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Abstract. In this paper we present an algorithm for performance characterization
of symbol localization systems. This algorithm is aimed to be a more “reliable”
and “open” solution to characterize the performance. To achieve that, it exploits
only single points as the result of localization and offers the possibility to recon-
sider the localization results provided by a system. We use the information about
context in groundtruth, and overall localization results, to detect the ambiguous
localization results. A probability score is computed for each matching between a
localization point and a groundtruth region, depending on the spatial distribution
of the other regions in the groundtruth. Final characterization is given with detec-
tion rate/probability score plots, describing the sets of possible interpretations of
the localization results, according to a given confidence rate. We present experi-
mentation details along with the results for the symbol localization system of [1],
exploiting a synthetic dataset of architectural floorplans and electrical diagrams
(composed of 200 images and 3861 symbols).
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1 Introduction

In recent years there has been a noticeable shift of attention, within the graphics recog-
nition community, towards performance evaluation of symbol recognition systems. This
interest has led to the organization of several international contests and development of
performance evaluation frameworks [2]. However, to date, this work has been focussed
on recognition of isolated symbols. It didn’t take into account the localization of sym-
bols in real documents. Indeed, symbol localization constitutes a hard research gap,
both for recognition and performance evaluation tasks.

Different research works have been recently undertaken to fill this gap [3]. Groundtru-
thing frameworks for complete documents and datasets have been proposed in [4,5], and
different systems working at localization level in [6,1,4]. The key problem is now to
define characterization algorithms working in a localization context. Indeed the charac-
terization of localization in complete documents is harder, as comparison of results with
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groundtruth needs to be done between sets of symbols. These sets could be of differ-
ent size, and significant differences could appear between the localizations of symbols
provided by a given system, and the corresponding ones in the groundtruth. Character-
ization metrics must then be reformulated to take these specificities into account.

In the rest of the paper, we will first introduce in section 2 related work on this topic.
We will present next in section 3 the approach we propose. Section 4 will give exper-
iments and results we have obtained with our algorithm. Conclusion and perspectives
arising from this work will be presented in section 5.

2 Related work

Performance characterization, in the specific context of localization, is a well known
problem in some research topics such as computer vision [7], handwriting segmenta-
tion [8], layout analysis [9], text/graphics separation [10], etc. Concerning symbol lo-
calization, at the best of our knowledge only the work of [4] has been proposed to date.
Performance characterization algorithms (in the specific context of localization) aim to
detect possible matching cases between groundtruth and localization results, as detailed
in Table 1. They determine about true or false localization results, without considering
the class of objects. It is therefore a two-class recognition problem, to separate objects
from background. Once objects are correctly located/segmented, we could proceed the
evaluation of recognition. This is known as whitebox evaluation in the literature [11],
the goal is to characterize the performance of individual submodules of a complete
system and to see how they interact each other.

single an object in the results matches with a single object in the groundtruth
misses an object in the groundtruth doesn’t match with any object in the results
false alarm |an object in the results doesn’t match with any object in the groundtruth
multiple  |an object in the results matches with multiple objects in the groundtruth
(merge case) or an object in the groundtruth matches with multiple objects
in the results (split case)

Table 1. Matching cases between groundtruth and localization results

The key point when developing such a characterization algorithm, is to decide about
representations to be used, both in results and groundtruth. Two kinds of approach exist
in the literature [9], exploiting pixel-based and geometry-based representations.

In a pixel-based representation, results and groundtruth correspond to sets of pixels.
For that reason, algorithms exploiting such a representation are very accurate. They are
usually employed to evaluate segmentation tasks in computer vision [7] or handwriting
recognition [8]. However, groundtruth creation is more cumbersome and requires a lot
more storage. Comparison of groundtruth with the results is also time-consuming.

