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Template matching

Template matching is performed by scanning an image I and
evaluating the similarity between a template T and an area W ∈ I .

I Featured-based template matching extends shape analysis
for deformable matching or geometric invariance [1].

I Correlation-based template matching extends image
comparison for noise robustness and scalability [2].
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Template matching

Template matching is a method of parameter estimation.

I The template T is a discrete function Tx ,y taking values in a
window W .

I Template matching chooses position that maximizes the
similarity between T and I Eq. (1).

I An application is the Lp-norm with gray-level images Eq. (2).

min
(i ,j)∈I

Lp(i , j) (1)

Lp(i , j) =

 ∑
(x ,y)εW

|Ix+i ,y+j − Tx ,y |p
 1

p

(2)
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Template matching

The template matching problem is concerned with different
parameters.

I M × N, s × t are the image I and template T sizes, height
(M,s) and width (N,t).

I { is template model search space.

I O(f ) the computation cost of the similarity measure f ,
f could the Lp-norm or other.

M,N, s, t, { is the search space.
The total computation cost depends of the search space dimension
and the O(f ) computation.
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Template matching

Template matching can be applied to different pattern recognition
problems:

M×N s × t {
object detection [3] large small small
image registration [4] small large small
near-duplicate image detection [5] small large large
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Binary template matching

With binary images, binary similarity functions can be applied [6].
They are based on some nuv terms:

n11 the positive matches, i.e. the number of 1 bits that match
between ym and xm.

n00 the negative matches, i.e. the number of 0 matching bits.
n10, n01 the numbers of bit mismatches.
n the template / vector size with n = s×t = n11+n00+n10+n01.
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Binary template matching

76 (×2) binary measures can be defined to evaluate either the
similarity S(X ,Y ) or either the dissimilarity D(X ,Y ) [7].

Measure S(X ,Y ) D(X ,Y )

Sokal and
Michener

n11+n00
n

n10+n01
n

Jaccard and
Needham

n11
n11+n10+n01

n10+n01
n11+n10+n01

Rogers and
Tanimoto

n11+n00
n11+n00+2(n10+n01)

2(n10+n01)
n11+n00+2(n10+n01)

Yule and
Kendall

n11n00−n10n01
n11n00+n10n01

n10n01
n11n00+n10n01

The dissimilarity form of the Sokal and Michener measure D(X ,Y )
normalizes the Lp-norm in the binary domain.
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Binary template matching

The binary measures operate more as measure than as distance.

I Several binary measures are not respecting the Tri-Edge
Inequality (TEI) Eq. (3) [8].

I Weighting boosts the classification performances [9].

I A standard weighting value is Eq. (4), to obtain equal weights
between foreground / background elements. That is, the
commutativity property is not respected S(X ,Y ) 6= S(Y ,X ).

S(X ,Z ) ≥ S(X ,Y ) + S(Y ,Z ) (3)

β =
n1x

n0x
β ∈ [0,+∞[ e.g

βn11n00 − n10n01

βn11n00 + n10n01
(4)
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Full-Search methods
Introduction

Full-Search (FS) methods scan the entire image and evaluate the
similarity between the pattern and an area [10]. The brute-force
method can be optimized with FFT, RLE and bitwise operators for
binary similarity measures [11, 5].

Method Complexity Constraint Application
Brute-force O(MNst) none little applicable
FFT O(M∗2 log2 M

∗) restricted to
the n11,n00

matches

when M×N is large

RLE O(kMNst)
k << 1

none when M × N is
small and s × t is
a constraint

Bitwise O(MNk)
k = min(s, t)

constraining
the template
size

when M × N is
small and s × t is
not a constraint

M∗ is M padded with the template’s size and rounded to the
above power of two.
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Full-Search methods
Bitwise operators

Time processing: FS with the bitwise operators is the fasted
method. Modern computers support the comparison of a 4 kB
binary word (a 128× 256 template) in 0.5µs.

Image size processing time
128×256 template

1× 1 0.5 µs

64× 64 2.04 ms

128× 128 8.19 ms

256× 256 32.77 ms

512× 512 131.07 ms
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Introduction to template selection

Template definition

object detection [3] Templates are application-dependent
(a character, a logo, . . . ).

image registration [4], near-
duplicate image detection [5]

Templates characterize salient regions
on the images.

Template selection may be posed as follows.

I I is an image of size M × N, Xk ∈ I is a template of size
s × t, we have { = (M − s)× (N − t) templates Xk ∈ I .

