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Abstract: Text detection in scene images is of particular importance for the computer-based applications. The text detec-
tion methods must be robust against variabilities and deformations of text entities. In addition, to be embedded
into mobile devices, the methods have to be time efficient. In this paper, the keypoint grouping method is pro-
posed by first applying the real-time Laplacian of Gaussian operator (RT-LoG) to detect keypoints. These
keypoints will be grouped to produce the character patterns. These patterns will be filtered out by using a
CNN model before aggregating into words. Performance evaluation is discussed on the ICDAR2017 RRC-
MLT and the Challenge 4 of ICDAR2015 datasets. The results are given in terms of detection accuracy and
time processing against different end-to-end systems in the literature. Our system performs as one of the
strongest detection accuracy while supporting at nearly 15.6 frames per second to the HD resolution on a
regular CPU architecture.

1 INTRODUCTION

Scene text detection is a key topic in the literature
(Long et al., 2018) since several years ago due to
its influence in the real-life. It can be listed by sev-
eral useful real-world applications such as traffic sign
recognition, blind assistance, augmented reality and
so on. However, detecting and localizing scene text
still remains a challenge due to degradations. This
covers different aspects such as the texture, illumi-
nation changes, the differences in languages, scales
of characters and the background / foreground tran-
sitions Figure 1. Robust methods must be designed
against variabilities, deformations of text entities.

Moreover, another crucial problem is to adapt the
methods to be time-efficient such as they can em-
bedded into mobile devices. This involves an almost
complete reformulation of the methods to make them
real-time in order to respect the time constraint for
detection (Neumann and Matas, 2015).

The real-time methods in the literature apply a
two-stage strategy for localization then text classifi-
cation. The localization determines the positions of
candidate text elements in the image at a low com-
plexity level. The main goal is then to process with a
strong recall to not miss text elements. After that, the
classification specifies which candidate is the text or
not. It filters out the false alarms by using verification
procedures. The two-stage strategy is opposite to the
end-to-end strategy merging localization and classifi-
cation (Long et al., 2018).

A core component of the two-stage strategy is
the local operator. The local operator extracts can-
didate keypoints at the locations of text elements in

Figure 1: Examples of text in natural scenes with specific
degradations (a) blurring (b) different sizes of character (c)
illumination changes.

the image. Different real-time operators have been
proposed in the literature for scene text detection as
the FASText operator (Busta et al., 2015), Canny Text
Detector (Cho et al., 2016) and the Maximally Sta-
ble Extremal Regions (MSER) operator (Gomez and
Karatzas, 2014).

In this paper, we propose a new system applying a
two-stage strategy for the real-time detection of scene
text. Compared with the other systems in the litera-
ture, our system applies in the first stage an RT-LoG
operator. The RT-LoG operator is the real-time imple-
mentation of the Laplacian of Gaussian (LoG) opera-
tor (Fragoso et al., 2014). It has paid more attention
in the community over the last recent years (Nguyen
et al., 2019). It is competitive for time processing and
can be adapted to text detection. It gives a slightly
better performance for detection and provides mean-
ingful scale-space and contrast information.

This paper gives several key contributions.

• We propose a new grouping method to embed the
RT-LoG operator into a two-stage system.

• We highlight how the RT-LoG operator can sup-
port the full pipeline for scene text detection.



• We provide a performance evaluation where our
overall system achieves one of the strongest de-
tection accuracy of the literature, while requiring
less than two orders of magnitude for the process-
ing resources compared to our competitors.

The rest of paper is organized as follows. Section 2
presents our system. Then, performance evaluation
of the system is discussed in section 3. At last, sec-
tion 4 will summarize and give out some perspectives.
For convenience, Table 1 provides the meaning of the
main symbols used in the paper.

2 PROPOSAL APPROACH

The general architecture is presented in Figure 2. At
the first stage, we employ the RT-LoG operator to de-
tect the keypoints among the strokes composing the
characters. Next, a dedicated algorithm is proposed
to group the keypoints using the spatial / scale-space
representation of the RT-LoG operator. The grouping
method results in Regions of Interest (RoIs) consti-
tuted of character patterns (characters, parts of char-
acters, connected characters). These RoIs are clas-
sified into text / non text regions by a CNN. Before
the classification, these RoIs are normalized using the
RT-LoG and geometric features. This normalization
relaxes the classification with the CNN from invariant
problems such as the contrast, scale and orientation.
A method for text line grouping is applied in the final
stage. We will detail in following subsections.

