Fast template matching and selection in the binary domain

Mathieu Delalandre (PhD)

LIFAT Laboratory, RFAI group, Tours city, France mathieu.delalandre@univ-tours.fr

July 12, 2016

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の へ () 1/59

#### Mathieu Delalandre - CV in short

PhD in Computer Science with 10 years of experience

2001-2005: PhD, Rouen University, France

2005-2009: Research Fellow Positions (UK, France, Spain)

2009-today: Assistant Professor (LIFAT Lab, Tours city, France)



#### Mathieu Delalandre - CV in short

Ongoing activities on image processing (starting 2009)

| Research topics                 | Application domains           |
|---------------------------------|-------------------------------|
| Processing in the transform do- | Document image networking     |
| main                            |                               |
| Object detection and template   | Comics / Manga copyright pro- |
| matching                        | tection                       |
| Local descriptors and detectors | Symbol and logo detection and |
|                                 | recognition                   |

**Past activities:** image understanding, graph-based representation, performance evaluation

**Publications:** Journals (TIP, PR, PRL, IJDAR), Conferences Workshops (ICDAR, DAS, GREC).

#### Projects and funding investigations

2001-2009: participation to 9 international and national projects.

- 2009-2015: VIED P322 PhD scholarship, DOD project (483 k€), SATT CopyBD project (98 k€), JSPS research fellow
  - Ongoing: ScannerLoire project (199 k€), BR PhD scholarship, VIED P165/P911 PhD scholarship

#### Mathieu Delalandre - CV in short

Partnerships:

Scientific responsibilities:

Committees, reviewing:

HDU (Thanh Hoa, Vietnam), L3i (La Rochelle, France), CIL (Athens, Greece), CVC (Barcelona, Spain) LIFAT coordinator (international partnership, digital humanities), Head of the pattern recognition program - CADS Master DAS, ICDAR, ICPR, IJDAR, GREC

### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

### Template matching

Template matching is performed by scanning an image I and evaluating the similarity between a template T and an area  $W \in I$ .



- ► Featured-based template matching extends shape analysis for deformable matching or geometric invariance [1].
- Correlation-based template matching extends image comparison for noise robustness and scalability [2].

#### Template matching

Template matching is a method of parameter estimation.

- ► The template T is a discrete function T<sub>x,y</sub> taking values in a window W.
- ► Template matching chooses position that maximizes the similarity between T and I Eq. (1).
- An application is the  $L_p$ -norm with gray-level images Eq. (2).

$$\min_{(i,j)\in I} L_{p}(i,j)$$
(1)  
$$L_{p}(i,j) = \left(\sum_{(x,y)\in W} |I_{x+i,y+j} - T_{x,y}|^{p}\right)^{\frac{1}{p}}$$
(2)

<ロ> < (回) < (u) < (

#### Template matching

The template matching problem is concerned with different parameters.

- ► M × N, s × t are the image I and template T sizes, height (M,s) and width (N,t).
- ► C is template model search space.
- O(f) the computation cost of the similarity measure f, f could the L<sub>p</sub>-norm or other.

M, N, s, t, C is the search space.

The total computation cost depends of the search space dimension and the O(f) computation.

Template matching can be applied to different pattern recognition problems:

|                                    | $M \times N$ | s 	imes t | С     |
|------------------------------------|--------------|-----------|-------|
| object detection [3]               | large        | small     | small |
| image registration [4]             | small        | large     | small |
| near-duplicate image detection [5] | small        | large     | large |

-

### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

#### Binary template matching

With binary images, binary similarity functions can be applied [6]. They are based on some  $n_{uv}$  terms:

- $n_{11}$  the positive matches, i.e. the number of 1 bits that match between  $y_m$  and  $x_m$ .
- $n_{00}$  the negative matches, i.e. the number of 0 matching bits.
- $n_{10}$ ,  $n_{01}$  the numbers of bit mismatches.
- *n* the template / vector size with  $n = s \times t = n_{11} + n_{00} + n_{10} + n_{01}$ .