I Template selection aims to identify Xk , with
X1, . . . ,Xk , . . . ,X{, that best characterizes I for a given
pattern recognition problem.

19 / 59



Introduction to template selection

Template selection approaches

Approach Features Characterization

Shape analysis Maximum Intensity Variation
Number, [12], gradient coher-
ence measure [13]

Fast computation, no refer-
ence image, little correlation
with matching

Crosscorrelation Peak sharpness, SNR [4] High complexity, reference
image, near-perfect correla-
tion with matching

Our approach

Approach Features Characterization

Autocorrelation Peak sharpness, features for
pruning, Eccentricity

Quick computation, no refer-
ence image, good correlation
with matching
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Introduction to template selection

The autocorrelation features will look for interesting properties
in the autocorrelation domain to accelerate and to make more
robust the matching. The baseline process is:
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The autocorrelation map
The autocorrelation map:

I is a matrix W of size (2s + 1)× (2t + 1),
ic = s + 1, jc = t + 1 is the center and locates the peak.

I Wi ,j provides the similarity measure S(X ,Xi ,j) between X and
the shifted template Xi ,j using an offset
∆i = i − ic ,∆j = j − jc .

I it is computed from a region of interest of size
(3s + 1)× (3t + 1).
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The autocorrelation map
The crosscorrelation / autocorrelation relation is Eq. (5)

S(X ,Yi ,j) = S(X ,Xi ,j) + η(X ,Yi ,j) ∀i , j ∈W (5)

where S(X ,Xi ,j), S(X ,Yi ,j) and η(X ,Yi ,j) are the autocorrelation,
crosscorrelation and noise measures.
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The features for pruning
Introduction
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The features for pruning
Introduction

Problem statement: when applying template matching to a
significant image size M × N (e.g. 128× 128), the fastest FS
method will shift to some tens ms.

The proposed approach: we index the topology of the
autocorrelation maps to tune the matching process to an
FS-equivalent mode (i.e. pruning with the FS result guaranty).
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The features for pruning
The pruning parameters

Core principle:

I f (i) = a is a constant and provides a Wi ,j value at i , j .
I f (i + h), with h ∈ [0,+∞[, is given with Wi+h,j = UB .
I we looks for the maximum local derivatives ∆f (i)/∆i

= (f (i + h)− f (i))/h ∀i with f (i) = a.
I that is Wi ,j is the closest peak element to Wi+h,j and h can

be used as a pruning parameter.
I a similar process is done to compute f (j).

28 / 59



The features for pruning
The pruning parameters

The indexing algorithm:

I S i = (S i
1, . . . ,S

i
k , . . . ,S

i
q) is an array with a set of q quantified

measures S i
k ∈ [LB ,UB ] ∀k.

I at the initialisation, we fix S i
k = ∅ ∀k.

I ∀i , j we obtain the k index with a LUT function
k = LUT (Wi ,j).

I we set S i
k = min

(
S i
k , i + h

)
∀i , j with Wi+h,j = UB , h ≥ 0.

I a similar process is done for horizontal pruning to get S j .
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The features for pruning
The FS-equivalent algorithm

(*) The autocorrelation map must cover the processed
image, then I ∈W with M < 2s + 1 and N < 2t + 1.

(*) B is a boolean matrix of size M × N, we are fixing
Bi ,j = 0 ∀i , j .

(i) At every pixel location (i , j) ∈ B, if Bi ,j = 0 compute
S(X ,Yi ,j).

(ii) Then, get the corresponding k index with the LUT
functions and do Bi+y ,j+x = 1 ∀y ∈ [0,S i

k [ and

∀x ∈ [0, S j
k [, set Bi ,j = 0.

We compute the acceleration factor as given in Eq. (6)

$ = (M × N)/

M × N −
∑
∀i ,j

Bi ,j

 (6)
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The features for pruning
The noise model

Introduction

I Crosscorrelation differs from autocorrelation due to the noise
component S(X ,Yi ,j) = S(X ,Xi ,j) + η(X ,Yi ,j).

I The noise will result in offset values ∆k when accessing S i , S j .

I ∆k > 0 for additive noise η(X ,Yi ,j) > 0.

I ∆k < 0 for subtractive noise η(X ,Yi ,j) < 0.

I To preserve the matching result, the ∆k offsets should not
result in over pruning Eq. (7).

S i
k+∆k

not
> S i

k ∀k (7)
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The features for pruning
The noise model

The additive case

I The S i array appears as a decreasing function as the pruning
parameters go down when converging to the peak area.

