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Introduction

1. send to n

2. check if n 

receipts, if not 

send 0 ACK

P0

P1 P2

R

Distributed mutual exclusion: in a group, 

processes must agree on the access 

requirements to no-shareable resources.

Group communication: specific algorithms need to 

be designed to enable efficient group communication. 
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Coordination and agreement concerns distributed algorithms whose goals aim to coordinate distributed processes on 

actions to perform, but also agreement on values to reach. Some typical problems are given here,

failure 

At the corner. leader election, consensus agreement, deadlock detection and resolution, global predicate detection, 

termination detection, failure detection, garbage collection, etc.
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Distributed mutual exclusion

“Introduction” (1)
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Requirements for mutual exclusion include the following properties.

Safety: at most one process may execute in the 

critical section.

Liveness: requests to enter and to exit the critical 

section eventually succeed.

Ordering: if one request to enter in the critical 

section happened-before another, the entry 

is granted in that order.

Mutual exclusion: two events are mutually exclusive if they cannot occur at the same time. Mutual exclusion algorithms are 

used to avoid the simultaneous use of a resource by the critical section piece of code. 
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Message passing 2 yes it works with 2 processes

Central server algorithm

2
yes no

the coordinator can crash

Ring-based algorithm synchronization delay large

Ricart-Agrawala algorithm yes linear complexity

Distributed mutual exclusion

“Introduction” (2)

Mutual exclusion: two events are mutually exclusive if they cannot occur at the same time. Mutual exclusion algorithms are 

used to avoid the simultaneous use of a resource by the critical section piece of code. 

The baseline ways to achieve mutual exclusion is message passing, to use a server or to arrange processes in a logical ring. 

These approaches suffers from performance and failure and are not supporting ordering. Different advanced algorithms have 

been proposed to solve these problems including the Ricart-Agrawala algorithm.
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Distributed mutual exclusion

“The baseline methods” (1)
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Message passing 2 yes it works with 2 processes

Central server algorithm

2
yes no

the coordinator can crash

Ring-based algorithm synchronization delay large

Ricart-Agrawala algorithm yes linear complexity
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Distributed mutual exclusion

“The baseline methods” (2)
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Process 

A

Process 

B

1. send

1. send

2. receive 2. receive

computer 1 computer 2

Message passing provides synchronization and communication functions, that can be used in distributed systems as well in 

shared-memory systems. A number of design issues must be considered: synchronization primitives (blocking, non 

blocking), addressing, message format and queuing discipline (FIFO, priority, etc.). 

The next algorithm achieves mutual exclusion with message passing, we assume here the use of a blocking receive 

primitive and a non blocking send primitive. The two processes exchange a token that ensures a mutual exclusion access.

Process A

loop

(1) receive message from B

(2) pop item from message

(3)      send message to B

Process B

loop

(1) receive message from A

(2) push a new item in message

(3)      send message to A



Distributed mutual exclusion

“The baseline methods” (3)

The no-concurrent access

step 1 step 2

Pi

C

the stack managed by the coordinatorPi are distributed processes

C is a process coordinator a message between two processes

(1), (2), (3) … are event orders

(1) P1 sends a request to C

(2-3) C registers P1 in the

critical section and sends ok
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Central server algorithm: the simplest way to achieve mutual exclusion with multiple processes is to employ a server 

that grants permission to enter in the critical section. This simulates how mutual exclusion is done in a one-processor 

system. The two access cases are no-concurrent and concurrent.

P1

C P1
(2) C gives the 

section to P1

(1) request (3) ok 
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(4) P1 sends a release to C

(5) C frees the section
P1

C
(5) C frees the 

section 

(4) release 

h
o
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w
ai

t



Distributed mutual exclusion

“The baseline methods” (4)
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step 1 step 2

(1) P2 sends a request to C

(2) C doesn’t answer and

pushes the request in the queue

if P2 is not included yet

(3) P1 sends a release to C

(4-5) C frees the section, 

pops up P2 from the queue 

and gives the section, then it 

sends ok to P2

The concurrent access

P2

P1 P2

C P1

(2) C pushes 

P2 request in 

the queue

(1) request 

h
o
ld

w
ai

t

P1 P2

C P2

(4) C frees the section 

and pops up the queue

(3) release 
(5) ok 

h
o
ld

w
ai

t

Pi

C

the stack managed by the coordinatorPi are distributed processes

C is a process coordinator a message between two processes

(1), (2), (3) … are event orders

Central server algorithm: the simplest way to achieve mutual exclusion with multiple processes is to employ a server 

that grants permission to enter in the critical section. This simulates how mutual exclusion is done in a one-processor 

system. The two access cases are no-concurrent and concurrent.



