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CV in short - Mathieu Delalandre (1/2)
▶ PhD in computer science with > 20 years of experience,
▶ Associate Professor at the LIFAT Lab - UT (Tours, France),
▶ fields of image processing and machine learning,

▶ local detectors, processing in the transform domain, template matching,

▶ application domains,
▶ video copy detection, scene text detection, document image networking,

manga copyright protection, symbol/logo detection and recognition,

▶ journals and conferences/workshops,
▶ JRTIP, TIP, PR, PRL, IJDAR,
▶ CBMI, ICIAP, VISAPP, CAIP, ICPR, ICDAR, DAS, GREC.
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CV in short - Mathieu Delalandre (2/2)
▶ international experience as (< 2009) research fellows in

Europe (> 2013) visiting positions in Asia,
▶ PhD supervisor of T.A. Pham, C. Nguyen, V.H. Le and G. Vu
▶ head of international LIFAT-RFAI, TV Workstation project
▶ teacher at the Polytech school,

▶ operating systems, real-time systems, distributed systems & computing,
▶ head of international exchanges, networking and systems program

▶ more about myself: http://mathieu.delalandre.free.fr/ .
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Introduction

▶ Television (TV) is a huge source of multimedia data1,
▶ ≃ 27, 000 channels worldwide,
▶ ≃ 55% in Europe, Russia, China, USA,
▶ provided with DTT, SaT, Cable TV, IPTV and InternetTV,
▶ e.g. France / Vietnam (≃ 210 channels), USA (≃ 1, 760 channels),

▶ Computer Vision and AI could be applied to TV,
▶ Social TV, Sync2Ad, SmartZapping, fact-cheking, catchup TV, . . . ,

▶ A Workstation has to support the scalability / real-time issues,
this leads us to develop the TV Workstation since 2017.

1audio/video & metadata
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The DELL 5820 computer
The DELL 5820 computer processes 8 channels (HD, 30 FPS,
24h/day), with real-time audio / video encoding, control of tuners
with IR sensors, internal / external storage of 38 + 80 TB.

Resolution Audio/ CPU Video TB/ Audio GB/
Video rate Mbps month Kbps month

HD 1280 × 720
asyn

20 % 3 7.23 256 621
SD 720 × 576 12 % 1.6 3.89 160 384
Low 320 × 240 8 % 0.56 1.36 128 308
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Partial video copy detection (1/2)

Partial video copy detection (PVCD) aims at finding short
segment(s) which have transformed in long video(s):

▶ it is a key topic with application domains (copyright, retrieval),

▶ existing datasets (VCDB, VCSL) offer no scalability, control of
degradation, frame-level annotation, concistency,

▶ a TV-based protocol was proposed to design the STVD-PVCD dataset on
the task, public available2 with an agreement, published at
[ORASIS2021,ICIAP2022] referred in the main research portails3.

2https://dataset-stvd.univ-tours.fr/pvcd/
3e.g. cove.thecvf.com, datasets.visionbib.com, homepages.inf.ed.ac.uk,

kaggle.com, opendatalab.com, paperswithcode.com, . . .
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Partial video copy detection (2/2)

The STVD-PVCD is compared to the state-of-the-art.

Datasets VCDB STVD VCSL
2016 2021 2022

References 28 243 122
Positive videos 528 19,280 9,207
Positive pairs 9K 1,688K 281K
Negative videos 100,000 64,040 N/A
Duration (h) 2,030 10,660 17,416

Noise characterization real noise noise-free real noise
Consistency yes yes no
Annotation cost (m-h) 700 105 20,000

Timestamping 1s 1
30

s 1s

(h): hours, (s): seconds, (m-h): man-hours and N/A: not available

Set A Set B Set C Set D Set E Set F

STVD-PVCD allows deeper characterization tasks
e.g. characterization of 2D CNN features [CAIP2023].
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Automatic video description with knowledge representation
Automatic video description aims to tell a story about events
happening in a video:

▶ it is a key problem in the computer vision field [IEEE2021],

▶ datasets4 suffer from heterogeneity, scalability, lack of context and
multimodal information, timing accuracy, black-box characterization,

▶ a TV protocol could offer a video normalization, a scalability, a knowledge
representation [PT2016] for a robust and contextual video description.

