, 10] dedicated to junction
and fork-point detection. The work of Liu et al. [10] is dedi-
cated to fork-point detection in handwritten Chinese characters,
whereas the work of Hilaire et al. [8] is a vectorization-based
system for line-drawings. We wish to highlight that although
the work in [8] is designed for vectorization, the major contri-
bution in this work is the process of skeleton optimization to
correct skeletons and reconstruct junctions. As the implemen-
tations of these works are not publicly available, we have devel-
oped our own implementation for these two systems1. For each
system, several running trials have been performed to select the
best parameter settings, and only junctions or fork-points are
compared with our detected junctions. It is worth noting that we
have applied the same pre-processing steps for all three systems
and used the same parameter settings in all the experiments.

6.3. Datasets
The datasets for experiments have been selected from

the Symbol Recognition Contest in GREC2011 (SymRec-
GREC11)2, the low resolution diagram dataset SESYD3, and
the UMD Logo Database of University of Maryland, Labora-
tory for Language and Media Processing (LAMP)4. The Sym-
RecGREC11 dataset is composed of 4 folders: setA, setB, setC,
and setD. SetA and setB are excluded from our experiments
because setC is the largest set, with 150 model symbols and
7500 test images covering all degradations included in setA and
setB. SetD is very different from setC in terms of noise dis-
turbance. Instead of using traditional Kanungo noise, the setD
is disturbed by context noises (i.e., symbols cropped from full
line-drawing images). The diagram SESYD dataset contains
100 reference images and 936 test images by applying four
levels of low resolution, corresponding to the scaling factors
{1/2, 1/4, 1/8, 1/16}, and using a compression scheme (JPG)
from gray-level images. In addition, for the evaluation of single
parameter changes (i.e., rotation and scaling), we have used 150
model symbols from GREC2011 to generate 1339 test images
taken under different levels of rotation (e.g., from 100 to 900)
and 1200 test images taken under different scaling factors (i.e.,
{1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}). The UMD Logo Database
consists of 104 model logos, which have been used to generate
1272 test images by applying a combination of Kanungo noise
and geometric transformations.

1The source codes for the three systems and the demonstration of
our junction detector and symbol spotting are publicly available at
https://sites.google.com/site/ourjunctiondemo/

2http://iapr-tc10.univ-lr.fr/index.php/final-test-description
3http://mathieu.delalandre.free.fr/projects/sesyd/
4http://lampsrv02.umiacs.umd.edu/projdb/project.php?id=47

6.4. Comparative Results

6.4.1. Evaluation of rotation and scaling change

In this experiment, the repeatability scores are computed over
single parameter changes while the location error is fixed at 4
(pixels). Table 1 presents the effect of rotation change for three
systems. It can be noticed that the proposed approach far out-
performs (almost 25%) the two other systems and that our re-
peatability scores tend to be quite stable and almost over 88%
when varying the rotation parameter. These results confirm that
the proposed system is very robust to rotation change. The sys-
tems of Liu et al. and Hilaire et al. are theoretically rotation
invariant; however, the results reported here show that these
systems are less adaptive to rotation change under real-world
conditions. In the context of scaling change, as shown in Ta-
ble 2, the same situation is repeated for the baseline methods,
whereas the proposed system still strongly outperforms the oth-
ers. It is noticed, in particularly, that the results obtained by the
system of Hilaire et al. are significantly degraded when increas-
ing the scaling factor. This degradation could be due to the two
baseline systems being quite sensitive to the digitization effect
caused by rotating and scaling the input images. In fact, the
results reported in the work of Hilaire et al. are applied to sev-
eral line-drawing images that are typically used in the context
of vectorization contests, whereas the results reported by Liu et
al. are applied to handwritten Chinese characters, which are not
taken under extreme rotation/scaling changes.

Table 1: Repeatability scores on rotation change (%).

System Rotation change in degrees
10 20 30 40 50 60 70 80 90

Our system 97 93 88 92 90 89 93 97 99
Hilaire et al. 76 69 65 67 65 66 66 69 76

Liu et al. 69 65 62 66 68 62 66 67 79

Table 2: Repeatability scores on scaling change (%).