Distributed mutual exclusion

“The baseline methods” (5)

P0

P2P6

P7

P5

P4

P3

P1

Pi
Pi are distributed processes

message ordering

is the token
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Ring-based algorithm: requires that each process Pi has a communication channel to the next process in 

the ring P(i+1)mod N. The idea is that exclusion is conferred by obtaining a token in the form of a message passed from 

process to process in a single direction. 

e.g. eight processes P0 to P7 are scheduled on different computers across a network and synchronize through a ring using a 

token with message passing.
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Distributed mutual exclusion

“The Ricart-Agrawala algorithm” (1)
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yes no

the coordinator can crash
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Distributed mutual exclusion

“The Ricart-Agrawala algorithm” (2)
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Ricart-Agrawala algorithm: implements mutual exclusion between N peer processes. A process that requires entry to a 

critical section multicasts a request message, and can enter it only when all other processes have replied to this message. 

This algorithm requires a total ordering of all events in the system, logical clock can be used to provide timestamps.



Distributed mutual exclusion

“The Ricart-Agrawala algorithm” (3)
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Ricart-Agrawala algorithm: implements mutual exclusion between N peer processes. A process that requires entry to a 

critical section multicasts a request message, and can enter it only when all other processes have replied to this message. 

This algorithm requires a total ordering of all events in the system, logical clock can be used to provide timestamps.

Let us try to understand how the algorithm works, considering (1) the access case

P0

P1 P2

P0

P1 P2

(1) P0 timestamp (1) P0 timestamp (2) ok (2) ok

P0

P1 P2

(3) Access to critical section

(1) P0 sends its timestamp to everybody (2) all processes not in the critical section 

send ok

(3) P0 accesses the critical section

step 1 step 2 step 3

Pi

the critical section

Pi are distributed processes a request message with timestamp between two processes

(1), (2), (3) … are event orders

a process accesses the critical section

a reply message between two processes



Distributed mutual exclusion

“The Ricart-Agrawala algorithm” (4)
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Ricart-Agrawala algorithm: implements mutual exclusion between N peer processes. A process that requires entry to a 

critical section multicasts a request message, and can enter it only when all other processes have replied to this message. 

This algorithm requires a total ordering of all events in the system, logical clock can be used to provide timestamps.

Let us try to understand how the algorithm works, considering (2) the blocking case

P0

P1 P2

P0

P1 P2

(1) P0 timestamp (1) P0 timestamp (2) ok

P0

P1 P2

(1) P0 sends its timestamp to everybody (2) P1 not in the critical section sends ok, not 

P2, the access to the critical section is 

denied 

(3) P2 frees the critical section and sends ok to 

P0, the access to the critical section is 

granted

(3) ok

step 1 step 2 step 3

Pi

the critical section

Pi are distributed processes a request message with timestamp between two processes

(1), (2), (3) … are event orders

a process accesses the critical section

a reply message between two processes



Distributed mutual exclusion

“The Ricart-Agrawala algorithm” (5)
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Ricart-Agrawala algorithm: implements mutual exclusion between N peer processes. A process that requires entry to a 

critical section multicasts a request message, and can enter it only when all other processes have replied to this message. 

This algorithm requires a total ordering of all events in the system, logical clock can be used to provide timestamps.

Let us try to understand how the algorithm works, considering (3) the concurrent case

P0

P1 P2

P0

P1 P2

(2) ok (2) ok

P0

P1 P2

(4) P0 frees the 

critical section

(1) P0, P2 are interested to access the critical 

section, they broadcast their timestamps

(2-3) P1 not in the critical section sends ok to 

both, P0’s timestamp is lowest thus it 

wins, P2 sends ok to P0, P0 accesses

(4-5) P0 frees the critical section and 

sends ok to P2, it grants P0

8
8

12

12 (2) ok

(3) P0 accesses 

the critical 

section

(5) ok

step 1 step 2 step 3

Pi

the critical section

Pi are distributed processes a request message with timestamp between two processes

(1), (2), (3) … are event orders

a process accesses the critical section

a reply message between two processes



Distributed mutual exclusion

“The Ricart-Agrawala algorithm” (6)
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Ricart-Agrawala algorithm: implements mutual exclusion between N peer processes. A process that requires entry to a 

critical section multicasts a request message, and can enter it only when all other processes have replied to this message. 

This algorithm requires a total ordering of all events in the system, logical clock can be used to provide timestamps.

The Ricart-Agrawala algorithm can be defined as follows.

•The algorithm uses request and reply messages, a request message is sent to all other processes to request their 

permission to enter in the critical section, a reply messages is sent to a process to give a permission.

•Processes use a logical clock to assign timestamps to critical section requests. These timestamps are used to decide 

the priority of requests in the case of conflict. Considering <Ti,pi>, <Tj,pj>, where T are timestamps and p process 

identifiers, i and j are the receiver and the sender respectively.  

•If Ti < Tj then pi defers the reply to pj while pi  is waiting for the critical section.

•Otherwise pi sends a reply message to pj, thus the highest priority request succeeds in collecting 

all the reply messages.



Distributed mutual exclusion

“The Ricart-Agrawala algorithm” (7)
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Ricart-Agrawala algorithm: implements mutual exclusion between N peer processes. A process that requires entry to a 

critical section multicasts a request message, and can enter it only when all other processes have replied to this message. 

This algorithm requires a total ordering of all events in the system, logical clock can be used to provide timestamps.