In a geometry-based representation, algorithms employ geometric shapes to de-
scribe the regions (in results and groundtruth). The type of geometric shapes depend on
the application: bounding boxes - text/graphics separation [10], isothetic polygons - lay-
out analysis [9], convex hulls - symbol spotting [4], etc. Comparison of the groundtruth
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with the results is time-efficient, and the corresponding groundtruth straightforward to
produce. Such a representation is commonly used in the document analysis field, as it
is more focused on semantic [10,9,4]. Because the main goal of the systems is recogni-
tion, evaluation could be limited to detection aspects only (i.e. to decide about a wrong
or a correct localization without evaluation of the segmentation accuracy).

In both cases, characterization algorithms exploit information about regions in lo-
calization results, and compare them to groundtruth. This results in boolean decisions
about positive/negative detections, which raises several open problems:

Homogeneity of results: Regions provided as localization results could present a huge
variability (set of pixels, bounding boxes, convex hulls, ellipsis, etc.). This variabil-
ity disturbs the comparison of systems. A characterization algorithm should take
these differences into account, and put the results of all the systems at a same level.

Reliability of results: Large differences could appear between the size of regions in
the results and the groundtruth. These differences correspond to over or under
segmentation cases. This results in aberrant positive matching cases between the
groundtruth and the detection results, when large regions in the results intersects
smallest ones in groundtruth. To be able to detect these ambiguous cases a charac-
terization algorithm should be able to reconsider the localization results provided
by a system.

Time complexity: Complex regions, such as symbols, must be represented by pixel
sets or polygons to obtain a correct localization precision. However, their compar-
ison is time-consuming both for geometry-based and pixel-based representations
[9,8]. This involves to use specific approaches to limit the complexity of the algo-
rithms [9].

In this paper we propose an alternative approach to region-based characterization,
to solve these problems. We present this approach in the next section 3.

3  Our approach

3.1 Introduction

Our objective in this work is to provide a “reliable” and “open” solution to characterize
the performance of symbol localization systems. To achieve that, we propose an algo-
rithm exploiting only single points as the result of localization and offering the possi-
bility to reconsider the localization results provided by a system. It uses the information
about context in groundtruth, and overall localization results, to detect the ambiguous
localization cases. A probability score is computed for each matching between a local-
ization point and a groundtruth region, depending on the spatial distribution of the other
regions in the groundtruth. Final characterization is given with detection rate/probability
score plots, describing the sets of possible interpretations of the localization results, ac-
cording to a given confidence rate.

Fig.1 illustrates our approach. For each result point r;, probability scores are com-
puted with each symbol g; in the groundtruth. These probability scores will depend on
the spatial distribution of the symbols g; in the groundtruth, they will change locally
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for each result point r;. In Fig. 1, r1, ro and r3 are located at similar distances of sym-
bols g1, g2 and g3 in groundtruth. However, 75 and 73 present highest probability scores
to be matched with go g3 respectively, but not r;. Local distribution of symbols g; in
groundtruth around r; makes ambiguous the characterization of this localization result.
For that reason, a positive matching between r; and any symbols g; will be considered
with a low probability. Final characterization is given with a detection rate/probability
score plot, describing the sets of possible interpretations of the localization results ac-
cording to their probability scores.

Groundtruth.
@ gravity centers.
contours

® Resultpoints

Highest probabilities

single detectionrate —

Lowest probabilities

[=)

1  probabilityscore 0

Fig. 1. Our approach

In the rest of this section we describe our characterization algorithm. We exploit
three main steps to perform the characterization: (1) in a first step we use a method to
compare the localization of a result point to a given symbol in groundtruth (2) exploiting
this comparison method, we compute next for each result point its probability scores
with all the symbols in groundtruth (3) at last, we employ a matching algorithm to
identify the correct detection cases, and draw the detection rate/probability score plots.
We will detail each of these steps in next subsections 3.2, 3.3 and 3.4 respectively. Table
2. provides the list of mathematical symbols that we have used for detailing the different
steps of our proposed algorithm.

i index value j index value

T result object o groundtruth object

5] direction between result and groundtruth objects  |s; scaling factor

q number of result objects n number of groundtruth objects
D probability score f(sy/s;) |probability score function

£ score error (€= 1-p;)

s single detection T, single detectionrate (=s/n)