4MSVD, MSR-VTT, . . .
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Multimodal audio/video analysis for fact-checking
Fact-checking is the process that check the veracity of claims
from various media (print, TV, SNS). There is none multimodal /
scalable dataset. We have designed the largest dataset STVD-FC:

▶ containing 6, 730 news / political TV programs (6, 540 h) of the French
presidential election 20225 (≃ 50 Mwords, ≃ 706 Mimages, 1.96 TB),

▶ linked to 1, 300 claims collected over 6 years (200 political figures, 241K
words, 24K named entities) scraped from the Factoscope6,

▶ public available7 with an UT agreement, published at [CBMI2022].
51st of February to 1st of May 2022
6https://rattrapages-actu.epjt.fr/factoscope
7https://dataset-stvd.univ-tours.fr/fc/
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Parallel machine scheduling (PMS) for video capture
Problem statement: a largest capture (e.g. 32 channels) has an
important cost (32ke + 5ke a year for storage8 ) not needed for
the applications9. A partial capture with PMS can be handled:

▶ as an off-line / no preemptive scheduling using static execution times,

▶ it is Weighted Interval Selection Problem (WISP) NP-hard having
polynomial approximation algorithms (e.g. GREEDYα [JA2003]),

▶ the latency L(t) is a key parameter of the scheduling problem,

▶ a public available dataset STVD-PMS10 published with an UT agreement
(170 days, 26 channels, 99k jobs, 5,615 hashcodes, offline/online latency).

8Desktop version without maintenance and hosting / 186 TB a year (SD)
9Not repeated / idle, political, entertainment TV programs, . . .

10https://dataset-stvd.univ-tours.fr/pms/ 13 / 21
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The DELL PowerEdge T640 computer
The DELL PowerEdge T640 computer processes 24 channels
for real-time video decoding and processing with high-performance
CPUs11 and having an internal / external storage of 72 + 80 TB.

Ch BPP Res FPS Images Bandwidth

24 32
SD 600 = 24 × 25 51.8 M/day 0.69 GB/s 57.9 TB/day 34%
HD 528 = 24 × 22 45.6 M/day 1.81 GB/s 152.9 TB/day 91%

Full HD 240 = 24 × 10 20.7 M/day 1.85 GB/s 156.4 TB/day 93%

112× 40 threads with AVX 512 Vector Neural Network Instructions
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Real-time PVCD

Real-time PVCD processes with a deadline ∆ (e.g., 1-3s) and can
be applied to multiple video streams [CBMI2021,CAIP2023]:

▶ with real-time video decoding using hardware on the Workstation,

▶ with rigid (ZNCC) and no-rigid (2D CNN) features for matching,

▶ with key-frame selection methods using goodness criteria.

Time optimization for real-time deep learning to investigate:
▶ acceleration 12 with INT8 and VNNI [CCIS2020],

▶ soft real-time with adaptive inference [PR2020].

12≃ ×15 acceleration on ResNet-50 (OpenVino vs. TensorFlow).
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Real-time frame capture, IQA and NDD (1/2)

Real-time frame capture decodes videos into frames re-encoded
as image files (e.g. jpeg). The workstation can process 24 streams
(22 FPS / HD) in real-time with its hardware architecture.

No bottleneck appears, the problem comes from the storage cost.

Day Month Year
image 45.6 M 1.4 B 16.7 B
data 3.4 TB 103.2 TB 1.22 PB

M, B, TB, PB stand for Millions, Billions, Terabyte, Petabyte
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Real-time frame capture, IQA and NDD (2/2)

Image Quality Assesment (IQA) and Near-Duplicate
Detection (NDD) filter out low quality and duplicate images.

▶ standard video processing supports low-level IQA and NDD, high-level
IQA requires time-efficient blur detection methods [CIS2023],

▶ parameters α0, . . . , αn are set for storage requirements (e.g. ≃ 12 FPM).
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Conclusions and perspectives

▶ project launched in 2017, specific / ready-to-use platform,

▶ 2 PhD grants in progress (V.H. Le, J. Vu), applications to
other grants (VIED 89, French Embassy),

▶ ≃ 40 ke of investment, 8 researchers working on,

▶ 6 publications13 and 3 public available datasets STVD14,

▶ cross-disciplinary project (CV, NLP, OR),

▶ perspectives with key research topics (video description,
real-time deep learning, . . . ),

▶ projects in the queue (social TV, Fact-Checking).

13
[AI4TV2019, CBMI2021, ORASIS2021, ICIAP2022, CBMI2022, CAIP2023]

14https://dataset-stvd.univ-tours.fr/
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