
RT-LoG operator for scene text detection

Keynote talk at the
Computational Intelligence Laboratory (CIL)

Mathieu Delalandre

LIFAT Laboratory, RFAI group, Tours city, France
firstname.lastname@univ-tours.fr

March 19, 2019

1 / 37



Mathieu Delalandre - CV in short (1/2)

I PhD in computer science with 14 years of experience,

I Assistant Professor at the LIFAT Lab (Tours city, France),

I image processing (local detectors, template matching),

I application domains (video and document analysis),

2 / 37



Mathieu Delalandre - CV in short (2/2)

I international experience as research fellows in Europe
(< 2009), visiting positions in Asia (> 2013),

I PhD supervisor of Cong Nguyen - VIED P911,

I Co Associate of the Todd.tv startup,

I more about myself: http://mathieu.delalandre.free.fr/.

3 / 37



Summary

CV in short

State-of-the-art
Introduction
Fast spatial LoG filtering
Scale-space representation

Performance evaluation
Key-point detection
End-to-end text detection
Processing time

Conclusions and perspectives
Conclusions and perspectives

4 / 37



Introduction (1/3)

Scene text detection: is a core image processing problem, the
methods must be made:
(i) robust against text variabilities.

Figure: Text degradations (a) blurring (b) scaling (c) illumination changes

(ii) time-efficient to deal with the real-time, mass of data, low cost
hardware, energy consumption issues.

5 / 37



Introduction (2/3)

RT-LoG: has attracted attention over the last years for scene text
detection. It is the real-time implementation of the LoG operator
(the Laplacian ∇2 of the Gaussian function).

g(x , y , σ) =
1

2πσ2
e−

x2+y2

2σ2 (1)

∇2g(x , y , σ) = gxx(x , y , σ) + gyy (x , y , σ) (2)

= 1
2πσ4

(
x2+y2

σ2 − 2
)
e−

x2+y2

2σ2

A discrete mask obtained from (2) is applied with convolution to
obtain a LoG-filtered image.

6 / 37



Introduction (3/3)

RT-LoG: the LoG filtering must be embedded into a full pipeline
to design an end-to-end operator.

Figure: End-to-end operator

The end-to-end operator can be tuned in RT-LoG with
optimization in the spatial and scale-space domains (steps A, B).

7 / 37



Summary

CV in short

State-of-the-art
Introduction
Fast spatial LoG filtering
Scale-space representation

Performance evaluation
Key-point detection
End-to-end text detection
Processing time

Conclusions and perspectives
Conclusions and perspectives

8 / 37



Fast spatial LoG filtering (1/5)

Key problem: the LoG filter (2) is not separable, convolution has
a complexity O(Nω2) with N, ω2 the image and mask sizes.

Strategy: fast LoG filtering applies an estimator cascade

methodology LoG ≈ DoG ≈ D̂oG to shift to a O(N) complexity.

LoG ≈ DoG: approximation with the Difference of Gaussian (DoG),
k ∈]1,

√
2] controls the precision of the scale-space derivative.

g(x , y , kσ2)− g(x , y , σ2) ≈ (k − 1)σ2∇2g(x , y , σ1) (3)

9 / 37



Fast spatial LoG filtering (2/5)

DoG ≈ D̂oG : fast Gaussian filtering methods can accelerate the
filtering with approximation of the Gaussian kernel ĝ(x , y , σ).

Category Methods Time optimization Accuracy

Box ++ +++
Box filter SII +++ ++

KII + +

Deriche ++ ++
Recursive filter TCF +++ +++

VYV + ++

Table: Fast Gaussian filtering (+++) best case (+) medium case

The box filter method is common to approximate the DoG.

10 / 37



Fast spatial LoG filtering (3/5)

DoG ≈ D̂oG : while using the box filter method, ĝ(x , y , σ) is
obtained by a linear combination of averaging filters Πi (x , y) with
weight parameters λi . n ∈ [4, 6] is the number of filters.

ĝ(x , y , σ) =
n∑

i=1

λiΠi (x , y) (4)

Figure: Approximation ĝ(x , y , σ) of a gaussian function

11 / 37



Fast spatial LoG filtering (4/5)

DoG ≈ D̂oG : the n, Πi (x , y), λi parameters can be obtained with
minimization of the MSE and regression (e.g. LASSO).

MSE =
∑

(x ,y)∈[±3σ]

(g(x , y)− ĝ(x , y))2 (5)

We can approximate the DoG operator (3) by a D̂oG estimator
with two sets of box filters.

DoG ≈ D̂oG = ĝ(x , y , kσ)− ĝ(x , y , σ) (6)

=
n∑

i=1

λiΠi (x , y)−
n∑

j=1

λjΠj(x , y)

12 / 37



Fast spatial LoG filtering (5/5)

DoG ≈ D̂oG : the filtered image is obtained by convolution

between the input image f (x , y) and the D̂oG operator.