£ false detection T false alarm rate (=f/q)

m multiple detection Trn multiple detection rate (=m/q)

Table 2. Table of mathematical symbols
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3.2 Localization comparison

In our approach, groundtruth is provided as regions (contours with corresponding grav-
ity centers) and localization results as points (Fig. 1). We ask the systems to provide
points that should be in regions near the location of symbols in groundtruth. These
points could be gravity centers, key-points of interest or junctions. The use of points as
results makes impossible to compare them directly with groundtruth, due to the scal-
ing variations. Indeed, symbols appear at different scales in drawings. To address this
problem, we compare the result points with groundtruth regions by computing scale
factors (Fig. 2). In geometrical terms, a factor s specifies how to scale a region in the
groundtruth so that its contour fits with a given result point. Thus, result points inside
and outside a symbol will have respectively scale factors of s < 1 and s > 1.

Groundtruth, s=1 o6==
@ gravity center, c 2 s=2 6=0

contours g : L ® L
® Resultpoint i

® Intersectionpoint \ ]
1

Intersection line g !

Fig. 2. Scale factor

The factor s is computed from the line L of direction 6, joining the gravity center
g defined in groundtruth to a result point 7. On this line L, s corresponds to the ratio
of lengths Iy, and ly;. l4 is the Euclidean distance between the gravity center g and
the result point 7. [y; is computed in the same way, but with the intersection point 7 of
L with contours ¢ of symbol. This intersection point ¢ is detected using standard line
intersection methods [12]. If several intersections exist (i.e. cases of concave contours
or holes in symbol), the farthest one from g is selected.

3.3 Probability scores

In a second step, we compute probability scores between result points and groundtruth
(Fig. 3). For each result point r, relations with groundtruth are expressed by a set of n
points S = |J"_; ¢:(6, s) (Fig. 3 (a)), where 6 and s represent respectively the direction
and scale factor between the result point and a symbol <. We define next the probability
scores between the result point r and symbols (J;__, ¢; as detailed in Fig. 3 (b). When
all symbols | J;._, g; are equally distant (i.e 51 = sp = ...s;.. = $p,), thus I, p; = 0.
In the case of a s; = 0, thus the corresponding p; = 1. Otherwise, any other cases
0 < s; < s; will correspond to probability scores 0 < p; < p; < 1.

The equations (1) (2) below give the mathematical details we employ to compute
the probability scores. For each g;, we compute the probability score p; to the result
point r as detailed in (1). To do it, we exploit the other symbols U?:L i 93 in the
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Fig. 3. (a) plot (6, s) (b) probability scores

groundtruth. We mean the values f (s—) corresponding to local probabilities g; to 7,
J

S

regarding g;. The function f (j—) must respect the conditions given in Table 3. In fact,
27

there exists different mathematical ways to define such a function (based on inverse,
linear, cosinus functions, etc.). We have employed here a gaussian function (2), as it is
a common way to represent random distributions. This function is set using a variance
0? = 1, and normalization parameters k, and k. These parameters are defined in order
to obtain the key values f(z = 0) = 1 and f(x = 1) — 0. Fig. 4 gives plots of gaussian
and probability score functions to illustrate how kx and ky impact the values. The value
of k, is defined as V27, to bound flx =0)at1l (€%). Concerning k,, we determine
it using the approximation into a taylor serie of the cumulative distribution function
®o(z) = [y #(x). We define k, when ®y(x) = 1 — A, with A a precision defined
manually. In our experiments, we have fixed A = 10~ corresponding to kz = 3.9.

= /()
5
pi= ), (1
J=1j#i

5 ky _ (kgm)?
r=—|=—Xe 2 2
d ( Sj) vam )

f[x:sf J 0 1 oo
v $=0 8> +oo 5= S; §;—> +oo | 50

Table 3. Table of function f(z = %)

J
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Fig. 4. Gaussian and probability score functions

3.4 Matching algorithm

Once probability scores are computed, we look for relevant matchings between ground-
truth and results of a system. In order to make open interpretation of localization of
symbols, we provide characterization results using distribution plots. We compute dif-
ferent sets of matching results, according to the ranges of the probability scores. Final
results are displayed into distribution plots (Fig. 5 (a)), where the x axis corresponds to
score error ¢ (i.e. inverse of probability score € = 1 — p), and the y axis to performance
rates.