2.1 The RT-LoG Operator

To start, we process the image with the RT-LoG oper-
ator to detect the keypoints constituting the characters
Figure 3. The RT-LoG operator is the real-time im-
plementation of the Laplacian of Gaussian operator
(LoG). Optimization of the operator is obtained with
estimation of the LoG function and fast Gaussian con-
volution (Fragoso et al., 2014). Adaptation to stroke
detection is given by the stroke model for scale-space
representation (Nguyen et al., 2019; Liu et al., 2014).

The operator is controlled with a range of widths
w ∈ [wmin,wmax] of the strokes to detect. Within this
range, m = {wmax−wmin}+1 is not only the number
of stroke widths to detect but also the parameter of
the scale-space problem. An additional parameter β

serves to threshold the operator responses and to tune
the precision / recall of the detection.

The operator results in a set of n keypoints S =
(p1, ...pi, ...pn) where a keypoint p = (x,y,g,h,w) is
given with (x,y) the spatial coordinates, g the gray
level at the keypoint location, h the operator response

Table 1: The main symbols used in the paper.

Symbols Meaning
x,y Image coordinates

g = f (x,y) f the image function returning
the gray-level g at any location (x,y)

w Stroke width parameter w ∈ [wmin,wmax]
with {wmin, ...,wmax} the set of values

m Scale parameter m = (wmax−wmin)+1
h(x,y) Map of the responses h to all the pixels

in the image with h ∈ [−1,1]
β A thresholding parameter

p = (x,y,g,h,w) A keypoint
S A set of keypoints {p1, .., pn}
n The number of keypoints
R {R1, .,Ri, .Rq} A set of RoIs

Ri is a given RoI
q The number of regions

and w the stroke width parameter. The operator re-
sponse h is either positive or negative depending the
background / foreground transition of the character.
Figure 3 gives an example of keypoint detection with
the corresponding response map h(x,y) providing the
h responses at every location (x,y).

The RT-LoG operator gives a slightly better per-
formance for detection compared to the MSER oper-
ator. In addition, it is also competitive for time pro-
cessing and provides meaningful scale-space and con-
trast information. This can drive the grouping method
to obtain the character patterns and to guide the CNN.
We will discuss these aspects in next subsections.

2.2 The Spatial / scale-space Grouping

The RT-LoG operator gives out, for each image, a
set of keypoints belonging to the strokes composing
the characters. These keypoints must be grouped to-
gether to constitute character patterns. The grouping
of keypoints is well-known topic in the image pro-
cessing and computer vision field (Dan et al., 2015).
The main challenge here is to outline keypoints be-
longing to particular objects or RoIs in the image.
Different strategies can be applied as the area-split
with load imbalance, the clustering (e.g. K-means,
Density-based spatial clustering), the grouping with
machine learning (while characterizing the keypoints
with descriptors) or the geometric consistency.

In this paper, we propose a new method for the
grouping of keypoints. This method uses the spatial
/ scale-space representation of the RT-LoG operator
and is then dedicated to the operator. Compared to the
other methods in the literature, the grouping of key-
points is made consistent due to the meaningful in-
formation provided by the operator. Our method uses
three main steps as detailed in Figure 4. We will detail



Figure 2: The detail of our approach.

Figure 3: (a) input image (b) detected keypoints with circle
/ radius at w/2 (c) the corresponding feature map h(x,y).

these steps in next paragraphs.
Foreground / background partitioning (step 1):

in this step, we need to cope with both conditions
in scene text detection such as a light character in
a dark background producing minus responses and
vice-versa. A keypoint p = (x,y,g,h,w) is given with
a normalized response of the operator h. This re-
sponse h ∈ [−1,1] results in two conditions of white
h ∈ [−1,0[ and dark h ∈]0,1] foregrounds, respec-
tively. The keypoints belonging to a same character
pattern are supposed to have a similar response. This
step splits the set of keypoints into two subsets based
on their responses.

Scale-space partitioning and grouping (steps
2,3): the RT-LoG operator is scale-invariant and pro-
vides a stroke width parameters w for each of the de-
tected keypoint. This is an useful information that can
be used as a local threshold to group the keypoints.
The RT-LoG operator applies a Non-maximum sup-
pression (NMS) within 3 × 3 local neighborhood.
This guarantees an overlapping between the key-
points, while setting the operator with wmin ≥ 2.