The Ricart-Agrawala algorithm can be defined as follows.

•Each process maintains a request-deferred array RDi of size “number of processes in the system”, 

initially i j RDi [j] = 0. 

•Whenever pi defers the request sent by pj, it sets RDi [j] = 1. 

•After pi has sent a reply message to pj, it sets RDi [j] = 0.

•When a process takes up a request for a critical section, it updates its logical clock. Also, when a process receives a 

timestamp, it updates its clock using this timestamp. 



Distributed mutual exclusion

“The Ricart-Agrawala algorithm” (8)
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Ricart-Agrawala algorithm: implements mutual exclusion between N peer processes. A process that requires entry to a 

critical section multicasts a request message, and can enter it only when all other processes have replied to this message. 

This algorithm requires a total ordering of all events in the system, logical clock can be used to provide timestamps.

Requesting the critical section with pi

(1) state = WANTED, update Ti

(2) broadcast <Ti,pi>

Receiving rule <Tj,pj> with pi

if (state  == HELD) 

or

(state == WANTED) and (Ti < Tj)

(3) RDi [j] = 1

otherwise

(4) update Ti, send a reply 

Releasing the critical section with pi

(7) state = RELEASED

(8) for j, if RDi [j] = 1 

send a reply message to pj , set RDi [j] = 0

Msgi = 0

Initialization with pi

(0) state = RELEASED

Receiving a reply message with pi

(5) Msgi = Msgi +1

if Msgi == N-1

(6) state = HELD
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Ricart-Agrawala

algorithm (9)

Requesting the critical section with pi

(1) state = WANTED, update Ti

(2) broadcast <Ti,pi>

Receiving rule <Tj,pj> with pi

if (state  == HELD) 

or

(state == WANTED) and (Ti < Tj)

(3) RDi [j] = 1

otherwise

(4) update Ti, send a reply

Initialization with pi

(0) state = RELEASED

Releasing the critical section with pi

(7) state = RELEASED

(8) for j, if RDi [j] = 1 

send a reply message to pj , set RDi [j] = 0

Msgi = 0

Receiving a reply message with pi

(5) Msgi = Msgi +1

if Msgi == N-1

(6) state = HELD

e.g. considering three process P0, P1 and P2 and a resource R: P1 gets the section 

at first then P2 is blocked while accessing R, P0 and P2 enter in a concurrent 

access case, the section is released to P2 then P0. 

Events Description

(1) access 

events

t0 to t4 P1 asks for the critical section, granted by P0, P1.

(2) blocking 

access events

t5 to t8 P2 asks for the critical section, while P1 holds it.

(3) concurrent 

access events

t9, t10, t13 P0 asks for the critical section, while P1 holds it 

and P2 is still looking for it, as CL2 < CL0 at t13 P2 

will not reply.

(2) blocking 

access events

t11, t12, t14 P1 frees the section, as P2 was granted by P0 at t8

it got it. 

t15 and t16 when releasing the section at t15, P2 grants P0.

P0

P1

P2

t0

t1

t3

t5

t7

t8

t4

t11

t13

t12

t14 t15

t16t6t2 t9

t10

7,1

7,1 9,2

11,0request

reply



Ricart-Agrawala

algorithm (10)

time t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

rules (1)(2) (4) (4) (5) (5)(6) (1)(2) (4) (3) (5) (1)(2) (3) (7)(8)

P0 state R W

CL0 3 8 10 11

RD0 

Msg0 0

P1 sate R W H R

CL1 6 7

RD1  P2 P2,0 

Msg1 0 1 2 0

P2 Sate R W

CL2 5 8 9

RD2 

Msg2 0 1

Requesting the critical section with pi

(1) state = WANTED, update Ti

(2) broadcast <Ti,pi>

Receiving rule <Tj,pj> with pi

if (state  == HELD) 

or

(state == WANTED) and (Ti < Tj)

(3) RDi [j] = 1

otherwise

(4) update Ti, send a reply

Initialization with pi

(0) state = RELEASED

Releasing the critical section with pi

(7) state = RELEASED

(8) for j, if RDi [j] = 1 

send a reply message to pj , set RDi [j] = 0

Msgi = 0

Receiving a reply message with pi

(5) Msgi = Msgi +1

if Msgi == N-1

(6) state = HELD

e.g. considering three process P0, P1 and P2 and a resource R: P1 gets the section 

at first then P2 is blocked while accessing R, P0 and P2 enter in a concurrent 

access case, the section is released to P2 then P0. 