### Binary template matching

76 (×2) binary measures can be defined to evaluate either the similarity S(X, Y) or either the dissimilarity D(X, Y) [7].

| Measure     | S(X,Y)                                                            | D(X, Y)                                                   |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------|
| Sokal and   | $\frac{n_{11}+n_{00}}{n}$                                         | $\frac{n_{10}+n_{01}}{n}$                                 |
| Michener    |                                                                   |                                                           |
| Jaccard and | $\frac{n_{11}}{n_{11}+n_{10}+n_{01}}$                             | $\frac{n_{10}+n_{01}}{n_{11}+n_{10}+n_{01}}$              |
| Needham     |                                                                   |                                                           |
| Rogers and  | $\frac{n_{11}+n_{00}}{n_{11}+n_{00}+2(n_{10}+n_{01})}$            | $\frac{2(n_{10}+n_{01})}{n_{11}+n_{02}+2(n_{10}+n_{01})}$ |
| Tanimoto    | $n_{11} + n_{00} + 2(n_{10} + n_{01})$                            | $n_{11} + n_{00} + 2(n_{10} + n_{01})$                    |
| Yule and    | $\frac{n_{11}n_{00} - n_{10}n_{01}}{n_{11}n_{00} + n_{10}n_{01}}$ | $\frac{n_{10}n_{01}}{n_{11}n_{00}+n_{10}n_{01}}$          |
| Kendall     | "TT""00   "10"01                                                  | ···11···00 + ··10//01                                     |

The dissimilarity form of the Sokal and Michener measure D(X, Y) normalizes the  $L_p$ -norm in the binary domain.

#### Binary template matching

The binary measures operate more as measure than as distance.

- Several binary measures are not respecting the Tri-Edge Inequality (TEI) Eq. (3) [8].
- ► Weighting boosts the classification performances [9].
- A standard weighting value is Eq. (4), to obtain equal weights between foreground / background elements. That is, the commutativity property is not respected S(X, Y) ≠ S(Y, X).

$$S(X,Z) \ge S(X,Y) + S(Y,Z)$$
(3)

$$\beta = \frac{n_{1x}}{n_{0x}} \qquad \beta \in [0, +\infty[ \qquad e.g \quad \frac{\beta n_{11} n_{00} - n_{10} n_{01}}{\beta n_{11} n_{00} + n_{10} n_{01}} \qquad (4)$$

### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

# Full-Search methods

Introduction

Full-Search (FS) methods scan the entire image and evaluate the similarity between the pattern and an area [10]. The brute-force method can be optimized with FFT, RLE and bitwise operators for binary similarity measures [11, 5].

| Method      | Complexity            | Constraint                                          | Application                |
|-------------|-----------------------|-----------------------------------------------------|----------------------------|
| Brute-force | O(MNst)               | none                                                | little applicable          |
| FFT         | $O(M^{*2}\log_2 M^*)$ | restricted to                                       | when $M \times N$ is large |
|             |                       | the <i>n</i> <sub>11</sub> , <i>n</i> <sub>00</sub> |                            |
|             |                       | matches                                             |                            |
| RLE         | O(kMNst)              | none                                                | when $M \times N$ is       |
|             | $k \ll 1$             |                                                     | small and $s \times t$ is  |
|             |                       |                                                     | a constraint               |
| Bitwise     | O(MNk)                | constraining                                        | when $M \times N$ is       |
|             | $k = \min(s, t)$      | the template                                        | small and $s \times t$ is  |
|             |                       | size                                                | not a constraint           |

 $M^*$  is M padded with the template's size and rounded to the above power of two.

#### Full-Search methods

Bitwise operators

**Time processing:** FS with the bitwise operators is the fasted method. Modern computers support the comparison of a 4 kB binary word (a  $128 \times 256$  template) in  $0.5\mu s$ .

| Image size    | processing time           |  |
|---------------|---------------------------|--|
|               | $128 \times 256$ template |  |
| $1 \times 1$  | 0.5 <i>μs</i>             |  |
| 64 × 64       | 2.04 <i>ms</i>            |  |
| 128 	imes 128 | 8.19 <i>ms</i>            |  |
| 256 × 256     | 32.77 ms                  |  |
| 512 × 512     | 131.07 <i>ms</i>          |  |

### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

#### Introduction to template selection

#### **Template definition**

```
object detection [3]Templates are application-dependent<br/>(a character, a logo, ...).image registration [4], near-<br/>duplicate image detection [5]Templates characterize salient regions<br/>on the images.
```

Template selection may be posed as follows.