I We can apply a min propagation S i
k+1 = min(S i

k ,S
i
k+1) ∀k to

obtain a monotonically decreasing function.
I We guaranty like this S i

k+∆k
< S i

k with ∆k > 0 and prevent
over pruning with additive noise.

I The process can be extended to S j .
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The features for pruning
The noise model

The subtractive case

I We have η(X ,Yi ,j) < 0, we fix a threshold ω ∈ [LB ,UB ] that
guaranties |η(X ,Yi ,j)| < UB − ω.

I We can apply a translation process to S i with
Tk = LUT (UB − ω) and S i

k = S i
k−Tk

∀k .

I We guaranty like this S i
k+∆k

< S i
k with ∆k > 0 and prevent

over pruning with subtractive noise.
I The process can be extended to S j .
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The features for pruning
The wavelengths

The wavelengths: from the transformed S i , S j , the average
wavelength for sampling λ is given in Eq. (8). The maximization of
this feature characterizes the goodness of the template for pruning.

λ = mean
∀i ,j

(d(LUT (Wi ,j)) d(k) =

√
(S i

k)2 + (S j
k)2 (8)
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Peak detection and characterization
Introduction
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Peak detection and characterization
Peak detection

Problem statement: to characterize the shape of the peak we
need to locate it. We can threshold the autocorrelation map with a
fix threshold Wi ,j > τ ∀i , j .
Threshold definition:

I τ can be fixed by an expert user [4], that is quite subjective.

I We can determine τ from performance characterization point
of view. To not miss peak detection, τ must be fixed to avoid
any false negatives fn.
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Peak detection and characterization
Peak characterization

Problem statement: once the peak located, we can look for
robustness properties when characterizing the peak response.

Features Location accu-
racy

Goodness for
pruning

Robustness

Sharpness S [4] maximization minimization minimization

Eccentricity ECC maximization maximization maximization
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Peak detection and characterization
Peak characterization

Eccentricity Ecc is standard image feature, that can be obtained:

I Q is a set Wi ,j > τ ∀i , j .
I θR ∈

[
−π

2 ,
π
2

]
describes the direction of the major axis.

I ECC ∈ [1,+∞[ is eccentricity with ECC = 1 a perfect circular
disk and ECC � 1 an elongated region.

I θR , ECC are obtained from the central moments µpq Eq. (9).

µpq =
∑
i ,j∈Q

(i − ic)p(j − jc)q θR =
1

2
arctan

2µ11

µ20 − µ02
(9)

ECC =
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

µ20 + µ02 −
√

(µ20 − µ02)2 + 4µ2
11
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Performance evaluation
Manga copyright protection

Manga copyright protection is related to a near-duplicate image
detection and can be addressed with template matching [5].

I Illegal images are collected from Web portals, at low quality
and resolution (e.g. jpg / 128 dpi).

I Legal images are produced per publishers at high resolution
and quality.
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Performance evaluation
Manga copyright protection

The system proposed in [5].

Web crawler: collects Manga images across the Web and store
them into an illegal copy database.

Preprocessing: the line drawing layer is extracted with gray-level
conversion and canny-edge detection. The legal
images are downsampled for comparison.

Template selection: is applied from legal images.
Template matching: illegal copies are detected with comparison

of templates coming from legal pages.
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Performance evaluation
Performance characterization

The MangaOPU Dataset:

I is composed of 3844× 2 = 7688 legal and illegal image pages
(a 3844 class recognition problem).

I is a sample of the Manga Shukan Shonen Jump serie1.

I provides image pages at 128 dpi (a mean page size of
1300× 900 pixels).

1No 26, 27, 28, 35, 41, 42, 44, 45, 46 and 48
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Performance evaluation
Performance characterization

The characterization protocol:

I Performance characterization is driven in a reference context.
I 30 templates are extracted randomly per page, of size

256× 128, and applied for matching.
I The matching is set with the Yule measure S(X ,D) ∈ [−1, 1]

with a weight β = n1x
n0x

, τ = 0.26 and ω = 0.12.
I We keep the template per page with the strongest local

maxima Lmax (samples).
I Lmax , $ are correlated to Ecc , λ, θR .
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Performance evaluation
Performance characterization

Results:

I ' 95% of peaks are near-blob structures at ECC < 2 dB.

I ECC samples are closed to a normal distribution.

I With ECC ∈ [0, 2[ dB, θR is little accurate.