P0

P1

P2

t0

t1

t3

t5

t7

t8

t4

t11

t13

t12

t14 t15

t16t6t2 t9

t10

7,1

7,1 9,2

11,0request

reply



Ricart-Agrawala

algorithm (11)

time t12 t13 t14 t15 t16

rules (5) (3) (5)(6) (7)(8) (5)(6)

P0 state W H

CL0 11

RD0 

Msg0 0 1 2

P1 sate R

CL1 7

RD1 

Msg1 0

P2 Sate W H R

CL2 9

RD2  P0 

Msg2 1 2 0

Requesting the critical section with pi

(1) state = WANTED, update Ti

(2) broadcast <Ti,pi>

Receiving rule <Tj,pj> with pi

if (state  == HELD) 

or

(state == WANTED) and (Ti < Tj)

(3) RDi [j] = 1

otherwise

(4) update Ti, send a reply

Initialization with pi

(0) state = RELEASED

Releasing the critical section with pi

(7) state = RELEASED

(8) for j, if RDi [j] = 1 

send a reply message to pj , set RDi [j] = 0

Msgi = 0

Receiving a reply message with pi

(5) Msgi = Msgi +1

if Msgi == N-1

(6) state = HELD

e.g. considering three process P0, P1 and P2 and a resource R: P1 gets the section 

at first then P2 is blocked while accessing R, P0 and P2 enter in a concurrent 

access case, the section is released to P2 then P0. 

P0

P1

P2

t0

t1

t3

t5

t7

t8

t4

t11

t13

t12

t14 t15

t16t6t2 t9

t10

7,1

7,1 9,2

11,0request

reply
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Distributed mutual exclusion

“The performance metrics” (1)
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The performance metrics for a mutual exclusion access are generally measured as follows:

Message complexity = f(N) is the number of messages that are 

required per critical section execution

with N the members of the system.

Synchronization delay (SD) is the time required before the next 

process enters in the critical section.

Section execution time (E) is the execution time that a process 

requires to be in the critical section.

System Throughput (ST) is the rate at which the system executes 

requests for the critical section.

The last process exists 

the critical section

The next process enters 

the critical section

Synchronization Delay (SD) section execution 

time (E)

ESD
ST




1
ST System Throughput in request/second

is the average Synchronization Delay in second

(n is the synchronization magnitude)

is the average section execution time in second

(n is the synchronization magnitude)



],1[1 n

i

iE
n

E





],1[1 n

i

iSD
n

SD



Distributed mutual exclusion

“The performance metrics” (2)
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The performance metrics for a mutual exclusion access are generally measured as follows:

Response time (RT) is the time interval that a request waits its 

critical section to be over, after its request 

message has been sent out, we have

centralized / 

local request

request message 

sent out

entering the 

critical section

leaving the 

critical section

Response Time (RT)

section execution 

time (E)

�� > 




Distributed mutual exclusion

“The performance metrics” (3)
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The performance metrics e.g. with the Ricart-Agrawala algorithm 

P0

P1

P2

t0

t1

t3

t5

t7

t8

t4

t11

t13

t12

t14 t15

t16t6t2 t9

t10

SD0 SD1E1 E2 SD2

RT1

RT2

t0 t1 t2 t3 t4 t5 t6 t7 t8

50 63 65 72 78 96 107 126 133

t9 t10 t11 t12 t13 t14 t15 t16

138 151 159 172 185 189 198 202

RT1 109 ms RT2 102 ms

SD1 30 ms SD2 4 ms �� 0,017 s

E1 81 ms E2 9 ms 

 0,045 s

ST 16,12

Time in ms

Message complexity is f(N) = 2(N-1)
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Group communication

“Introduction” (1)

30

Group communication: specific algorithms need to be designed to enable efficient group communication wherein 

processes can join and leave groups dynamically, or even fail. 

A group is a collection of processes that share a common context and 

collaborate on a common task within an application domain. 

coordinator

worker

worker

worker

worker

a peer group a hierarchical 

group
Multicast: the communication within a group can be ensured with a 

multicast operation driven at the application or network layer.

Application layer multicast is supported with one-to-one send 

operations. The implementation can use threads to perform the 

send operations concurrently. 

Network layer multicast (or IP multicast) sends message to the 

group in a single transmission. Copies are automatically created 

into network elements such as routers, switches, etc. It can be 

implemented using the IP multicast, that is part of the IP protocol. 

a group

network layer 

multicast

a group

application 

layer multicast



Group communication

“Introduction” (2)
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Integrity: the message received is the same as the one sent, and none 

message is delivered twice.

Validity: if a process multicasts a message m, then it will deliver m. 

The validity property guarantees liveness for the sender.

Agreement: if a process delivers a message m, then all other processes in 

the group will deliver m. The message must arrive to all the 

members of the group.

V
a

li
d

it
y

1. send to n 

without failure
2. check if n 

receipts

A
g

re
em

en
t

Reliable multicast is one that satisfies the integrity, validity and agreement properties. 

Ordering: different recipients may receive the messages in different 

orders, possibly violating the semantics of the distributed 

program. Formal specifications of ordered delivery need to 

be formulated and implemented.

P1 P2 P3 P4

m1
m2

ti
m

e
case message 

m1 before m2

case message 

m2 before m1

process/computer



Group communication

“Introduction” (3)
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System model: the system contains a collection of processes, which can communicate reliably over one-to-one channels. 