System Scaling factor
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Our system 95 92 85 78 74 70 64 61
Hilaire et al. 61 49 27 15 11 10 6 5

Liu et al. 70 63 52 46 37 31 25 22

Table 3: Repeatability scores on Kanungo noise and rotation/scaling change for
setC of GREC11 (%).

System Location error (in pixels)
1 2 3 4 5 6 7 8

Our system 45 63 75 80 83 85 85 86
Hilaire et al. 30 44 52 61 70 74 75 76

Liu et al. 22 38 53 60 68 71 73 76

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

10

6.4.2. Evaluation of a mixture of Kanungo noise and rota-
tion/scaling change

The purpose of this experiment is to determine how well each
system can work under different combinations of binary noise
and geometric transformations. The results are presented in Ta-
ble 3. On average, the repeatability scores obtained by the pro-
posed system are 15% higher than those of the other systems,
being especially higher for the first small range of location er-
rors. Taking the location error at 4 (pixels) for example, the
proposed system gives a score of 80%, which is quite interest-
ing considering the severe degradation in setC, as illustrated in
Figure 11 (a, b). Under the same conditions, we can see that the
scores of two baseline systems are approximately 60%, which
is much less than that of the proposed system. Two main fac-
tors explain these results. First, the polygonization process in
the system of Liu et al. and the skeleton segmentation step in
the system of Hilaire et al. are rather sensitive to the distortion
of contours. Second, the post-process of junction merging us-
ing Criterion A is quite sensitive to the variation and distortion
of the line thickness of foreground objects. The results of our
system suggest that the proposed system can satisfactorily re-
sist degradation including common binary noise and geometric
transformations.

False alarms

(a) b)

(c) (d)

Figure 11: Junctions detected (red dots) by the proposed system for
setC ((a) and (b)) and setD ((c) and (d)) of GREC11. False positives
caused by context noise in setD are marked by dashed-line boxes.

6.4.3. Evaluation of context noise
Although Kanungo noise and geometric transformations are

very common degradation models in DIA, a more realistic
type of degradation is known as context noise. By defini-
tion, context noise is concerned with a type of disturbance
caused by background or context information. For this pur-
pose, we have selected setD from the final recognition dataset in
GREC2011. The test images in this set have been cropped from
full line-drawing documents where each reference image could
be touched with other context information. The repeatability
scores of three systems are reported in Table 4. Although the

proposed system still outperforms the others, the repeatability
scores of all systems are quite low. This finding is attributed to
the fact that the images in setD are embedded into other context
information, resulting in many false positives being detected
in this set, as shown in Figure 11 (c, d). However, without
any prior knowledge about groundtruth information, these false
alarms correspond to the mismatches of correct detected junc-
tions missing in the reference images.

Table 4: Repeatability scores for setD of GREC11 (%).

System Location error (in pixels)
1 2 3 4 5 6 7 8

Our system 4 8 12 16 21 25 28 32
Hilaire et al. 2 5 8 11 15 18 21 25

Liu et al. 3 5 9 13 18 21 25 29

6.4.4. Evaluation of the low resolution dataset
In this experiment, we wish to assess the performance of the

three systems for very severely low resolution images. We have
selected the low resolution diagram SESYD dataset, in which
the test images have been generated from the reference images
by applying four exponential levels of low resolution corre-
sponding to the scaling factors {1/2, 1/4, 1/8, 1/16} and incor-
porating a compression scheme (JPG) from gray-scale images.
The results of the three systems are shown in Table 5, where the
proposed system again performs better than the baseline sys-
tems. On average, the proposed system provides 10% and 5%
better results than those obtained from the systems of Hilaire
et al. and Liu et al., respectively. All three systems perform
quite well on the first levels of low resolution, but their perfor-
mance rapidly degrades for the later levels of low resolution.
This behavior is mainly due to the loss of much of the original
information, especially finer features, when reducing the reso-
lution.