- ► *I* is an image of size  $M \times N$ ,  $X_k \in I$  is a template of size  $s \times t$ , we have  $C = (M s) \times (N t)$  templates  $X_k \in I$ .
- ► Template selection aims to identify X<sub>k</sub>, with X<sub>1</sub>,...,X<sub>k</sub>,...,X<sub>C</sub>, that best characterizes I for a given pattern recognition problem.

### Introduction to template selection

#### Template selection approaches

| Approach         | Features                                                                          | Characterization                                                                 |
|------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Shape analysis   | Maximum Intensity Variation<br>Number, [12], gradient coher-<br>ence measure [13] | Fast computation, no refer-<br>ence image, little correlation<br>with matching   |
| Crosscorrelation | Peak sharpness, SNR [4]                                                           | High complexity, reference<br>image, near-perfect correla-<br>tion with matching |

#### Our approach

| Approach        | Features                                           | Characterization                                                              |
|-----------------|----------------------------------------------------|-------------------------------------------------------------------------------|
| Autocorrelation | Peak sharpness, features for pruning, Eccentricity | Quick computation, no refer-<br>ence image, good correlation<br>with matching |

#### Introduction to template selection

**The autocorrelation features** will look for interesting properties in the autocorrelation domain to accelerate and to make more robust the matching. The baseline process is:



### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

#### The autocorrelation map

#### The autocorrelation map:

- is a matrix W of size  $(2s+1) \times (2t+1)$ ,
  - $i_c = s + 1, j_c = t + 1$  is the center and locates the peak.
- W<sub>i,j</sub> provides the similarity measure S(X, X<sub>i,j</sub>) between X and the shifted template X<sub>i,j</sub> using an offset Δ<sub>i</sub> = i − i<sub>c</sub>, Δ<sub>j</sub> = j − j<sub>c</sub>.
- ▶ it is computed from a region of interest of size (3s+1) × (3t+1).



#### The autocorrelation map

The crosscorrelation / autocorrelation relation is Eq. (5)

$$S(X, Y_{i,j}) = S(X, X_{i,j}) + \eta(X, Y_{i,j}) \qquad \forall i, j \in W$$
(5)

where  $S(X, X_{i,j})$ ,  $S(X, Y_{i,j})$  and  $\eta(X, Y_{i,j})$  are the autocorrelation, crosscorrelation and noise measures.



24 / 59

### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

Introduction



Introduction

**Problem statement:** when applying template matching to a significant image size  $M \times N$  (e.g.  $128 \times 128$ ), the fastest FS method will shift to some tens *ms*.

**The proposed approach:** we index the topology of the autocorrelation maps to tune the matching process to an FS-equivalent mode (i.e. pruning with the FS result guaranty).

The pruning parameters

#### Core principle:

- f(i) = a is a constant and provides a  $W_{i,j}$  value at i, j.
- ▶ f(i + h), with  $h \in [0, +\infty[$ , is given with  $W_{i+h,j} = U_B$ .
- we looks for the maximum local derivatives  $\Delta f(i)/\Delta i = (f(i+h) f(i))/h \ \forall i$  with f(i) = a.
- ► that is W<sub>i,j</sub> is the closest peak element to W<sub>i+h,j</sub> and h can be used as a pruning parameter.
- a similar process is done to compute f(j).



The pruning parameters

#### The indexing algorithm:

- ►  $S^i = (S_1^i, ..., S_k^i, ..., S_q^i)$  is an array with a set of q quantified measures  $S_k^i \in [L_B, U_B] \forall k$ .
- at the initialisation, we fix  $S_k^i = \emptyset \ \forall k$ .
- ►  $\forall i, j$  we obtain the k index with a LUT function  $k = LUT(W_{i,j})$ .
- ▶ we set  $S_k^i = \min \left(S_k^i, i+h\right) \forall i, j \text{ with } W_{i+h,j} = U_B$ ,  $h \ge 0$ .
- a similar process is done for horizontal pruning to get  $S^{j}$ .