The elements to model the system are described below.

m is the message.

g, |g| is the group, |g| the size of the group.

p is the sender process.

q is a process of the group such as q  g.

multicast(g,m) sends the message m to all the processes q of the group g

in a single transmission with IP protocol.

send(q,m) is the synchronous send operation, with message sending 

then ACK receipt.

sender(m) every message m carries an unique identifier sender(m) of 

the process that sent it.

group(m) every message m carries an unique identifier group(m) of 

the destination group.

receive(m) a member p of the group receives a message m at the 

networking interface.

deliver(m) a multicast message is not directly delivered at the 

application layer as soon as it is received.

p

multicast(g,m)

the group g and some 

processes q  g

m

application

network

deliver(m)

receive(m)

co
m

p
o

n
en

ts

b
as

el
in

e 
se

n
d

 

o
p

er
at

io
n

s
id

en
ti

fi
er

s

b
as

el
in

e 
re

ce
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e 

o
p

er
at
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n

s



Group communication

“Introduction” (4)
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B-multicast(g,m) sends the message m to all members q of the group g

through one-to-one synchronous send operation.

B-deliver(m) the corresponding basic delivery primitive of B-

multicast(m).

R-multicast(g,m) the reliable primitive to send a message m to all the 

members q of the group g over a 

B-multicast(g,m) primitive.

R-deliver(m) the corresponding delivery primitive of 

R-multicast(m).

b
as

ic
 

p
ri

m
it

iv
es

 

re
li

eb
al

e

p
ri

m
it

iv
es

 

System model: the system contains a collection of processes, which can communicate reliably over one-to-one channels. 

The elements to model the system are described below.

p

multicast(g,m)

the group g and some 

processes q  g

m

application

network

deliver(m)

receive(m)
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Multicast primitives are implementations for the multicast communication that satisfy the reliability and ordering 

properties with performances.
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Basic multicast B-multicast(g,m) uses the  application layer for multicasting with a synchronous send operation. It makes 

sense to set the communication in a non blocking mode. This multicast primitive guarantees, unlike the IP multicast, that a 

process will deliver the message as long as the multicaster does not crash. 

For a process p to B-multicast(g,m): 

for each process q  g, send(q,m);

On receive(m) at q: B-deliver(m); P0

P1

P2

t0

t1

t2 t3

t4

t5

t6

t7 t8

t9

t10 t11

kernel

process

buffer copy

process blocked

message exchange

interruption

S_C S_C

R_C

R_C

S S

S  send

R

R

R  receive

S_C  send completes

R_C  receive completes

e.g. three processes P0, P1 and P2 where P0 muticasts a message using the B-multicast 

communication primitive.
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Basic multicast B-multicast(g,m) uses the  application layer for multicasting with a synchronous send operation. It makes 

sense to set the communication in a non blocking mode. This multicast primitive guarantees, unlike the IP multicast, that a 

process will deliver the message as long as the multicaster does not crash. 

Events Description

send(q,m)

t0, t3 P0 performs concurrent send operations at the 

application layer.

t2, t5 As the multicast operation is non blocking, 

sending on the network occurs latter.

t10, t11 The send operations complete in a synchronous

mode when the ACK are received at P0.

receive(m)

t1 ,t4 P1, P2 initiate the receive operation.

t6 ,t7 P1, P2 receive the message at the networking 

interface.

R-deliver(m)

t8, t9 The delivering for P1, P2 occurs when the 

messages are copied to the buffer.  The delivery 

time is different from the receive time.

For a process p to B-multicast(g,m): 

for each process q  g, send(q,m);

On receive(m) at q: B-deliver(m);

e.g. three processes P0, P1 and P2 where P0 muticasts a message using the B-multicast 

communication primitive.
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Basic multicast B-multicast(g,m) uses the  application layer for multicasting with a synchronous send operation. It makes 

sense to set the communication in a non blocking mode. This multicast primitive guarantees, unlike the IP multicast, that a 

process will deliver the message as long as the multicaster does not crash. 

Communication: the send(q,m), receive(m), B-deliver(m) 

synchronization operations.

Validity: the primitive doesn’t satisfy the validity, a 

process will never deliver the m to itself.

Agreement: it cannot guaranty agreement.

Ordering: it cannot guaranty ordering.

Performance: the communication requires 2|g| messages. 

ACK-implosion: the ACK could arrive from many processes at 

the same time. The buffer of the process p

could rapidly fill and must be set consequently.

For a process p to B-multicast(g,m): 

for each process q  g, send(q,m);

On receive(m) at q: B-deliver(m);
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R-multicast over B-multicast(g,m) multicasts a message m with the B-multicast(g,m) primitive, including itself. When 

the message is delivered the recipient multicasts the message to the group, if it is not the original sender, before delivering.

Since a message may arrive more than once, duplicates are deleted using the sender(m) identifier. 

For process p to R-multicast (g,m):

On initialization

Received := {};

B-multicast(g,m);  

// p  g is included as a destination

On B-deliver(m) at process q  g

if (m  Received )

then

Received := Received  {m};

if ( q  p ) then 

B-multicast(g,m); 

end if

R-deliver(m);

end if

e.g. three processes P0, P1 and P2 where P0 multicasts a message using the R-multicast 

communication primitive over a B-multicast operation.