Table 5: Repeatability scores on SESYD dataset (%).

System Scale factor
1/2 1/4 1/8 1/16

Our system 88 79 54 41
Hilaire et al. 73 64 47 32

Liu et al. 85 76 50 34

6.4.5. Evaluation of the filled-shape and non-uniform stroke
dataset

In this experiment, we want to justify how different kind of
images, such as filled-shape and non-uniform stroke images,
can impact the performance of the three systems. For this pur-
pose, we have selected the UMD logo dataset, which typically
composes of filled-shape and non-uniform stroke objects at a
hard level. The repeatability scores are presented in Table 6.
Even though the skeleton-based representation for such kind of
images is not perfect, the obtained results are encouraging. The
system of Hilaire et al. achieves the lowest scores because of a

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

11

lower number of outputted junctions. As the line thickness of
the filled shapes is greatly varied compared to the typical line-
drawings, many short skeleton segments are produced. Conse-
quently, few long skeleton segments are retained, and thus the
number of detected junctions is rather limited in the system of
Hilaire et al. Our system also produces a limited number of
junctions, but it still noticeably outperforms the system of Hi-
laire et al. and almost gives the same results as those of the
system of Liu et al. These results confirm the accuracy of the
detected junctions of the proposed system. Some visual results
of the proposed system, applied to the logo images and Chinese
characters, are shown in Figure 12.

Table 6: Repeatability scores for the UMD logo dataset (%).

System Location error (in pixels)
1 2 3 4 5 6 7 8

Our system 10 19 31 39 45 49 53 55
Hilaire et al. 5 12 23 31 39 44 48 51

Liu et al. 10 20 31 39 47 52 56 59

Figure 12: Junctions detected (red dots) by the proposed system for few Chi-
nese characters and logo images.

6.4.6. Evaluation of the built-in aspects
In addition to the evaluations discussed above, we have in-

vestigated several additional trials to understand the behavior
of the proposed approach at the system level. In particularly,
we wish to present a detailed analysis of the impact of the stage
of determination of ROS and the computation time of our junc-
tion detector. Regarding the first aspect, we have computed the
repeatability scores for the setC up to the stage of dominant
point detection over three different scenerios: the use of ROS
based on local line thickness (i.e., the ROS at given a point
p is set as the local line thickness at p), the use of ROS pro-
posed by Teh-Chin [25], and the use of ROS proposed by our
approach. The results are presented in Table 7. As is clear, our
proposed use of ROS achieves much better results than the oth-
ers (by almost 23%). The results linked to the ROS proposed
by Teh-Chin are quite low because, as we have discussed above,
Teh-Chin’s ROS determination step is sensitive to digitization

effects, whereas in this dataset, the noise applied to these im-
ages is quite severe, distorting their shapes. The results shown
in Table 7 also reveal that line thickness could be a good feature
to estimate local scales.

Table 7: Comparison of the dominant point detection rates for three scenarios.
Dominant point detection mode Repeatability Score
With ROS of the proposed method 67.5 %
With ROS based on line thickness 44.3 %
With ROS proposed by Teh-Chin 21.3 %

We also performed an additional experiment to study the im-
pact of the two parameters Emin and Emax in the stage of ROS
determination. For this purpose, we vary the values of Emin and
Emax, and compute the repeatability score of the proposed sys-
tem for the setC up to the stage of dominant point detection.
The obtained results are presented in Figure 13. As expected,
the score curves are quite stable (e.g., varying in the range of
[63, 68]) given various settings of Emin and Emax. It is noted that
the proposed system achieves the repeatability score of 67.5%
in Table 7 with respect to the following setting: Emin = 1.3 and
Emax = 1.8.

1 1.5 1.8 2 2.5 3 3.5 4
50

60

65

70

80

90

R
ep

ea
ta

bi
lit

y
S

co
re

 (
%

)

E
max

Impact of E
min

 and E
max

 in the proposed ROS determination

E
min

=1.1

E
min

=1.3

E
min

=1.5

E
min

=1.7

E
min

=2.0

E
min

=2.3

E
min

=2.6

Figure 13: Impact of the parameters Emin and Emax: the repeatability score is
computed on the setC.

