

P2 P3 P3 P4

Q3

Time	Events	Rules
	initial state	
tO	p1 sends order 30 to p2	
t1	p2 sends order 90 to p3	
t2	p2 starts the snapshot	(1)(2)
t3	p3 receives 90 from p2	
t4	p2 receives 30 from p1	
t5	p3 sends order 210 to p2	
t6	P1 receives a marker	(3)(4)(1)(2)
t7	P2 sends order 80 to P1	
t8	P3 receives a marker	(3)(4)(1)(2)
t9	P2 receives a marker	(5)
t10	P2 receives 210 from P3	
t11	P2 receives a marker	(5)
t12	p1 receives 80	

Marker Sending Rule (M_{SR}) at process P_i

- (1) Record the state S_i of P_i
- (2) For each outgoing channel C_{ij} on which a marker has not been sent, send a marker along C_{ij} before any other message

Marker Receiving Rule (M_{RR}) at process P_j On receiving a marker along channel C_{ij} If P_j has not recorded its state

- (3) Record the state of C_{ij} as empty
- (4) Execute the M_{SR}

Else

- (5) Record the state of C_{ij}
 - as the set of messages received over C_{ij} since the last state record of the process

	_	
Р	2	
state S2	C12	C32
0	0	0
60		
	30	
		210
60	30	210

P3				
350	0	0		
440				
230				
	230	0		
	230	0		

The snapshot stops at t9 then t11

At t9, the local recored state for P2, P1 is different from local execution state $(60 \in +30 \in , 570 \in +0 \in) \neq (10 \in , 570 \in)$

At t11, the local recored state for P2, P3 is different from the local execution state $(60 \notin +210 \notin, 230 \notin +0 \notin) \neq (220 \notin, 230 \notin)$

P1, P2, P3 change their states asynchronously compared to the snapshot

financial order --→ marker