P0

P1

P2

t0

kernel

process

buffer copy

process blocked

message exchange

interruption

S_C S_C

R_C

R_C

S S

S  send

R

R

R  receive

S_C  send completes

R_C  receive completes

S S

R

R_C

S_C

R_C

S_C

t1

t2

t3 t4

t6 t7 t8

t10 t11

S R_C

t5

S

t9

t14 t15 t16

t19 t20

S_C

t13

R_C S_C

t12

t17 t18
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For process p to R-multicast (g,m):

On initialization

Received := {};

B-multicast(g,m);  

// p  g is included as a destination

On B-deliver(m) at process q  g

if (m  Received )

then

Received := Received  {m};

if ( q  p ) then 

B-multicast(g,m); 

end if

R-deliver(m);

end if

e.g. three processes P0, P1 and P2 where P0 muticasts a message using the R-multicast 

communication primitive over a B-multicast operation.

Events Description

t0, t1, t2 P0, P1, P2 initiate their receive operations.

t3, t4, t5 P0 drives a B-multicast operation including itself.

t6 P2 receives the message m as the first time, as q  p it 

initiates a B-multicast operation.

t7, t8, t9 P2 drives a B-multicast operation including itself, at t9 it 

will R-deliver(m) as the B-multicast is over.

t10, t11 P1 receives the P0’s message at t10 trough P2, it will 

initiate a B-multicast operation later (>t20). At t11, as m 

 Received the message m will be ignored.

t12, t13 P0 receives its own message m sent to itself, as q = p the 

B-multicast operation is ignored and P0 R-deliver(m). 

P0 acknowledges the message to itself at t13.

t14, t16 P0 receives ACK from P2, P1.

t15 P0 receives a message m from P2, as m  Received (see 

t12) the message m will be ignored.

R-multicast over B-multicast(g,m) multicasts a message m with the B-multicast(g,m) primitive, including itself. When 

the message is delivered the recipient multicasts the message to the group, if it is not the original sender, before delivering.

Since a message may arrive more than once, duplicates are deleted using the sender(m) identifier. 
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For process p to R-multicast (g,m):

On initialization

Received := {};

B-multicast(g,m);  

// p  g is included as a destination

On B-deliver(m) at process q  g

if (m  Received )

then

Received := Received  {m};

if ( q  p ) then 

B-multicast(g,m); 

end if

R-deliver(m);

end if

e.g. three processes P0, P1 and P2 where P0 muticasts a message using the R-multicast 

communication primitive over a B-multicast operation.

R-multicast over B-multicast(g,m) multicasts a message m with the B-multicast(g,m) primitive, including itself. When 

the message is delivered the recipient multicasts the message to the group, if it is not the original sender, before delivering.

Since a message may arrive more than once, duplicates are deleted using the sender(m) identifier. 

Events Description

t17, t18 P2 receives its own message m sent to itself, as m 

Received the message m will be ignored.

t19, t20 P2 receives ACK from P1, P0.

>t20 P1 must still initiate a B-multicast operation …
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For process p to R-multicast (g,m):

On initialization

Received := {};

B-multicast(g,m);  

// p  g is included as a destination

On B-deliver(m) at process q  g

if (m  Received )

then

Received := Received  {m};

if ( q  p ) then 

B-multicast(g,m); 

end if

R-deliver(m);

end if

Communication: the send(q,m), receive(m), B-deliver(m)

synchronization operations.

Validity: the primitive satisfies the validity property, a 

process will deliver m to itself.

Agreement: every process applies B-multicast(g,m) then 

B-delivered(m). |g| messages are received per 

process, that enhances the agreement.

Ordering: this primitive cannot guaranty ordering.

Performance: this primitive is inefficient as each message is 

sent << (2|g|)2 times.

ACK-implosion: the ACK implosion is here with (2|g|)2

messages

R-multicast over B-multicast(g,m) multicasts a message m with the B-multicast(g,m) primitive, including itself. When 

the message is delivered the recipient multicasts the message to the group, if it is not the original sender, before delivering.

Since a message may arrive more than once, duplicates are deleted using the sender(m) identifier. 
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Reliable multicast over IP multicast can be supported with combination of (i) IP multicast, (ii) piggybacked 

acknowledgements and (iii) negative acknowledgements. 

(i) IP multicast: the protocol is based on the observation that IP multicast communication is often successful.

(ii) Piggybacked acknowledgements: processes do not send separate acknowledgement messages; instead, they piggyback 

acknowledgements on the messages that they send to the group. The piggybacked values in a multicast message enable the 

recipient to learn about the messages that they have not received yet.

(iii) Negative acknowledgements: processes send a separate response message only when they detect that they have missed 

a message. A response indicating the absence of an expected message is known as a negative acknowledgement.

(iv) Storage queues: the protocol requires to manage different storage queues (BQ, HQ, DQ) at the process level for the 

message backup, hold-back and delivery.

