
Distributed Systems

“Introduction to distributed systems”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/dsystems.html

1

Introduction

to distributed systems

1. Definitions and motivations

2. Use-cases and application domains

3. Trends in distributed systems

4. Relations to parallel systems

5. Goals and challenges of distributed systems

6. The layered model and design issues

7. Types of distributed systems

2

Definitions and motivations (1)

“A distributed system is a collection of independent computers that appear to

the user as a single computer.” [A. Tanenbaum]

“A distributed system is one on which I can’t do my work due to a computer

that has failed and I never heard of.” [L. Lamport]

“A distributed system is one in which components located at networked

computers communicate and coordinate their actions by passing messages.

This definition leads the following characteristics of distributed systems:

concurrency of components, lack of global clock and independent failures of

components.” [G. Coulouris]

3

Client

Server

ServerServer Server

Server

Network

Client

Client

User

User

User

Computer

Definitions and motivations (2)

4

A distributed system has the following features:

No common physical clock: this is an important assumption because it introduces the element of distribution in the

system and gives rise to the inherent asynchrony amongst the processors.

No shared memory: this is a key feature that requires message-passing for communication. This feature implies the

absence of the common physical clock.

Geographical separation: the geographically wider apart that the processors are, the more representative is the system of

a distributed system.

Autonomy and heterogeneity: the processors are loosely coupled in that they have different speeds and each can be

running a different operating system. They are usually not part of a dedicated system, but cooperate with one another by

offering services or solving a problem jointly.

Definitions and motivations (3)

An intranet: is a private computer network that uses the Internet Protocol

(IP) technology to securely share any part of an organization's information or

network operating system within that organization. The term is used in

contrast to Internet, a network between organizations, and instead refers to a

network within an organization.

An Information System (IS): is any combination of information technology and

people's activities using that technology to support operations, management, and

decision-making. In this sense, the term is used to refer not only to the Information

and Communication Technology (ICT), but also to the way in which people interact

with this technology.

Computers and

equipments
Networking

Domain based

applications
People

Information system (public view)

Intranet (computer view)

5

Distributed systems are taking part of Intranet/Internet networks.

Definitions and motivations (4)

The World Wide Web: (i.e. WWW, W3 or Web) is a system of interlinked

hypertext documents accessed via the Internet. With a web browser, one can

view web pages that may contain text, images, videos, and other multimedia

and navigate between them via hyperlinks.

Internet: is a global system of interconnected computer networks that use the

standard Internet Protocol Suite (TCP/IP). It is a network of networks that consists of

private, public, academic, business, and government networks of local to global

scope. These networks are linked by a broad array of electronic, wireless and optical

networking technologies. The Internet carries a vast range of information resources

and services, such as the W3 and web services.

6

Distributed systems are taking part of Intranet/Internet networks.

InternetworkingIntranets

W3, emails,

Web services

etc.

People

Internet or web (public view)

Internet (computer view)

Definitions and motivations (5)

7

The motivations for using a distributed system are listed below.

Inherently distributed computation: in many applications such as money transfer in banking, or reaching consensus

among parties that are geographically distant, the computation is inherently distributed.

Resource sharing: resources such as peripherals, databases, libraries, etc. cannot be fully replicated at all the sites because

it is often neither practical nor cost-effective. Further, they cannot be placed at a single site because access to that site might

prove to be a bottleneck. Therefore, such resources are typically distributed across the system.

Access to geographically remote data and resources: special resources such as supercomputers exist only in

certain locations, and to access such supercomputers, users need to log in remotely.

Enhanced reliability: a distributed system has the inherent potential to provide increased reliability because of the

possibility of replicating resources and executions, as well as the reality that geographically distributed resources are not

likely to crash/malfunction at the same time under normal circumstances.

Increased performance/cost ratio: by resource sharing and accessing geographically remote data, the performance/cost

ratio is increased. Such a configuration provides a better performance compared to special parallel machines.

Scalability and networking: as the processors are usually connected by a wide-area network, adding more processors does

not pose a direct bottleneck for the communication network.

Heterogeneity and incremental expandability: heterogeneous processors may be easily added into the system without

affecting the performance, as long as those processors are running the same middleware algorithms. Similarly, existing

processors may be easily replaced by other processors.

Introduction

to distributed systems

1. Definitions and motivations

2. Use-cases and application domains

3. Trends in distributed systems

4. Relations to parallel systems

5. Goals and challenges of distributed systems

6. The layered model and design issues

7. Types of distributed systems

8

Use-cases and application domains (1)

“Hospital Information System”

The domain point of view:

• resource management (room places, medicaments

stocks and equipments, etc.),

• planning (medical & administrative staffs, medical

interventions, etc.),

• information (medical and administrative files, people

communication, newsletter and reports, etc.).