—

g
E.:: = dgl*z
1=}
= w»
3 _ Uak:(g,,rj,py)
g 4 d,=1 k=1
Ur
J JOE N
0 > e 1
0 score error 1 @ Groundtruth points
g=1-p ® Result points
(a) (b)

Fig. 5. (a) result plot (b) correspondence list

We compute different performance rates, T, T'r and T, corresponding respectively
to single detections, false alarms and multiple detections (see Table 1.). The rate of
“misses cases” corresponds to 1 — 7. To do it, we build-up a correspondence list be-
tween results and groundtruth as detailed in Fig. 5 (b). This correspondence list is bi-
partite, composed of nodes corresponding to the groundtruth [ !, g; and the results
Uj=1 7. Our probability scores are given as undirected arcs ;2 ar, = (gi, 75, pij) of
nq size. We use these arcs to make the correspondences in the list in an incremental way,
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by shifting the ¢ value from 0 to 1. An arc ay, is added to the list when its p;; > 1 —e.
For each ¢ value, the T and T’ rates are computed by browsing the list, and checking
the degrees of nodes J;"_; d,; and U;’.:l d;, as detailed in (3), (4) and (5).

Vg <> rj,dg =drj=1—s=5+1 3)
TGZE
n
Vs dyy =0 f = f4+1 4)
.
q
VTngi,de>1\/dgi>1—>m=m+1 ®)
Thm = —

4 Experiments and Results

In this section, we present experiments and results obtained using our algorithm. We
have applied it to evaluate the symbol localization system of [1]. This system relies on
a structural approach, using a two-step process.

First, it extracts topological and geometric features from a given image, and rep-
resents it using an ARG? (Fig. 6). The image is preliminary vectorized into a set of
quadrilateral primitives. These primitives become nodes in the ARG (labels 1, 2, 3, 4),
and connections between become arcs. Nodes have, as attributes, relative lengths (nor-
malized between 0 and 1) whereas arcs have connection-type (L junction,T junction, X
Jjunction, etc.) and relative angle (normalized between 0° and 90°).

Graphic symbol Vectorized Attributed relational graph

Fig. 6. Representation phase of [1]

In the second step, the system looks for potential regions of interest corresponding to
symbols. It detects parts of the ARG that may correspond to symbols i.e. symbol seeds.
Scores, corresponding to probabilities of being part of a symbol, are computed for all
edges and nodes of the ARG. They are based on features such as lengths of segments,

3 Attributed Relational Graph



A Performance Characterization Algorithm for Symbol Localization 9

perpendicular and parallel angular relations, degrees of nodes, etc. The symbol seeds
are detected next during a score propagation process. This process seeks and analyzes
the different shortest paths and loops between nodes in the ARG. The scores of all
the nodes belonging to a detected path are homogenized (propagation of the maximum
score to all the nodes in the path) until convergence, to obtain the seeds.

To test this system, we have employed datasets coming from the SESYD database*.
This database is composed of synthetic document images, with the corresponding ground-
truth, produced using the system described in [5]. This system allows the generation of
synthetic graphic documents, containing non-isolated symbols in a real context. It is
based on the definition of a set of constraints, that permit to place the symbols on a pre-
defined background, according to the properties of a particular domain (architecture,
electronics, etc.). The SESYD database is composed of different collections, includ-
ing architectural floorplans, electrical diagrams, geographic maps, etc. In this work, we
have limited our experiments to subsets of this database, including documents from the
electrical and architectural domains. Table 4. gives details of the dataset we use, and
Fig. 7 gives some examples of test documents.