Message

processing

BQ

outcoming

messages

p Message

processing

HQ

incoming 

messages
when delivery 

guaranty are met

deliver

DQ

q
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Reliable multicast over IP multicast can be supported with combination of (i) IP multicast, (ii) piggybacked 

acknowledgements and (iii) negative acknowledgements. 

a message m

p

gS
p

gR
p q

a negative acknowledgement 

NACK             is send

if               are not synchronized

p

gSp,

p

gRq,p

g

p

g RS ,

We consider a sending processes p and a receiving process q, 

such as p, q  g.

• is a sequence number the process p for each group g

to which it belongs.

• is a sequence number of the latest message that the process q has 

delivered from p.

•p exchanges with q using piggybacked messages m and negative 

acknowledgements NACK based on the synchronization 

of the              values.

•The exchange can be extended to |g|>2 processes 

with a vector of  k values      .

•The synchronization of             values is based on logical clock 

mechanism bounded to the sender side.

p

gS

p

gR

p

g

p

g RS ,

k

gR

p

g

p

g RS ,
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•At the initialization of p:

•To multicast m with p: 

•we increment                   .

•we piggyback onto the message m the value              

and the delivered values                 that p received 

since the last message it sent, this requires a differential vector clock.

•the piggybacking process pushes messages to be sent in the backup queue BQ.

 DQBQHQkRS k

g

p

g ,0,0

1 p

g

p

g SS
p

gSp,

kRk
k

g ,

Reliable multicast over IP multicast can be supported with combination of (i) IP multicast, (ii) piggybacked 

acknowledgements and (iii) negative acknowledgements. 

There are different key steps / components in the method,

Message

processing

BQ

outcoming

messages

p
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•To deliver m with q:

• are the sequence number/vector extracted from m to be compared with            .

•if q has not received the message yet, q delivers m and applies           . 

•if              then q has delivered m before and discards m.

•if                                         then there is one or more message that q has not received yet, 

q maintains          in the hold-back queue HQ and sends NACK in the form             .

1 p

gRS SR pg 

p

gRS 

kRRorRS k

g

kp

g  1

g

p

g RR ,

Sp,

Reliable multicast over IP multicast can be supported with combination of (i) IP multicast, (ii) piggybacked 

acknowledgements and (iii) negative acknowledgements. 

There are different key steps / components in the method,

Message

processing

HQ

incoming 

messages
when delivery 

guaranty are met

deliver

DQ

q

kp

gRq
,,

RS ,
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regular delivering case

m has been delivered before

there is one or more message that 

q has not received yet from p

there is one or more message that 

q has not received yet from 

another process

Initialization for all p

(0)  DQBQHQkRS k

g

p

g ,0,0

For p to R-multicast(g,m)

(1)

(2) piggyback the messages since 

the last sending and send m

1 p

g

p

g SS

For p to reply to a negative ACK

(3) recover the messages         

from BQ such as

and send m

p

gSp,
p

g

p

g RS 

p

gRq,

For q to R-deliver(m) from p

(4) case 

R-deliver(m), 

(5) case 

discard m

(6) case

maintain in HQ

send a negative ACK            to p

(7) case

maintain in HQ

send a negative ACK        

)(, mgetRS 
1 p

gRS

SR pg 
p

gRS 

1 p

gRS

Sp,

kRR k

g 
Sp,

p

gRq,

kRq k

g ,

to R-multicast

to reply to a negative ACK

to init p (either q)
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Time Rule

t0 (1)(2)

t1 (4)

t2 (1)(2)

t3 (4)

t4 (7)

t5 (4)

(4)

t6 (3)

t7 (5)

regular sending receiving case, as P2 has not received a message yet there is no 

piggybacked message. P1 receives a P2’s message and piggybacks it.

P0 has not received the P2’s message yet, it pushes the P1’s message in its 

holdback queue and sends a negative ACK to P2.

P0 processes the P2 message, then this triggers a delivery condition for the P1’s 

message recovered from the holdback queue and P2 processes that message.

P2 resends a message to P1, recovered from its backup queue, to reply to the NACK. 

P0 already received the P2’s message while P2 replied to the negative ACK, the 

message is discarded.

e.g. considering three process P0, P1 and P2 cooperating in a 

distributed way with reliable multicast over IP multicast.

P0

P1

P2 t0

t1 t2

t4

t3

t5

t8

t9

t10

t11 t12

t14

1,2

1,21,1

t6

t7

NACK

1,2

2,1
3,1

NACK

t15

t13

a message m with piggybacked values a negative ACK

0,0

1,0
3,12,1

Initialization for all p

(0)  DQBQHQkRS k

g

p

g ,0,0

For p to R-multicast(g,m)

(1)

(2) piggyback the messages since 

the last sending and send m

1 p

g

p

g SS

For p to reply to a negative ACK

(3) recover the messages         

from BQ such as

and send m

p

gSp,
p

g

p

g RS 

p

gRq,

For q to R-deliver(m) from p

(4) case 

R-deliver(m), 

(5) case 

discard m

(6) case

maintain in HQ

send a negative ACK            to p

(7) case

maintain in HQ

send a negative ACK        

)(, mgetRS 
1 p

gRS

SR pg 
p

gRS 

1 p

gRS

Sp,

kRR k

g 
Sp,

p

gRq,

kRq k

g ,

�2, �����

�1, ����� ��������� ���
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Time Rule
P0 P1 P2

