RT-LoG operator for scene text detection

Keynote talk at the Computational Intelligence Laboratory (CIL)

Mathieu Delalandre

LIFAT Laboratory, RFAI group, Tours city, France firstname.lastname@univ-tours.fr

March 19, 2019

Mathieu Delalandre - CV in short (1/2)

- ▶ PhD in computer science with 14 years of experience,
- ► Assistant Professor at the LIFAT Lab (Tours city, France),
- ▶ image processing (local detectors, template matching),
- ► application domains (video and document analysis),

Mathieu Delalandre - CV in short (2/2)

- ► international experience as research fellows in Europe (< 2009), visiting positions in Asia (> 2013),
- ► PhD supervisor of Cong Nguyen VIED P911,
- Co Associate of the Todd.tv startup,
- ▶ more about myself: http://mathieu.delalandre.free.fr/.

Summary

CV in short

State-of-the-art Introduction Fast spatial LoG filtering Scale-space representation

Performance evaluation Key-point detection End-to-end text detection Processing time

Conclusions and perspectives Conclusions and perspectives

Introduction (1/3)

Scene text detection: is a core image processing problem, the methods must be made:

(i) robust against text variabilities.

Figure: Text degradations (a) blurring (b) scaling (c) illumination changes

(ii) time-efficient to deal with the real-time, mass of data, low cost hardware, energy consumption issues.

Introduction (2/3)

RT-LoG: has attracted attention over the last years for scene text detection. It is the real-time implementation of the LoG operator (the Laplacian ∇^2 of the Gaussian function).

$$g(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
 (1)

$$\nabla^{2}g(x, y, \sigma) = g_{xx}(x, y, \sigma) + g_{yy}(x, y, \sigma)$$
(2)
= $\frac{1}{2\pi\sigma^{4}} \left(\frac{x^{2} + y^{2}}{\sigma^{2}} - 2\right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$

A discrete mask obtained from (2) is applied with convolution to obtain a LoG-filtered image.

<ロ > < 部 > < 注 > < 注 > < 注 > こ の < C 6/37

Introduction (3/3)

RT-LoG: the LoG filtering must be embedded into a full pipeline to design an end-to-end operator.

Figure: End-to-end operator

The end-to-end operator can be tuned in RT-LoG with optimization in the spatial and scale-space domains (steps A, B).

Summary

CV in short

State-of-the-art Introduction Fast spatial LoG filtering Scale-space representation

Performance evaluation Key-point detection End-to-end text detection Processing time

Conclusions and perspectives Conclusions and perspectives

Fast spatial LoG filtering (1/5)

Key problem: the LoG filter (2) is not separable, convolution has a complexity $O(N\omega^2)$ with N, ω^2 the image and mask sizes.

Strategy: fast LoG filtering applies an estimator cascade methodology LoG \approx DoG $\approx \widehat{DoG}$ to shift to a O(N) complexity.

LoG \approx DoG: approximation with the Difference of Gaussian (DoG), $k \in]1, \sqrt{2}]$ controls the precision of the scale-space derivative.

$$g(x, y, k\sigma_2) - g(x, y, \sigma_2) \approx (k-1)\sigma^2 \nabla^2 g(x, y, \sigma_1)$$
(3)

Fast spatial LoG filtering (2/5)

 $DoG \approx DoG$: fast Gaussian filtering methods can accelerate the filtering with approximation of the Gaussian kernel $\hat{g}(x, y, \sigma)$.

Category	Methods	Time optimization	Accuracy
Box filter	Box	++	+++
	SII	+++	++
	KII	+	+
Recursive filter	Deriche	++	++
	TCF	+++	+++
	VYV	+	++

Table: Fast Gaussian filtering (+++) best case (+) medium case

The box filter method is common to approximate the DoG.

Fast spatial LoG filtering (3/5)

DoG $\approx \widehat{DoG}$: while using the box filter method, $\widehat{g}(x, y, \sigma)$ is obtained by a linear combination of averaging filters $\Pi_i(x, y)$ with weight parameters λ_i . $n \in [4, 6]$ is the number of filters.

$$\widehat{g}(x, y, \sigma) = \sum_{i=1}^{n} \lambda_i \Pi_i(x, y)$$
(4)

Figure: Approximation $\widehat{g}(x, y, \sigma)$ of a gaussian function

Fast spatial LoG filtering (4/5)

DoG $\approx \widehat{DoG}$: the *n*, $\Pi_i(x, y)$, λ_i parameters can be obtained with minimization of the MSE and regression (e.g. LASSO).

$$MSE = \sum_{(x,y)\in[\pm 3\sigma]} (g(x,y) - \widehat{g}(x,y))^2$$
(5)

We can approximate the DoG operator (3) by a \widehat{DoG} estimator with two sets of box filters.

$$DoG \approx \widehat{DoG} = \widehat{g}(x, y, k\sigma) - \widehat{g}(x, y, \sigma)$$
(6)
$$= \sum_{i=1}^{n} \lambda_{i} \Pi_{i}(x, y) - \sum_{j=1}^{n} \lambda_{j} \Pi_{j}(x, y)$$