| Drawing level Symbol level
% Setting backgrounds 5 models 16
E Dataset | images 100 | symbols | 2521
% Setting backgrounds 5 models 17
%O Dataset | images 100 | symbols | 1340

Table 4. Dataset used for experiments

Fig. 7. Examples of test documents

Fig. 8 presents the characterization results we have obtained on floorplans, with
variation of {7, Ty, T,,} rates. The system presents in A a good confidence for the
detection results 7; < 0.50, with an score error ¢ < 0.05 and nearly none multiple

* http://mathieu.delalandre.free.fr/projects/sesyd/
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detections 7;,, < 0.03. The best detection results is obtained in B with a T, = 0.57,
corresponding to an score error of € = 0.11. However, these detection results are joined
to a Ty = 0.31, highlighting a bad precision of the system. In addition, at this state
confusions appear in localization results with a 7,,, > 0.20. This rate results in the
merging of false alarms with less confident results, as the false alarm rate goes down to
Ty = 0.31. Up to this point, T dies down slowly, and for score error € > 0.21 in C' the
T and T, curves start to be diametrically opposite.

multiple (T,,)
1,00

0.90 T fa15e alarm

0,80 (Ty floorplans
A B C

0,70
0,60
0,50
0,40
0,30
0,20
0,10
0,00

detection rates

0,00 0,10 0,20 0,30 040 0,50 0,60 0,70 0,80 0.,901,00

score error (g)

e=1-p

Fig. 8. Characterization results on floorplans

Fig. 9 gives results concerning electrical diagrams. The system presents a good
confidence in A, for e < 0.04 and Ty = Ty = 0.45. However, at this point the sys-
tem already does multiple detections with a T3, = 0.10. The best localization score is
obtained at B with ¢ = 0.13 and T, = 0.62. Therefore, the best localization score is
better for electrical diagrams than floorplans. In addition, the system doesn’t make a
lot of false detections with a Ty = 0.13. However, multiple detections stay higher with
T,, = 0.30. Up to C, T decreases in linear way for score errors € > (0.23.

When comparing results obtained by the system [1] on these two application do-
mains, the ones on electrical diagrams are best. However, each of them illustrates spe-
cific failures of the system. The first is the high level of multiple detection appearing
on electrical diagrams. Certainly the systems could increase a lot its detection results,
by introducing split / merge procedures of detected regions of interest. The second con-
cerns the generated false alarms on floorplans. In order to reduce this problem, a point
to be improved in the system is to introduce a checking procedure of detected ROIs, to
reduce the hypothesis of localization.
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Fig. 9. Characterization results on electrical diagrams

5 Conclusions and Perspectives

In this paper we have presented an algorithm for performance characterization of object
localization systems. This algorithm has been applied in the context of symbol localiza-
tion, but we believe it could be applied to other problems (medical image segmentation,
mathematical formula recognition ... ). It aims to propose a more “reliable” and “open”
solution to characterize the performance of systems, by offering the possibility to recon-
sider the localization results. It exploits only single points as the results of localization.
Then a probability score is computed for each matching between a localization point
and a groundtruth region, depending on the spatial distribution of the other regions in
the groundtruth. They will change locally for each result point. Characterization results
are given with detection rate/probability score plots, describing the sets of possible in-
terpretations of the localization results, according to a given confidence rate. We present
experiments and results obtained using our algorithm, to evaluate the symbol localiza-
tion system of [1]. These experiments have been done on a dataset of synthetic images
(with the corresponding groundtruth), composed of 200 document images and around
3861 symbols from electrical and architectural domains. We conclude about the per-
formance of this system, in terms of localization accuracy, precision level (false alarms
and multiple detections) on both datasets.

In future, we aim to take-forward our experimentations to evaluate the scalability
(large number of symbol models) and robustness (noisy images [13]) of systems. We
also plan to perform experiments with real datasets [4], and to compare the obtained
results with the synthetic ones. And, our final goal is the comparison of different symbol
localization systems. We plan to take benefit of the work done around the EPEIRES
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project’, to look for potential participants interested in testing their systems with this
characterization approach.
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