(ĝ(x , y , kσ)− ĝ(x , y , σ))⊗ f (x , y) (7)

= ĝ(x , y , kσ)⊗ f (x , y)− ĝ(x , y , σ)⊗ f (x , y)

=
n∑

i=1

λiΠi (x , y)⊗ f (x , y)−
n∑

j=1

λjΠj(x , y)⊗ f (x , y)

The Πi (x , y)⊗ f (x , y) products of Eq. (7) can be obtained with
integral image at a complexity O(N).

13 / 37



Summary

CV in short

State-of-the-art
Introduction
Fast spatial LoG filtering
Scale-space representation

Performance evaluation
Key-point detection
End-to-end text detection
Processing time

Conclusions and perspectives
Conclusions and perspectives

14 / 37



Scale-space representation (1/3)

Key problem: a maximum response corresponds to a stroke. It
relies on the correlation between σ and the size of the stroke. A
filter bank [σ0, ..., σm] must be used for scale-invariance.

Figure: Text detection with different σ values

Scale-space representation: is the design of a time-efficient and
accurate filter bank.

15 / 37



Scale-space representation (2/3)
Stroke model: defines how an optimum parameter σs is able to be
derived from the stroke width parameter w within a DoG operator.

σs = $(w) =
w

2k

√
k2 − 1

2lnk
(8)

Figure: LoG responses around σs to a boxcar function of size w = 21

16 / 37



Scale-space representation (3/3)

Stroke model: an optimal quantization is attained with
σs = $(w) and w ∈ [wmin,wmax ] as a discrete value. This requires
2(m + 1) Gaussian kernels with m = wmax − wmin.

17 / 37



Summary

CV in short

State-of-the-art
Introduction
Fast spatial LoG filtering
Scale-space representation

Performance evaluation
Key-point detection
End-to-end text detection
Processing time

Conclusions and perspectives
Conclusions and perspectives

18 / 37



Key-point detection (1/7)

Key problem: to characterize the RT-LoG as a key-point detector
and estimator of the NRT-LoG (Non Real-time-LoG)
corresponding to a LoG filtering ⊕ brute-force scale-space.

Dataset: there is no public dataset / groundtruth on the task.
Segmented character images are used with normalization.

Figure: The subset of segmented characters of The Chars74K dataset

19 / 37



Key-point detection (2/7)

Groundtruthing process: targets near optimum parameters for
the NRT-LoG, fixed by a user and a closed-loop methodology.

Figure: Semi-automatic process for groundtruthing

20 / 37



Key-point detection (3/7)
Characterization metric: the repeatability is standard for local
detectors. Two regions are repeated if they respect an overlap
error ε. r = w/2 is fixed with the stroke model Eq. (8).

Figure: The repeatability criteria

The repeatability score is (9), the ε parameter is relaxed to get a
ROC-like curve with ε = 0.4 the maximum overlap error.

r(fref , ftest , ε) =
D(fref , ftest , ε)

Mean(nr , nt)
(9)

21 / 37



Key-point detection (4/7)

Characterization protocol: the NRT-LoG architecture has been
relaxed step-by-step to get RT-LoG operators. The goal is to
characterize approximation at any stage.

Figure: The characterization protocol

22 / 37



Key-point detection (5/7)

Results I: fast spatial filtering with LoG ≈ DoG ≈ D̂oG .

I LoG ≈ DoG has almost none impact for k ∈]1,
√

2] (< 1% of
repeatability error at ε = 0.4).

I DoG ≈ D̂oG results in < 5% of repeatability error at ε = 0.4
with box filtering (n = 5). The other methods introduce
severe degradations.

23 / 37



Key-point detection (6/7)
Results II: scale-space with Stroke Model (SM) vs. SIFT.

I Equal kernels: m + 1 = 26 Gaussian kernels resulting in 26
(SM), 52 (SIFT) scales with k =

√
1.06. The SM outperforms

SIFT with a 5% repeatability gain at ε = 0.4 and a near
optimal result (< 1% of error).

I Equal repeatability: SIFT (m = 80) ' SM (m = 25) with
< 1% repeatability error at ε = 0.4.

24 / 37



Key-point detection (7/7)

Results III: low resolution.

I Low resolution: we filter out the key-points at wi . 15% of
repeatability error emerge for w ≤ 15 due to the quantization.
Full HD will give a robust repeatability with wmin ≈ 20.

25 / 37



Summary

CV in short

State-of-the-art
Introduction
Fast spatial LoG filtering
Scale-space representation

Performance evaluation
Key-point detection
End-to-end text detection
Processing time

Conclusions and perspectives
Conclusions and perspectives

26 / 37



End-to-end text detection (1/3)

Key problem: to characterize the RT-LoG for end-to-end scene
text detection and to compare with other RT operators (FASText,
Canny Text Detector, MSER, . . . ).

Dataset: the up-to-date dataset ICDAR2017 RRC-MLT is used
offering the deeper challenge for scalability.