The FS-equivalent algorithm

- (\*) The autocorrelation map must cover the processed image, then  $I \in W$  with M < 2s + 1 and N < 2t + 1.
- (\*) *B* is a boolean matrix of size  $M \times N$ , we are fixing  $B_{i,j} = 0 \ \forall i, j$ .
- (i) At every pixel location  $(i, j) \in B$ , if  $B_{i,j} = 0$  compute  $S(X, Y_{i,j})$ .
- (ii) Then, get the corresponding k index with the LUT functions and do  $B_{i+y,j+x} = 1 \ \forall y \in [0, S_k^i]$  and  $\forall x \in [0, S_k^j]$ , set  $B_{i,j} = 0$ .

We compute the acceleration factor as given in Eq. (6)

$$\varpi = (M \times N) / \left( M \times N - \sum_{\forall i,j} B_{i,j} \right)$$
(6)

30 / 59

The noise model

#### Introduction

- ► Crosscorrelation differs from autocorrelation due to the noise component S(X, Y<sub>i,j</sub>) = S(X, X<sub>i,j</sub>) + η(X, Y<sub>i,j</sub>).
- The noise will result in offset values  $\Delta_k$  when accessing  $S^i$ ,  $S^j$ .
- $\Delta_k > 0$  for additive noise  $\eta(X, Y_{i,j}) > 0$ .
- $\Delta_k < 0$  for subtractive noise  $\eta(X, Y_{i,j}) < 0$ .
- To preserve the matching result, the Δ<sub>k</sub> offsets should not result in over pruning Eq. (7).

$$S_{k+\Delta_k}^i \stackrel{not}{>} S_k^i \qquad \forall k$$
 (7)

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 今 Q (~ 31 / 59)

The noise model

#### The additive case

- ► The S<sup>i</sup> array appears as a decreasing function as the pruning parameters go down when converging to the peak area.
- ► We can apply a min propagation S<sup>i</sup><sub>k+1</sub> = min(S<sup>i</sup><sub>k</sub>, S<sup>i</sup><sub>k+1</sub>) ∀k to obtain a monotonically decreasing function.
- ► We guaranty like this S<sup>i</sup><sub>k+Δk</sub> < S<sup>i</sup><sub>k</sub> with Δ<sub>k</sub> > 0 and prevent over pruning with additive noise.
- The process can be extended to  $S^j$ .



Transforms to S<sup>i</sup>, S<sup>j</sup> to guaranty the FS-equivalent mode

The noise model

#### The subtractive case

- ► We have  $\eta(X, Y_{i,j}) < 0$ , we fix a threshold  $\omega \in [L_B, U_B]$  that guaranties  $|\eta(X, Y_{i,j})| < U_B \omega$ .
- We can apply a translation process to  $S^i$  with  $T_k = LUT(U_B \omega)$  and  $S^i_k = S^i_{k-T_k} \ \forall k$ .
- We guaranty like this S<sup>i</sup><sub>k+Δk</sub> < S<sup>i</sup><sub>k</sub> with Δ<sub>k</sub> > 0 and prevent over pruning with subtractive noise.
- The process can be extended to  $S^{j}$ .



#### Transforms to Si, Si to guaranty the FS-equivalent mode

The wavelengths

**The wavelengths:** from the transformed  $S^i$ ,  $S^j$ , the average wavelength for sampling  $\lambda$  is given in Eq. (8). The maximization of this feature characterizes the goodness of the template for pruning.

$$\lambda = \underset{\forall i,j}{\mathsf{mean}}(d(LUT(W_{i,j})) \qquad d(k) = \sqrt{(S_k^i)^2 + (S_k^j)^2} \tag{8}$$

### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

Introduction



Peak detection

**Problem statement:** to characterize the shape of the peak we need to locate it. We can threshold the autocorrelation map with a fix threshold  $W_{i,j} > \tau \ \forall i, j$ .

#### Threshold definition:

- $\blacktriangleright$   $\tau$  can be fixed by an expert user [4], that is quite subjective.
- We can determine  $\tau$  from performance characterization point of view. To not miss peak detection,  $\tau$  must be fixed to avoid any false negatives *fn*.