<ロ > < 部 > < 臣 > < 臣 > < 臣 > 三 の Q (C 12/37

Fast spatial LoG filtering (5/5)

 $DoG \approx \widehat{DoG}$: the filtered image is obtained by convolution between the input image f(x, y) and the \widehat{DoG} operator.

$$(\widehat{g}(x, y, k\sigma) - \widehat{g}(x, y, \sigma)) \otimes f(x, y)$$
(7)
= $\widehat{g}(x, y, k\sigma) \otimes f(x, y) - \widehat{g}(x, y, \sigma) \otimes f(x, y)$
= $\sum_{i=1}^{n} \lambda_i \prod_i (x, y) \otimes f(x, y) - \sum_{j=1}^{n} \lambda_j \prod_j (x, y) \otimes f(x, y)$

The $\Pi_i(x, y) \otimes f(x, y)$ products of Eq. (7) can be obtained with integral image at a complexity O(N).

Summary

CV in short

State-of-the-art Introduction Fast spatial LoG filtering Scale-space representation

Performance evaluation Key-point detection End-to-end text detection Processing time

Conclusions and perspectives Conclusions and perspectives

Scale-space representation (1/3)

Key problem: a maximum response corresponds to a stroke. It relies on the correlation between σ and the size of the stroke. A filter bank $[\sigma_0, ..., \sigma_m]$ must be used for scale-invariance.

Figure: Text detection with different σ values

Scale-space representation: is the design of a time-efficient and accurate filter bank.

Scale-space representation (2/3)

Stroke model: defines how an optimum parameter σ_s is able to be derived from the stroke width parameter w within a DoG operator.

$$\sigma_{s} = \varpi(w) = \frac{w}{2k} \sqrt{\frac{k^{2} - 1}{2lnk}}$$
(8)
$$\sum_{\substack{0.15 \\ 0.15 \\ 0.05$$

Figure: LoG responses around σ_s to a boxcar function of size w = 21

<ロ > < 部 > < 注 > < 注 > < 注 > 注 の < C 16/37

Scale-space representation (3/3)

Stroke model: an optimal quantization is attained with $\sigma_s = \varpi(w)$ and $w \in [w_{min}, w_{max}]$ as a discrete value. This requires 2(m+1) Gaussian kernels with $m = w_{max} - w_{min}$.

Summary

CV in short

State-of-the-art Introduction Fast spatial LoG filtering Scale-space representation

Performance evaluation Key-point detection End-to-end text detection Processing time

Conclusions and perspectives Conclusions and perspectives

Key-point detection (1/7)

Key problem: to characterize the RT-LoG as a key-point detector and estimator of the NRT-LoG (Non Real-time-LoG) corresponding to a LoG filtering \oplus brute-force scale-space.

Dataset: there is no public dataset / groundtruth on the task. Segmented character images are used with normalization.

Images	7705
Classes	62
Size (Kpixel)	0.3K-10K
$[w_{min}, w_{max}]$	[5, 30]
Resolution of full images	640 x 480 (VGA)

Figure: The subset of segmented characters of The Chars74K dataset

Key-point detection (2/7)

Groundtruthing process: targets near optimum parameters for the NRT-LoG, fixed by a user and a closed-loop methodology.

Figure: Semi-automatic process for groundtruthing

Key-point detection (3/7)

Characterization metric: the repeatability is standard for local detectors. Two regions are repeated if they respect an overlap error ϵ . r = w/2 is fixed with the stroke model Eq. (8).

Figure: The repeatability criteria

The repeatability score is (9), the ϵ parameter is relaxed to get a ROC-like curve with $\epsilon = 0.4$ the maximum overlap error.

$$r(f_{ref}, f_{test}, \epsilon) = \frac{D(f_{ref}, f_{test}, \epsilon)}{Mean(n_r, n_t)} \tag{9}$$

Key-point detection (4/7)

Characterization protocol: the NRT-LoG architecture has been relaxed step-by-step to get RT-LoG operators. The goal is to characterize approximation at any stage.

Figure: The characterization protocol

Key-point detection (5/7)

Results I: fast spatial filtering with $LoG \approx DoG \approx \widehat{DoG}$.

- LoG ≈ DoG has almost none impact for k ∈]1, √2] (< 1% of repeatability error at e = 0.4).</p>
- ► DoG ≈ DoG results in < 5% of repeatability error at e = 0.4 with box filtering (n = 5). The other methods introduce severe degradations.</p>

Key-point detection (6/7)

Results II: scale-space with Stroke Model (SM) vs. SIFT.

- ► Equal kernels: m + 1 = 26 Gaussian kernels resulting in 26 (SM), 52 (SIFT) scales with k = √1.06. The SM outperforms SIFT with a 5% repeatability gain at ε = 0.4 and a near optimal result (< 1% of error).</p>
- ► Equal repeatability: SIFT $(m = 80) \simeq SM$ (m = 25) with < 1% repeatability error at $\epsilon = 0.4$.

Key-point detection (7/7)

Results III: low resolution.

Low resolution: we filter out the key-points at w_i. 15% of repeatability error emerge for w ≤ 15 due to the quantization. Full HD will give a robust repeatability with w_{min} ≈ 20.