For time complexity evaluation, we provide in Table 8 some
information about the processing time (excluding the pre-
process step) of three systems applied on several images with
different sizes. The processing time has been recorded on our
specific computer configuration: Intel(R) Core(TM) i5 CPU 2.4
GHz, RAM 2.4 GB, Windows 8.

In general, the system of Liu et al. is subjected to a high com-
putation load because distorted skeleton correction using Crite-
rion A is very time-consuming. The system of Hilaire et al.
seems to provide a reasonable level of processing time because
the criterion to merge two discrete primitives is somewhat sim-
ilar in spirit to Criterion A but with the elimination of much of
the redundant computation. Our system works most efficiently,
not only for the cases of the several images reported in Table

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

12

Table 8: Report of the processing time (ms) and the number of detected junc-
tions (in brackets).

System Image size (Width × Height)
900 × 984 3600 × 3938 2100 × 4433

Our system 16.0 (67) 187.0 (79) 140.0 (105)
Hilaire et al. 110.0 (89) 297.0 (147) 265.0 (146)

Liu et al. 563.0 (82) 14953.0 (157) 4078.0 (174)

8 but also throughout the extensive experiments we have per-
formed. It is also noted that the number of detected junctions
(in brackets) provided by our system is much smaller than those
outputted by the other systems.

7. Application to symbol spotting

We present here additional experiments at the application
level to prove that our junction detector is robust and discrim-
inant enough to be used in a retrieval, spotting, or recognition
systems. We have used our approach in a baseline symbol spot-
ting system. A symbol spotting system is often composed of
the following modules: the decomposition of document images
into primitives; the characterization of the primitives; primitive
matching, grouping and localization; and verification. In our
case, the end-points are first added to the detected junctions to
form a set of interest points. Without loss of generality, an end-
point is also characterized as a special 2-junction whose arms
form an included angle equal to 1800. Given a query symbol,
its interest points are detected and characterized as described in
the proposed approach. Next, the matching step is performed
to find the correspondences among the interest points of the
query symbol and those of database documents. The obtained
matches are finally verified by the use of Generalized Hough
Transform [29]. This step will remove false matches and clus-
ter the remaining matches into different groups such that each
group indicates an instance of the query symbol.

For performance evaluation of the proposed approach,
we have selected the latest dataset for symbol spotting in
GREC20115. The detail of this dataset is described in Table
9. The evaluation metric in [30] has been selected, including
precision (P), recall (R), and F-score (F) as follows.

P =
S Int

S Ret
, R =

S Int

S GT
, F = 2 ·

P · R
P + R

Where S Int is the sum of intersection areas between the
bounding boxes retrieved by the spotting system and ground-
truth, S Ret is the sum of areas of the bounding boxes retrieved by
the spotting system, and S GT is the sum of areas of the bounding
boxes in ground-truth. It is worth mentioning that each bound-
ing box (Bgt) in ground-truth is counted at most once. Typi-
cally, Bgt will be marked as already considered if there exists a
bounding box (Bret) retrieved by the spotting system such that
the ratio of the intersection of their areas to the union of their

5http://iapr-tc10.univ-lr.fr/index.php/final-test-description

areas is greater than a given threshold (e.g., 75% in our experi-
ment). This is needed to avoid biased scores caused by multiple
detections of a same symbol at a same location.

Table 9: The spotting results of the proposed system
Test Queries Symbols Noise P R F

Elec1. 118 246 Ideal 0.74 0.82 0.78
Elec2. 127 274 Level 1 0.79 0.78 0.78
Elec3. 114 237 Level 2 0.85 0.71 0.77
Elec4. 156 322 Level 3 0.71 0.76 0.73
Archi1. 247 633 Ideal 0.88 0.96 0.92
Archi2. 245 597 Level 1 0.86 0.95 0.91
Archi3. 245 561 Level 2 0.88 0.89 0.88
Archi4. 249 593 Level 3 0.88 0.94 0.91

The obtained results are reported in Table 9. On average, the
F-score(s) of the proposed system are 0.77 and 0.91 for electri-
cal and architectural datasets, respectively. It is noted that the
results achieved for the architectural dataset are much better
than those on the electrical dataset. This difference is attributed
to the fact that in the electrical dataset, more query symbols are
used and many query symbols look very similar, making them
difficult to correctly distinguish.