The grouping performs for each of the keypoint
pi in the subsets obtained from the step 1. A key-
point pi is grouped with a keypoint p j if their Eu-
clidean distance fits with Eq (1), illustrated in Fig-
ure 5. In that case, the label of the keypoint pi is
propagated to the keypoint p j. Similar to the two-
pass connected component algorithms (Cabaret and
Lacassagne, 2017), the algorithm applies forward /
backward requests and propagation to merge the la-
bels between the keypoints.

‖pi− p j‖2 ≤
wi +w j

2
(1)

The requests could be time-consuming depending
significantly on the used request algorithm and the
number of keypoints. For optimization, the keypoints
are indexed first with fast grouping method KD-
tree based DBSCAN (Vijayalaksmi and Punithavalli,
2012) that ensures fast requests. A large numer of
keypoints belonging to a character pattern has a close
stroke width parameter Figure 6 (a). For optimization,
we apply a two-stage strategy for grouping. The key-
points are partitioned first according to their stroke
width parameter w ∈ {wmin....wmax}. The forward /
backward requests are performed first within these
scale-space partitions on small subsets of keypoints
Figure 6 (b). This ensures a fast grouping for the main
part of the keypoints. Then, the grouping is extended
to the in-between scale-spaces Figure 6 (c).

Finally, we compute a set of geometric features
from the keypoints belonging to a RoI to get the cen-
troid, the area / perimeter, the bounding box and the
orientation. These features will be used in the scene
text detection pipeline to drive the image normaliza-
tion and text line construction Figure 2.

2.3 Verification and Text Line
Construction

The grouping algorithm results in the detection of
RoIs. As the RT-LoG operator detects strokes, the de-
tected RoIs could be either character patterns or back-
ground elements from the natural scene image. The
RoIs must be classified to filter out the character pat-
terns from background. This is the text verification
problem that takes part in the scene text detection.

The traditional approach for scene text detection is
to apply hand-crafted features with classification. Re-
cently, CNN becomes prominent into the field where a
main issue is to design end-to-end system (Long et al.,
2018). When applying to text verification, the CNN
classifies the RoIs of images to verify if a RoI belongs
to a text part or not.

Several CNN models have been proposed in the
literature for the text verification (Yang et al., 2015;



Figure 4: The detail of spatial / scale-space grouping method.

Figure 5: The grouping rule of two keypoints.

Table 2: CNN models for text verification.

Image size (24×24) - (32×32)
Layer No Filter size Filter No Pooling

Conv1 (5×5)-(8×8) x20 - x96 (2×2)-(5×5)
Conv2 (2×2)-(5×5) x50 - x256 (2×2)

Ray et al., 2016; Turki et al., 2017; Wang et al., 2018;
Zhang et al., 2015). Table 2 gives a summation. The
fundamental model is to process with two convolu-
tional layers while using a ReLU function for the non-
linearity and a max pooling for optimization. A fully-
connected layer (FC) is used in the final stage for clas-
sification set with a softmax function. Some works
have investigated deeper models using up to four con-
volutional layers such as (Zhang et al., 2015).

In the final step, after classification with normal-
ization, the close text regions must be grouped to get
the text lines. Similar to (Cho et al., 2016), we use the
method of minimum-area encasing rectangle to pro-
vide consistent bounding boxes.

For the sake of performance evaluation, we cus-
tomize our model inspired from (Turki et al., 2017;
Wang et al., 2018). It is illustrated in Figure 7
with two convolutional layers and one FC layer. For
each convolutional layer, ReLu activation and average
pooling layer are followed.

A core problem for text verification is the vari-
ability character patterns. These patterns are not nor-
malized and suffered from distortions Figure 8 (a) -
(d). Another problem comes from the look-like cur-
sive characters that result in word patterns after de-
tection and grouping Figure 8 (e). The normalization

of these patterns to 32× 32 images introduces other
distortions as the down-scaling and the modification
of the aspect ratio. This tends to burden the learning
period of the CNN training for text verification.

To solve these problems, we apply an image nor-
malization before to classify the character patterns
with the CNN. We use the RT-LoG and geometric fea-
tures to drive the normalization as they provide mean-
ingful information about the character patterns. Our
process is detailed here.

• Skew correction: we use the geometric features to
correct the skew of characters with image rotation
Figure 8 (a).

• Background / foreground normalization: the key-
points belonging to a character pattern provide
a common operator response h. This response
is whether positive or negative depending on the
background / foreground transition. We look for
all the character patterns having a positive re-
sponse h > 0 and invert the image for normaliza-
tion Figure 8 (b).