Peak characterization

**Problem statement:** once the peak located, we can look for robustness properties when characterizing the peak response.

| Features              | Location accu- | Goodness for | Robustness   |
|-----------------------|----------------|--------------|--------------|
|                       | racy           | pruning      |              |
| Sharpness S [4]       | maximization   | minimization | minimization |
| Eccentricity $E_{CC}$ | maximization   | maximization | maximization |



Peak characterization

**Eccentricity**  $E_{cc}$  is standard image feature, that can be obtained:

- Q is a set  $W_{i,j} > \tau \ \forall i,j$ .
- $\theta_R \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  describes the direction of the major axis.
- ▶  $E_{CC} \in [1, +\infty[$  is eccentricity with  $E_{CC} = 1$  a perfect circular disk and  $E_{CC} \gg 1$  an elongated region.
- ▶  $\theta_R$ ,  $E_{CC}$  are obtained from the central moments  $\mu_{pq}$  Eq. (9).

$$\mu_{pq} = \sum_{i,j \in Q} (i - i_c)^p (j - j_c)^q \quad \theta_R = \frac{1}{2} \arctan \frac{2\mu_{11}}{\mu_{20} - \mu_{02}}$$
(9)  
$$E_{CC} = \frac{\mu_{20} + \mu_{02} + \sqrt{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2}}{\mu_{20} + \mu_{02} - \sqrt{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2}}$$

### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

Manga copyright protection

Manga copyright protection is related to a near-duplicate image detection and can be addressed with template matching [5].

- ► Illegal images are collected from Web portals, at low quality and resolution (e.g. jpg / 128 dpi).
- Legal images are produced per publishers at high resolution and quality.



Manga copyright protection

The system proposed in [5].

Web crawler: collects Manga images across the Web and store them into an illegal copy database.

**Preprocessing:** the line drawing layer is extracted with gray-level conversion and canny-edge detection. The legal images are downsampled for comparison.

Template selection: is applied from legal images.

**Template matching:** illegal copies are detected with comparison of templates coming from legal pages.



Performance characterization

#### The MangaOPU Dataset:

- ▶ is composed of 3844 × 2 = 7688 legal and illegal image pages (a 3844 class recognition problem).
- ▶ is a sample of the *Manga Shukan Shonen Jump* serie<sup>1</sup>.
- ► provides image pages at 128 dpi (a mean page size of 1300 × 900 pixels).

1N° 26, 27, 28, 35, 41, 42, 44, 45, 46 and 48 < => < => < => < => <</pre>

Performance characterization

#### The characterization protocol:

- ► Performance characterization is driven in a reference context.
- ► 30 templates are extracted randomly per page, of size 256 × 128, and applied for matching.
- ► The matching is set with the Yule measure  $S(X, D) \in [-1, 1]$ with a weight  $\beta = \frac{n_{1x}}{n_{0x}}$ ,  $\tau = 0.26$  and  $\omega = 0.12$ .
- ► We keep the template per page with the strongest local maxima L<sup>max</sup> (samples).
- $L^{max}$ ,  $\varpi$  are correlated to  $E_{cc}$ ,  $\lambda$ ,  $\theta_R$ .



44 / 59

Performance characterization

#### **Results:**

- $\simeq 95\%$  of peaks are near-blob structures at  $E_{CC} < 2$  dB.
- $E_{CC}$  samples are closed to a normal distribution.
- With  $E_{CC} \in [0, 2[ dB, \theta_R \text{ is little accurate.}]$
- With  $E_{CC} > 2$  dB, we have main orientations  $|\theta_R| \simeq \{0, \frac{\pi}{2}\}$ .
- More a peak converges to a blob structure, more it becomes sensitive to a lowest L<sup>max</sup>. With E<sub>CC</sub> > 2.97 dB (μ + 3σ), we have L<sup>max</sup> ∈ [0.84, 1] with a mean value L<sup>max</sup> = 0.92.