8. Conclusions and future works

In this paper, a new approach for junction detection and char-
acterization in line-drawings has been presented. The main con-
tribution of this work is three-fold. First, a new algorithm for
the determination of the region of support is presented using the
linear least squares technique. The crossing-points, in combi-
nation with the dominant points detected from median lines,
are treated as candidate junctions. Next, using these candi-
date junctions, an efficient algorithm is proposed to detect and
conceptually remove all distorted zones, retaining reliable me-
dian line segments only. These line segments are then locally
characterized to construct the topological representations of the
crossing zones. Finally, a novel junction optimization algo-
rithm is presented, yielding accurate junction localization and
characterization. The proposed approach is extremely robust
to common geometry transformations and can resist a satisfac-
tory level of noise/degradation. Furthermore, it works very effi-
ciently in terms of time complexity and requires no prior knowl-
edge of the document content. All of these prominent features
of the proposed approach have been validated relative to other
baseline methods by our extensive experiments. An application
of symbol spotting has also been provided to demonstrate the
usefulness of the detected junctions.

In addition to these advantages, we are also aware of the fol-
lowing shortcomings of the proposed approach. First, as this
approach is dedicated to working with line-like primitives, its
performance would be degraded if applied to filled-shape ob-
jects, such as logo images. In addition, the junction optimiza-
tion process could lead to some difficulties in correctly inter-
preting the junction position as originally produced by crafts-
men. However, although this point is valid for some specific

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

13

domains of exact line-drawing representation, such as vector-
ization, we are interested in detecting local features that would
be useful to addressing the problem of large-scale document in-
dexing and retrieval. In this sense, a low rate of false positives
in the final results is not problematic. A last noticeable point is
that the detected junctions could be used in combination with
other types of features (e.g., end-points, isolated straight lines,
arcs, and circles) to obtain a complete representation of docu-
ment images. Further work on the use of the detected junctions
will be investigated in the future, such as document indexing
and retrieval.

References

1. Parida, L., Geiger, D., Hummel, R.. Junctions: detection, classifi-
cation, and reconstruction. IEEE Trans Pattern Anal Mach Intell 1998;
20(7):687–698.

2. Bergevin, R., Bubel, A.. Detection and characterization of junctions in
a 2d image. Comput Vis Image Underst 2004;93(3):288–309.

3. Deschênes, F., Ziou, D.. Detection of line junctions and line terminations
using curvilinear features. Pattern Recogn Lett 2000;21(6–7):637–649.

4. Köthe, U.. Integrated edge and junction detection with the boundary
tensor. In: Proceedings of the 9th IEEE International Conference on
Computer Vision; vol. 2. 2003, p. 424–431.

5. Maire, M., Arbelaez, P., Fowlkes, C., Malik, J.. Using contours to detect
and localize junctions in natural images. In: Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR’08). 2008,
p. 1–8.

6. Xia, G.S.. Some Geometric Methods for the Analysis of Images and
Textures. Ph.D. thesis; Télécom ParisTech (ENST); 2011.

7. Dori, D., Liu, W.. Sparse pixel vectorization: An algorithm and its
performance evaluation. IEEE Trans Pattern Anal Mach Intell 1999;
21(3):202–215.

8. Hilaire, X., Tombre, K.. Robust and accurate vectorization of line draw-
ings. IEEE Trans Pattern Anal Mach Intell 2006;28(6):890–904.

9. Chiang, J.Y., Tue, S., Leu, Y.C.. A new algorithm for line image
vectorization. Pattern Recognition 1998;31(10):1541–1549.