• Contrast normalization: the character patterns ap-
pear with different background / foreground am-
plitudes. This is a problem of contrast normaliza-
tion that can be solved from the operator response
h. Indeed, the operator response |h| ∈ [−1,1],
where |h| = 1 is obtained from bilevel black and
white image having a maximum amplitude. We
use the response h and the g values to get a lookup
table to normalize the contrast Figure 8 (c).

• Scale normalization: the normalization of charac-
ter patterns to 32×32 image distorts the aspect ra-
tio Figure 8 (d). We use the average stroke width
w of character patterns as a scale estimator. This
estimator serves to compute a scale ratio w0/w
with w0 an offline parameter obtained from the
training database. The parameter w0 is fixed in or-
der to embed the character patterns into a 32×32
image, as an average. If not, we split the character
patterns into 32× 32 patches while respecting an
overlapping threshold Figure 8 (e).



Figure 6: (a) Keypoints within the scale-space partitions (b) grouping within the scale-space partitions (c) grouping within
in-between scale-spaces.

Figure 7: CNN model used for RoIs classification.

Figure 8: Image normalization.



Figure 9: Images from the ICDAR2017 RRC-MLT dataset
(Nayef et al., 2017).

3 PERFORMANCE EVALUATION

In this section, we present the performance evalua-
tion of our system. Section 3.1 introduces the used
datasets. Section 3.2 details the characterization met-
rics. Results are discussed in terms of detection accu-
racy and time processing in sections 3.3 and 3.4.

3.1 Datasets

Several public datasets have been proposed over
the years for performance evaluation of text detec-
tion methods. The ICDAR2017 and ICDAR2019
RRC-MLT are the two up-to-date datasets in litera-
ture (Nayef et al., 2017; Nayef et al., 2019). The
ICDAR2019 RRC-MLT is a recent dataset and a
slight update of the ICDAR2017 RRC-MLT1. For
our performance evaluation, we have selected the IC-
DAR2017 RRC-MLT dataset where more compara-
tive results are available in the literature. It includes
7200 training images, 1800 validation images and
9000 test images. The images are given at differ-
ent resolutions (VGA, HD, Full-HD, Quad-HD, 4K).
This dataset has a particular focus on the multi-lingual
scene text detection in 9 languages and offers a deep
challenge for scalability. Figure 9 shows some visual
examples of images.

For the processing time, it is more common in
the literature to use the Challenge 4 of ICDAR2015
dataset (Karatzas and Gomez-Bigorda, 2015). This
dataset contains 1000 training images and 500 test im-
ages at HD resolution (1280×720).

3.2 Characterization Metrics

For the characterization metrics, we have followed the
recommendations of the international contest (Nayef
et al., 2017). The characterization is achieved at
two levels while applying the Intersection over Union
(IoU) criterion and computing the F-measure. The
output of the text detection system is provided with
bounding boxes. A detection (i.e. a true positive) is
obtained if a detected bounding box has more than

1The ICDAR2019 RRC-MLT dataset includes 1K im-
ages more on the existing set of 9K images.

Figure 10: Text detection samples with (green) the true de-
tections and (red) the missed-cases.

50% overlap (the IoU criterion) with a bounding box
in the groundtruth. The unmatched boxes in the detec-
tion and the groundtruth are false positives and nega-
tives, respectively. The detection cases serve to com-
pute the regular metrics precision (P), recall (R), F-
measure2. Let’s note that some degraded texts in the
dataset are marked as “don’t care” boxes and ignored
in the evaluation process.

3.3 Scene Text Detection

Table 3 shows our evaluation in comparison with the
state-of-the-art. For clarification, we have stood on
the top 10 of competitive systems of the literature.

As highlighted in Table 3, our system appears in
the top 6 for the F-measure score. Furthermore, our
system achieves the strongest recall score of the lit-
erature. This is ensured by the use of the RT-LoG
operator and the dedicated grouping method, which
allows a near complete detection of text elements.
Some visual examples of true and missed detections
are shown in Figure 10. The operator fails to detect
text in images with very low contrast. This can be ex-
plained by the real-time implementation of the LoG
operator, that is not contrast invariant (Nguyen et al.,
2019).

3.4 Processing Time

We characterize and compare in this section the pro-
cessing time of our system against other systems in
the literature. We have computed first the processing
time of each step of our method using a single thread
/ core implementation Table 4. Our implementation

2We are not detailing these aspects here and report to
(Nayef et al., 2017).