HQ HQ HQ

0 (×, 0, 0)  0 (0, ×, 0)  0 (0, 0, ×) 

t0 (1)(2) 1

t1 (4) (0, ×, 1)

t2 (1)(2) 1

t3 (4) (0, 1, ×)

t4 (7)

t5 (4) (×, 0, 1)

(4) (×, 1, 1) 

t6 (3)

t7 (5)

0

gS
1

gS
2

gS 210 ,, ggg RRR  210 ,, ggg RRR  210 ,, ggg RRR

1,1

Initialization for all p

(0)  DQBQHQkRS k

g

p

g ,0,0

For p to R-multicast(g,m)

(1)

(2) piggyback the messages since 

the last sending and send m

1 p

g

p

g SS

For p to reply to a negative ACK

(3) recover the messages         

from BQ such as

and send m

p

gSp,
p

g

p

g RS 

p

gRq,

For q to R-deliver(m) from p

(4) case 

R-deliver(m), 

(5) case 

discard m

(6) case

maintain in HQ

send a negative ACK            to p

(7) case

maintain in HQ

send a negative ACK        

)(, mgetRS 
1 p

gRS

SR pg 
p

gRS 

1 p

gRS

Sp,

kRR k

g 
Sp,

p

gRq,

kRq k

g ,

e.g. considering three process P0, P1 and P2 cooperating in a 

distributed way with reliable multicast over IP multicast.

P0

P1

P2 t0

t1 t2

t4

t3

t5

t8

t9

t10

t11 t12

t14

1,2

1,21,1

t6

t7

NACK

1,2

2,1
3,1

NACK

t15

t13

a message m with piggybacked values a negative ACK

0,0

1,0
3,12,1

�2, �����

�1, ����� ��������� ���
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Time Rule

t8 (1)(2)

t9 (4)

t10 (1)(2)

t11 (6)

t12 (4)

(4)

t13 (3)

t14 (4)

t15 (5)(5)

regular sending receiving case, as P1 didn’t receive a message since t2, it sent none 

piggybacked message, same at t10.

P0 receives a message from P1 but it didn’t receive the previous one, it pushes this 

message in its holdback queue and sends a negative ACK to P1.

P0 processes the first P1 message, then this triggers a delivery condition for the previous 

P1 message recovered from the holdback queue and P0 processes that message.

P1 resends a message to P0, recovered from its backup queue, to reply to the NACK. 

P0 has already delivered the P1’s messages while P1 replied to the negative ACK, 

the messages are discarded.

Initialization for all p

(0)  DQBQHQkRS k

g

p

g ,0,0

For p to R-multicast(g,m)

(1)

(2) piggyback the messages since 

the last sending and send m

1 p

g

p

g SS

For p to reply to a negative ACK

(3) recover the messages         

from BQ such as

and send m

p

gSp,
p

g

p

g RS 

p

gRq,

For q to R-deliver(m) from p

(4) case 

R-deliver(m), 

(5) case 

discard m

(6) case

maintain in HQ

send a negative ACK            to p

(7) case

maintain in HQ

send a negative ACK        

)(, mgetRS 
1 p

gRS

SR pg 
p

gRS 

1 p

gRS

Sp,

kRR k

g 
Sp,

p

gRq,

kRq k

g ,

e.g. considering three process P0, P1 and P2 cooperating in a 

distributed way with reliable multicast over IP multicast.

P0
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Time Rule
P0 P1 P2

HQ HQ HQ

0 (×, 1, 1)  1 (0, ×, 1)  1 (0, 1, ×) 

t8 (1)(2) 2

t9 (4) (0, 2, ×)

t10 (1)(2) 3

t11 (6)

t12 (4) (×, 2, 1)

(4) (×, 3, 1) 

t13 (3)

t14 (4) (0, 3, ×)

t15 (5)(5)

3,1

0

gS
1

gS
2

gS 210 ,, ggg RRR  210 ,, ggg RRR  210 ,, ggg RRR

Initialization for all p

(0)  DQBQHQkRS k

g

p

g ,0,0

For p to R-multicast(g,m)

(1)

(2) piggyback the messages since 

the last sending and send m

1 p

g

p

g SS

For p to reply to a negative ACK

(3) recover the messages         

from BQ such as

and send m

p

gSp,
p

g

p

g RS 

p

gRq,

For q to R-deliver(m) from p

(4) case 

R-deliver(m), 

(5) case 

discard m

(6) case

maintain in HQ

send a negative ACK            to p

(7) case

maintain in HQ

send a negative ACK        

)(, mgetRS 
1 p

gRS

SR pg 
p

gRS 

1 p

gRS

Sp,

kRR k

g 
Sp,

p

gRq,

kRq k

g ,

e.g. considering three process P0, P1 and P2 cooperating in a 

distributed way with reliable multicast over IP multicast.
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