10. Liu, K., Huang, Y., Suen, C.Y.. Identification of fork points on the
skeletons of handwritten chinese characters. IEEE Trans Pattern Anal
Mach Intell 1999;21(10):1095–1100.

11. Song, J., Su, F., Tai, C.L., Cai, S.. An object-oriented
progressive-simplification-based vectorization system for engineering
drawings: Model, algorithm, and performance. IEEE Trans Pattern Anal
Mach Intell 2002;24(8):1048–1060.

12. Baker, S., Nayar, S.K., Murase, H.. Parametric feature detection. Int J
Comput Vision 1998;27(1):27–50.

13. Sluzek, A.. A local algorithm for real-time junction detection in contour
images. In: Proceedings of the 9th International Conference CAIP’01.
2001, p. 465–472.

14. Tabbone, S.A., Alonso, L., Ziou, D.. Behavior of the laplacian of
gaussian extrema. J Math Imaging Vis 2005;23(1):107–128.

15. Hilaire, X., Tombre, K.. Improving the accuracy of skeleton-based vec-
torization. In: Proceedings of the 4th International Workshop GREC’01,
LNCS 2390. 2001, p. 273–288.

16. Lee, C., Wu, B.. A chinese-character-stroke-extraction algorithm based
on contour information. Pattern Recognition 1998;31(6):651–663.

17. van Nieuwenhuizen Peter R. Kiewiet, O., Bronsvoort, W.F.. An in-
tegrated line tracking and vectorization algorithm. Computer Graphics
Forum 1994;13(3):349–359.

18. Ramel, J.Y., Vincent, N., Emptoz, H.. A structural representation for
understanding line-drawing images. Int J Doc Anal Recognit (IJDAR)
2000;3(2):58–66.

19. Fan, K.C., Wu, W.H.. A run-length-coding-based approach to stroke
extraction of chinese characters. Pattern Recognition 2000;33(11):1881–
1895.

20. di Baja, G.S.. Well-shaped, stable, and reversible skeletons from the
(3,4)-distance transform. J Vis Commun Image R 1994;5(1):107–115.

21. Mohammad Awrangjeb, G.L., Fraser, C.S.. Performance comparisons
of contour-based corner detectors. IEEE Trans Pattern Anal Mach Intell
2012;135(9):4167–4179.

22. Mokhtarian, F., Mohanna, F.. Performance evaluation of corner detectors
using consistency and accuracy measures. Comput Vis Image Underst
2006;102(1):81–94.

23. Awrangjeb, M., Lu, G.. An improved curvature scale-space corner de-
tector and a robust corner matching approach for transformed image iden-
tification. IEEE Trans Image Process 2008;17(12):2425–2441.

24. Mokhtarian, F., Suomela, R.. Robust image corner detection through
curvature scale space. IEEE Trans Pattern Anal Mach Intell 1998;
20(12):1376–1381.

25. Teh, C.H., Chin, R.T.. On the detection of dominant points on digital
curves. IEEE Trans Pattern Anal Mach Intell 1989;11(8):859–872.

26. Carmona-Poyato, A., Fernández-Garcı́a, N.L., Medina-Carnicer, R.,
Madrid-Cuevas, F.J.. Dominant point detection: A new proposal. Image
Vision Comput 2005;23(13):1226–1236.

27. Reisfeld, D., Wolfson, H., Yeshurun, Y.. Context free attentional op-
erators: the generalized symmetry transform. Int J Comput Vision 1995;
14(2):119–130.

28. Tuytelaars, T., Mikolajczyk, K.. Local invariant feature detectors: a
survey. Found Trends Comput Graph Vis 2008;3(3):177–280.

29. Ballard, D.H.. Generalizing the hough transform to detect arbitrary pat-
terns. Communications of the ACM 1981;13(2):111–122.

30. Rusinol, M., Llados, J.. A performance evaluation protocol for symbol
spotting systems in terms of recognition and location indices. Int J Doc
Anal Recognit (IJDAR) 2009;12(2):83–96.

T.-A. Pham et al. / Pattern Recognition 47 (2014) 282 – 295, 2013

14