Table 3: Comparison of methods
(P) precision (R) recall and (F) F-Measure on ICDAR2017 RRC-MLT.

Rank Methods P(%) R(%) F(%)
1 PMTD (Liu et al., 2019) 85.15 72.77 78.48
2 FCN-MOML (He et al., 2018) 82.66 72.53 77.26
3 R-CNN-PAN (Huang et al., 2019) 80 69.8 74.3
4 LOMO MS (Zhang et al., 2019) 80.2 67.2 73.1
5 MOSTD (Lyu et al., 2018b) 74.3 70.6 72.4
6 Proposed method 62.5 82.7 71.2
7 Fots (Liu et al., 2018) 81.86 62.30 70.75
8 AF-RPN (Zhong et al., 2018) 75 66 70
9 Attention Model (Wang et al., 2019) 72 63.5 67.48
10 SCUT DLVClab1 (Nayef et al., 2017) 80.3 54.5 65

Table 4: Average processing time in milliseconds (ms) /
amounts of pixels, keypoints and RoIs of each step of the
proposed method.

Method
Types HD Data workflow

RT-LoG 320 ms 1.2 Mpixel
Grouping 200 ms 5.2 Kkeypoints

Verification 336 ms 90 RoIs

is done with the C++ language and tested on the Mas-
OS and an Intel(R) Core(TM) i7- 4770HQ CPU, 2.2
GHz having a near 32 GFLOPS SP performance. The
processing times have been obtained on th HD reso-
lution while using the ICDAR2015 dataset.

We provide in addition in Table 4 information
about the data workflow in the pipeline ( the amounts
of pixels, keypoints and RoIs). As highlighted the RT-
LoG operator results in a large reduction of the data to
process. Despite the different of amount of data, the
processing time is close between the RT-LoG opera-
tor and the rest of pipeline (grouping with CNN). This
can be explained by the real-time implementation of
the operator that ensures a strong optimization of the
spatial convolution.

We have evaluated, in a second step, the Frame
rate per second (FPS) of our system on the IC-
DAR2015 dataset Table 5. This evaluation has been
done with a full parallelism support on the CPU while
applying multi-core / threading. We provide in addi-
tion the FPS of the top systems in literature. For a fair
comparison, Table 5 addresses the test architectures
of different systems (either GPU or CPU) with their
relative performances3.

As emphasized in Table 5, our system has a sec-
ond highest FPS rate while processing with a differ-
ence of two orders of magnitude in term of processing
resources. All the the top systems in the literature per-
form with end-to-end CNN model requiring a GPU
architecture.

3https://www.techpowerup.com/

Table 5: Frame rate per second (FPS) among methods on
the Challenge 4 of ICDAR2015 dataset.

Methods

Processing
types FPS Architecture Performances

TFLOPS

FOTs-RT(Liu et al., 2018) 22.6 TITAN-Xp
GPU 12.15

Ours 15.6 CPU
2.2 GHz 0.032

SSTD (He et al., 2017) 7.7 TITAN X
GPUs 6.691

EAST (Zhou et al., 2017) 6.52 TITAN-Xp
GPU 12.15

MTS(Lyu et al., 2018a) 4.8 Titan Xp
GPU 12.15

MOSTD(Lyu et al., 2018b) 3.6 Tesla
K40m GPU 5.046

4 CONCLUSIONS AND
PERSPECTIVES

This paper presents a new two-stage system for scene
text detection. It applies in the first stage the RT-LoG
operator. This operator supports the full pipeline for
scene text detection. A dedicated algorithm is applied
to group the keypoints into RoIs using the RT-LoG
features. The RoIs are then classified into text / non
text regions by a CNN. Before the classification, the
RoIs are normalized with the RT-LoG features. This
normalization relaxes the classification from invariant
problems. The proposed system is in the top 6 for the
F-measure score and achieves the strongest recall of
the literature. It obtains the second highest FPS rate
while processing with a difference of two orders of
magnitude in term of processing resources.

As a main perspective, the precision rate of the
system can be consolidated. This can be obtained
by making the RT-LoG operator contrast-invariant, to
deal with the missed detection cases. Deeper CNN
models could be applied to make more robust at the
text verification stage. At last, acceleration of the RT-
LoG operator could be obtained by taking advantages
of the Gaussian kernel distribution and decomposition
with box filtering.
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