I With ECC > 2 dB, we have main orientations |θR | ' {0, π2 }.
I More a peak converges to a blob structure, more it becomes

sensitive to a lowest Lmax . With ECC > 2.97 dB (µ+ 3σ), we
have Lmax ∈ [0.84, 1] with a mean value Lmax = 0.92.

45 / 59



Performance evaluation
Performance characterization

Results:

I λ samples are closed to a normal distribution.
I The λ,ECC maximization are correlated.
I More λ increases, better the acceleration factor $ is.
I For intra-class comparisons, with λ > 27.7 (µ+ 3σ) we obtain
$ ∈ [6, 34] and a mean value $ = 15.08.

I For inter-class comparisons, with λ > 27.7 (µ+ 3σ) we obtain
$ ∈ [31, 265] and a mean value $ = 90.72.

I The inter-class case is the major pruning result, the
recognition drives {− 1 tn comparisons and 1 tp comparison.
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Performance evaluation
Performance characterization

Results:

I Edge detection requires some tens ms.

I The image registration parameters are close to normal
distributions, a full coverage is obtained at −5σ,+5σ with
M × N = 64× 128.

I It requires then some tens µs to encode and to get the
integral image integral from I .

I The FS-equivalent matching operates at the hundred µs level.

fingerprint matching

Encoding / Integral 0.07 ms
FS 4.1 ms
FS with pruning (tp) 0.27 ms
FS with pruning (tn) 0.04 ms

35 ms Total 0.11 / 0.34 ms

47 / 59



Performance evaluation
Performance characterization

Results:

I We reach separability on the MangaOPU dataset (a 3844
class recognition problem).

I The DBI (Davies - Bouldin Index) of the distribution is
DBI = 11, 714× 10−3 close from the optimal value DB = 0.

I The best near-duplicate descriptor GIST [14] obtains
separability with DBI = 288, 627× 10−3 close to the
separability upper bound 1

3 .
I GIST is not supposed to preserve separability when faced to a

ten or hundred thousands class recognition problem.
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Sampling and selection rule
Introduction
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Sampling and selection rule
Sampling

Problem statement

I With W of size ' 2s × 2t = 4n (n = s × t), complexity for
selection is O({4n2) with { ' M × N.

I 0.5µs to match a 128× 256 template will require 1.87 days of
computation for selection with a 1300× 1900 image.

Sampling

I The selection doesn’t need to be optimal, the important is to
detect outlier.

I We sample the image to select the candidate templates by
restricting overlapping, to avoid close autocorrelation maps.

I We obtain C � { templates such as (X1, . . . ,Xk , . . . ,XC) ∈
(X1, . . . ,Xk , . . . ,X{).

I We must set C large enough in order to reach selection while
avoiding unnecessary computation (e.g. C ∈ [5000, 10000]).
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Sampling and selection rule
Selection process

General observations:

I The ECC , λ feature sets are close to normal distributions and
their maximisation is correlated.

I The outlier detection with average wavelength λ guaranties a
high value range for the acceleration factor $.

I The outlier detection with peak eccentricity ECC guaranties a
high value range for the local maxima Lmax .
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Sampling and selection rule
Selection process

The selection rule:

I σj , µj is the standard deviation, mean of the ECC feature.

I σj , µj is the standard deviation, mean of the λ feature.

I A standard rule for outlier detection is (a) ECC > µi + 3σi (b)
λ > µj + 3σj .

I We select the templates with the rule a • b, with • a logical
shortcut AND operator.

I As the ECC computation is � than λ, with sampling the
template selection can be done at the minute scale.
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Conclusions and perspectives
Conclusions

I The binary template matching with selection can be applied
to near-duplicate document image detection.

I It is not scale and rotation invariant, but is robust to noise,
supports partial skewing and re-sampling.

I It appears as the strongest method of the literature (it is
supposed to support recognition problems of some tens to
hundreds thousands classes).

I It processes at the hundred µs level for matching and is
designed for recognition, not indexing and retrieval.
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Conclusions and perspectives
Perspectives

Short-term:

I To extend experiments for selection and GIST comparison.

I To drive performance evaluation on public dataset (e.g.
Manga109), this needs degradation models.

I To clarify the τ , ω relation.
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Conclusions and perspectives
Perspectives

Mid-term:

I The TEI is not respected, the free-context FS-equivalent
methods cannot be applied [15]. Upperbound approximation
can be done tacking into account a binary formulation.

I The { space can be pruned, we propose a reformulation of the
Russel-Rao measure through a gaussian registration model (it
is segmentation free, it requires template ordering).

Long-term:

I To make the bridge between binary template matching and
the detector level . . . .
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