Performance characterization

#### **Results:**

- $\blacktriangleright$   $\lambda$  samples are closed to a normal distribution.
- The  $\lambda$ ,  $E_{CC}$  maximization are correlated.
- More  $\lambda$  increases, better the acceleration factor  $\varpi$  is.
- ► For intra-class comparisons, with  $\lambda > 27.7 \ (\mu + 3\sigma)$  we obtain  $\varpi \in [6, 34]$  and a mean value  $\varpi = 15.08$ .
- ► For inter-class comparisons, with  $\lambda > 27.7 \ (\mu + 3\sigma)$  we obtain  $\varpi \in [31, 265]$  and a mean value  $\varpi = 90.72$ .
- ► The inter-class case is the major pruning result, the recognition drives C 1 tn comparisons and 1 tp comparison.



46 / 59

Performance characterization

#### **Results:**

- Edge detection requires some tens *ms*.
- ► The image registration parameters are close to normal distributions, a full coverage is obtained at −5σ, +5σ with M × N = 64 × 128.
- ► It requires then some tens µs to encode and to get the integral image integral from I.
- The FS-equivalent matching operates at the hundred  $\mu s$  level.

| fingerprint | matching             |                |
|-------------|----------------------|----------------|
|             | Encoding / Integral  | 0.07 ms        |
|             | FS                   | 4.1 ms         |
|             | FS with pruning (tp) | 0.27 ms        |
|             | FS with pruning (tn) | 0.04 ms        |
| 35 ms       | Total                | 0.11 / 0.34 ms |

Performance characterization

#### **Results:**

- ► We reach separability on the MangaOPU dataset (a 3844 class recognition problem).
- ► The DBI (Davies Bouldin Index) of the distribution is  $DBI = 11,714 \times 10^{-3}$  close from the optimal value DB = 0.
- ► The best near-duplicate descriptor GIST [14] obtains separability with  $DBI = 288,627 \times 10^{-3}$  close to the separability upper bound  $\frac{1}{3}$ .
- GIST is not supposed to preserve separability when faced to a ten or hundred thousands class recognition problem.



### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

Introduction



Sampling

#### **Problem statement**

- With W of size ≃ 2s × 2t = 4n (n = s × t), complexity for selection is O(C4n<sup>2</sup>) with C ≃ M × N.
- ► 0.5µs to match a 128 × 256 template will require 1.87 days of computation for selection with a 1300 × 1900 image.

#### Sampling

- The selection doesn't need to be optimal, the important is to detect outlier.
- We sample the image to select the candidate templates by restricting overlapping, to avoid close autocorrelation maps.
- ► We obtain  $C \ll C$  templates such as  $(X_1, \ldots, X_k, \ldots, X_C) \in (X_1, \ldots, X_k, \ldots, X_C)$ .
- ► We must set C large enough in order to reach selection while avoiding unnecessary computation (e.g. C ∈ [5000, 10000]).

Selection process

#### **General observations:**

- ► The E<sub>CC</sub>, λ feature sets are close to normal distributions and their maximisation is correlated.
- ► The outlier detection with average wavelength \u03c6 guaranties a high value range for the acceleration factor \u03c6.
- ► The outlier detection with peak eccentricity E<sub>CC</sub> guaranties a high value range for the local maxima L<sup>max</sup>.

Selection process

#### The selection rule:

- $\sigma_j, \mu_j$  is the standard deviation, mean of the  $E_{CC}$  feature.
- $\sigma_j, \mu_j$  is the standard deviation, mean of the  $\lambda$  feature.
- ► A standard rule for outlier detection is (a)  $E_{CC} > \mu_i + 3\sigma_i$  (b)  $\lambda > \mu_j + 3\sigma_j$ .
- ► We select the templates with the rule a b, with a logical shortcut AND operator.
- ► As the *E<sub>CC</sub>* computation is ≪ than λ, with sampling the template selection can be done at the minute scale.

### Summary

 $\mathsf{CV}\xspace$  in short

Full-Search binary template matching Template matching Binary template matching Full-Search methods

Template selection Introduction to template selection The autocorrelation map The features for pruning Peak detection and characterization Performance evaluation Sampling and selection rule

Conclusions and perspectives Conclusions and perspectives

# Conclusions and perspectives

Conclusions

- The binary template matching with selection can be applied to near-duplicate document image detection.
- It is not scale and rotation invariant, but is robust to noise, supports partial skewing and re-sampling.
- It appears as the strongest method of the literature (it is supposed to support recognition problems of some tens to hundreds thousands classes).
- It processes at the hundred μs level for matching and is designed for recognition, not indexing and retrieval.