Summary

CV in short

State-of-the-art Introduction Fast spatial LoG filtering Scale-space representation

Performance evaluation Key-point detection End-to-end text detection Processing time

Conclusions and perspectives Conclusions and perspectives

End-to-end text detection (1/3)

Key problem: to characterize the RT-LoG for end-to-end scene text detection and to compare with other RT operators (FASText, Canny Text Detector, MSER, ...).

Dataset: the up-to-date dataset ICDAR2017 RRC-MLT is used offering the deeper challenge for scalability.

Task	Multiscript	Training images	Testing images	Ground truth level
Text scene	Yes	9K	9K	Bounding box / Word

Table: The dataset of ICDAR2017 RRC-MLT, (K) in thousands.

Characterization metric: the Intersection over Union (IoU) with the precision (P), recall (R) and Area Under the Curve (AUC).

End-to-end text detection (2/3)

Characterization protocol: to compare operators with the ICDAR2017 RRC-MLT dataset, text verification & segmentation must be applied. We use standard and time-efficient methods.

Figure: The system for operator comparison

End-to-end text detection (3/3) **Results:** RT-LoG vs MSER.

- ► The P/R results are close (normalized AUC ∈ [0, 1] is 0.46 vs 0.44), the RT-LoG gets R = 100% whereas the MSER fails with some texts due to blurring.
- ▶ R = 100%, P = 20% will result in $\simeq 20 100$ Rols per image, the operator could be used within a R-CNN architecture.

Figure: (a) Precision / Recall plot (b) detection results (blue) true positive (green) false positive (red) missed case

Summary

CV in short

State-of-the-art Introduction Fast spatial LoG filtering Scale-space representation

Performance evaluation Key-point detection End-to-end text detection Processing time

Conclusions and perspectives Conclusions and perspectives **Key problem:** to characterize the processing time of the RT-LoG vs. the other RT and NRT operators.

Dataset: ICDAR2017 RRC-MLT is used where the parameters are w = [5 - 55], m = 50.

Characterization protocol: the operators are developed "from scratch", tested on one core and set with single/multi-thread and auto-vectorization.

Processing time (2/3)

Results I: comparison of operators with single thread.

- The LoG has a $O(N\omega^2)$ complexity not investigated.
- The RT operators (MSER, RT-LoG) result in one to two orders of magnitude for acceleration.
- ► The RT-LoG operator scales better at high resolutions with a 2 acceleration factor compared to MSER.

Resolutions	SD	HD	Full-HD	Quad HD	4K
SIFT (m=160)	1308	18816	40390	~	~
SIFT (m=50)	409	5880	12622	~	~
MSER	121	850	2075	7496	14551
RT-LoG	110	621	1284	4550	8406

Table: Processing time of operators in (ms), single thread / core C++/ Mac- OS 2.2 GHz Intel Core i7

Processing time (3/3)

Results II: FPS of the RT-LoG operator with multi-thread.

- ► the RT-LoG can support a high FPS up to the HD resolution.
- ➤ ≃ ×6 9 acceleration factor will be obtained with a full parallelism (multi-core, intrinsic instructions).
- ► The RT-LoG is designed for the real-time processing of the Quad HD resolution with a regular CPU / full parallelism.

Threads	2	4	8	16
SD	13.3	17.1	30.1	54
HD	3.8	8.5	16.3	31.25
Full-HD	0.8	1.9	3.7	9.8
Quad-HD	0.2	0.4	1	3.3

Table: FPS with the RT-LoG operator, multi-thread / single core C++ / Mac- OS 2.2 GHz Intel Core i7 system

Summary

CV in short

State-of-the-art Introduction Fast spatial LoG filtering Scale-space representation

Performance evaluation Key-point detection End-to-end text detection Processing time

Conclusions and perspectives Conclusions and perspectives

Conclusions and perspectives (1/2)

Conclusions: The RT-LoG

- ► results in one to two orders of magnitude for acceleration.
- guaranties a near-exact LoG filtering RT-LoG \approx LoG.
- ► outperforms the MSER operator with close performances (AUC = 0.46 vs 0.44) and a ~ 2 acceleration factor.
- \blacktriangleright is designed for a \simeq 30 FPS / Quad HD with a regular CPU.

Conclusions and perspectives (2/2) Perspectives: The RT-LoG will be

- ► tested against other RT operators (FASText, Canny Text Detector, ...) for end-to-end text detection.
- ► tested within a R-CNN architecture while keeping the real-time constraint (20-100 Rols).
- ► designed with a new real-time implementation while aggregating the boxes Π_i within the Stroke Model (SM).
- revisited with a full SM.

Figure: Within the SM (a) Gaussian distribution (b) aggregating Π_i

References I

- C.D. Nguyen, M. Delalandre, D. Conte and T.A. Pham. Performance Evaluation of Real-time and Scale-invariant LoG Operators for Text Detection. Conference on Computer Vision Theory and Applications (VISAPP), 2019.
- C.D. Nguyen. Real-time LoG-based Operators for Text Detection. PhD Thesis, Tours University, France, (in progress).