Task Multiscript Training images Testing images Ground truth level
Text scene Yes 9K 9K Bounding box / Word

Table: The dataset of ICDAR2017 RRC-MLT, (K) in thousands.

Characterization metric: the Intersection over Union (IoU) with
the precision (P), recall (R) and Area Under the Curve (AUC).

27 / 37



End-to-end text detection (2/3)

Characterization protocol: to compare operators with the
ICDAR2017 RRC-MLT dataset, text verification & segmentation
must be applied. We use standard and time-efficient methods.

Figure: The system for operator comparison

28 / 37



End-to-end text detection (3/3)
Results: RT-LoG vs MSER.

I The P/R results are close (normalized AUC ∈ [0, 1] is 0.46 vs
0.44), the RT-LoG gets R = 100% whereas the MSER fails
with some texts due to blurring.

I R = 100%,P = 20% will result in ' 20− 100 RoIs per image,
the operator could be used within a R-CNN architecture.

Figure: (a) Precision / Recall plot (b) detection results
(blue) true positive (green) false positive (red) missed case

29 / 37



Summary

CV in short

State-of-the-art
Introduction
Fast spatial LoG filtering
Scale-space representation

Performance evaluation
Key-point detection
End-to-end text detection
Processing time

Conclusions and perspectives
Conclusions and perspectives

30 / 37



Processing time (1/3)

Key problem: to characterize the processing time of the RT-LoG
vs. the other RT and NRT operators.

Dataset: ICDAR2017 RRC-MLT is used where the parameters are
w = [5− 55],m = 50.

Characterization protocol: the operators are developed “from
scratch”, tested on one core and set with single/multi-thread and
auto-vectorization.

31 / 37



Processing time (2/3)

Results I: comparison of operators with single thread.

I The LoG has a O(Nω2) complexity not investigated.

I The RT operators (MSER, RT-LoG) result in one to two
orders of magnitude for acceleration.

I The RT-LoG operator scales better at high resolutions with a
' 2 acceleration factor compared to MSER.

Resolutions SD HD Full-HD Quad HD 4K

SIFT (m=160) 1308 18816 40390 ∼ ∼
SIFT (m=50) 409 5880 12622 ∼ ∼

MSER 121 850 2075 7496 14551

RT-LoG 110 621 1284 4550 8406

Table: Processing time of operators in (ms), single thread / core
C++/ Mac- OS 2.2 GHz Intel Core i7

32 / 37



Processing time (3/3)

Results II: FPS of the RT-LoG operator with multi-thread.

I the RT-LoG can support a high FPS up to the HD resolution.

I ' ×6− 9 acceleration factor will be obtained with a full
parallelism (multi-core, intrinsic instructions).

I The RT-LoG is designed for the real-time processing of the
Quad HD resolution with a regular CPU / full parallelism.

Threads 2 4 8 16

SD 13.3 17.1 30.1 54

HD 3.8 8.5 16.3 31.25

Full-HD 0.8 1.9 3.7 9.8

Quad-HD 0.2 0.4 1 3.3

Table: FPS with the RT-LoG operator, multi-thread / single core
C++ / Mac- OS 2.2 GHz Intel Core i7 system

33 / 37



Summary

CV in short

State-of-the-art
Introduction
Fast spatial LoG filtering
Scale-space representation

Performance evaluation
Key-point detection
End-to-end text detection
Processing time

Conclusions and perspectives
Conclusions and perspectives

34 / 37



Conclusions and perspectives (1/2)

Conclusions: The RT-LoG

I results in one to two orders of magnitude for acceleration.

I guaranties a near-exact LoG filtering RT-LoG ≈ LoG.

I outperforms the MSER operator with close performances
(AUC = 0.46 vs 0.44) and a ' 2 acceleration factor.

I is designed for a ' 30 FPS / Quad HD with a regular CPU.

35 / 37



Conclusions and perspectives (2/2)
Perspectives: The RT-LoG will be

I tested against other RT operators (FASText, Canny Text
Detector, . . . ) for end-to-end text detection.

I tested within a R-CNN architecture while keeping the
real-time constraint (20-100 RoIs).

I designed with a new real-time implementation while
aggregating the boxes Πi within the Stroke Model (SM).

I revisited with a full SM.

Figure: Within the SM (a) Gaussian distribution (b) aggregating Πi

36 / 37



References I

I C.D. Nguyen, M. Delalandre, D. Conte and T.A. Pham. Performance Evaluation of Real-time and
Scale-invariant LoG Operators for Text Detection. Conference on Computer Vision Theory and
Applications (VISAPP), 2019.

I C.D. Nguyen. Real-time LoG-based Operators for Text Detection. PhD Thesis, Tours University, France,
(in progress).

37 / 37


	CV in short
	State-of-the-art
	Introduction
	Fast spatial LoG filtering
	Scale-space representation

	Performance evaluation
	Key-point detection
	End-to-end text detection
	Processing time

	Conclusions and perspectives
	Conclusions and perspectives