# Conclusions and perspectives

Perspectives

#### Short-term:

- ► To extend experiments for selection and GIST comparison.
- ► To drive performance evaluation on public dataset (e.g. Manga109), this needs degradation models.
- To clarify the  $\tau$ ,  $\omega$  relation.

# Conclusions and perspectives

Perspectives

#### Mid-term:

- ► The TEI is not respected, the free-context FS-equivalent methods cannot be applied [15]. Upperbound approximation can be done tacking into account a binary formulation.
- ► The C space can be pruned, we propose a reformulation of the Russel-Rao measure through a gaussian registration model (it is segmentation free, it requires template ordering).

#### Long-term:

► To make the bridge between binary template matching and the detector level . . .

#### References I

- P. Felzenszwalb, "Representation and detection of deformable shapes," Transaction on Pattern Analysis and Machine Intelligence (PAMI), vol. 27, no. 2, pp. 208–228, 2005.
- [2] M. Storring and T. Moeslund, "An introduction to template matching," Computer Vision and Media Technology Laboratory (CVMT), Aalborg University, Denmark., Tech. Rep. 01-04, 2001.
- [3] S. Mattoccia, F. Tombari, and L. Stefano, "Enhanced low-resolution pruning for fast full-search template matching," in *International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS)*, ser. Lecture Notes in Computer Science (LNCS), vol. 5807, 2009, pp. 109–120.
- [4] H. Choi, R. Gupta, and S. Suh, "Quality measurement of template models and automatic template model selection," in International Conference on Control, Automation and Systems (ICCAS), 2012, pp. 1044–1048.
- [5] M. Delalandre, M. Iwata, and K. Kise, "Fast and optimal binary template matching, application to manga copyright protection," in Workshop on Document Analysis Systems (DAS), 2014, pp. 298–303.
- [6] J. Tubbs, "A note on binary template matching," Pattern Recognition (PR), vol. 22, no. 4, pp. 359–365, 1989.
- [7] S. Choi, S. Cha, and C. Tappert, "A survey of binary similarity and distance measures," Journal of Systemics, Cybernetics and Informatics (SCI), vol. 8, no. 1, pp. 43–48, 2010.
- [8] B. Zhang and S. N. Srihari, "Discovery of tri-edge inequality with several binary vector dissimilarity measures," in *International Conference on Pattern Recognition (ICPR)*, vol. 4, 2004, pp. 669–672.
- [9] S. Cha, C. Tappert, and S. Yoon, "Enhancing binary feature vector similarity measures," *Journal of Pattern Recognition Research (JPRR)*, vol. 1, no. 1, pp. 63–77, 2006.
- [10] M. Gharavi-Alkhansari, "A fast globally optimal algorithm for template matching using low-resolution pruning," *Transactions on Image Processing (TIP)*, vol. 10, no. 4, pp. 526–533, 2001.
- S. Mukherji, "Fast algorithms for binary cross-correlation," in International Geoscience and Remote Sensing Symposium (IGARSS), vol. 1, 2005, pp. 340–343.

#### References II

- [12] A. Adnan, "Optimum template selection for image registration using icmm," in British Machine Vision Association (BMVC), 1998.
- [13] A. Bazen and al, "A correlation-based fingerprint verification system," in Workshop on Circuits, Systems and Signal Processing (ProRISC), 2000, pp. 205–213.
- [14] M. Douze and al, "Evaluation of gist descriptors for web-scale image search," in International Conference on Image and Video Retrieval (CIVR), no. 19, 2009.
- [15] W. Ouyang, F. Tombari, S. Mattoccia, and L. D. S. W. Cham, "Performance evaluation of full search equivalent pattern matching algorithms," *Pattern Analysis and Machine Intelligence (PAMI)*, vol. 34, no. 1, pp. 127–133, 2012.