9

Use-cases and application domains (2)

“Hospital Information System”

The Intranet point of view:

• computer (desktops “Mac, PC”, embedded systems “sun

station, mainframes”, etc.),

• equipment (scanners, monitoring, etc.),

• databases (administrative and medical files, etc.),

• communication & network (phone & beeper, Ethernet

and serial bus, gateway to Internet, etc.).

10

Use-cases and application domains (3)

“Financial trading”

11

FIX

Gateway

FIX

Adapter
CEP Engine

Reuters

Adapter

Reuters

Gateway

Trading

strategies

Within a typical financial trading system, we have:

- a series of event feed into a given financial institution, in a variety of formats (e.g. Reuters data events, FIX events, etc.),

- the use of adapters which translate heterogeneous formats into a common internal format,

- the trading system must deal with a variety of event streams, requiring real-time processing to detect patterns that

indicate trading opportunities; the Complex Event Processing (CEP) engine offers a way of composing event

occurrences together into logical, temporal or spatial patterns.

FIX events Reuters events

Use-cases and application domains (4)

“Application domains”

12

The application domains are listed below.

The information society: the growth of the W3 as a repository of information and knowledge, the development of web

search engines (e.g. Google, Bing).

Finance and commerce: the growth of the eCommece as exemplified by companies such as Amazon and eBay, and

underlying payments technologies (e.g. PayPal).

Creative industries and entertainment: the emergence of online gaming as a novel and highly interactive form of

entertainment with Massively Multiplayer Online Games or MMOGs (e.g. WoW).

Education: the emergence of e-learning through for example web-based tools such as virtual learning environments (e.g.

Moodle).

Transport and logistic: the use of location technologies such as GPS in route finding systems and more general traffic

management systems (e.g. Waze).

Science: the emergence of the Grid as a fundamental technology for eScience, including the use of complex networks of

computers to support the storage (e.g. SETI project).

Healthcare: the growth of health informatics as a discipline with emphasis on online electronic patient records and related

issues of privacy (e.g. smartwatch)

Environmental management: the use of (networked) sensor technology to both monitor and manage the natural

environment (e.g. smart farming).

Introduction

to distributed systems

1. Definitions and motivations

2. Use-cases and application domains

3. Trends in distributed systems

4. Relations to parallel systems

5. Goals and challenges of distributed systems

6. The layered model and design issues

7. Types of distributed systems

13

Trends in distributed systems

14

Pervasive networking and the modern Internet: the modern Internet is a vast interconnected collection of computer

networks of many different types increasing all the time (WiFi, WiMAX, Bluetooth, etc.). The net results is that networking

has become a pervasive resource and devices can be connected at any time and in any place.

Distributed multimedia systems: the benefits of distributed multimedia services are considerable in that a wide range of

new applications can be provided (television broadcast, video-on-demand, music libraries, audio and video conferencing,

etc.). The crucial characteristic of continuous media is that they include a temporal dimension and need to preserved their

real-time relationships.

Distributed artificial intelligence: is an approach for complex learning, planning and solving of decision making

problems. It is designed with parallel and distributed systems, able to exploit large scale computation and spatial

distribution of computing resources. This allows to solve problems that require the processing of very large data sets with a

huge complexity.

Introduction

to distributed systems

1. Definitions and motivations

2. Use-cases and application domains

3. Trends in distributed systems

4. Relations to parallel systems

5. Goals and challenges of distributed systems

6. The layered model and design issues

7. Types of distributed systems

15

Relations to parallel systems (1)

Flynn’s taxonomy identifies four processing modes. It is instructive to

examine this classification to understand relation of distributed systems to

parallel systems.

Single instruction stream, single data stream (SISD): this mode

corresponds to the conventional processing in the von Neumann paradigm

with a single CPU, and a single memory unit connected by a system bus.

Multiple instruction stream, single data stream (MISD): this mode

corresponds to the execution of different operations in parallel on the same

data. This is a specialized mode of operation with limited but niche

applications, e.g., visualization.

Single instruction stream, multiple data stream (SIMD): this mode

corresponds to the processing by multiple homogenous processing units

which execute in lock-step on different data items. It targets applications

that involve operations on large arrays and matrices, such as scientific

applications.

Multiple instruction stream, multiple data stream (MIMD): in this

mode, the various processing units / processors execute different code on

different data. This is the mode of operation in distributed systems as well

as in the vast majority of parallel systems.

Instructions

Single Instruction

(SI)

Multiple Instructions

(MI)

D
a
ta

S
in

g
le

D
a
ta

 (
S

D
)

SISD

uni-core processor

MISD

processor with pipeline

architecture

M
u

lt
ip

le

D
a
ta

(M
D

)

SIMD

e.g. uni-core processor

with large register

MIMD

e.g. multiprocessor

Relations to parallel systems (2)

Multiple instruction stream, multiple data stream (MIMD): in this mode,

the various processing units / processors execute different code on different

data. This is the mode of operation in distributed systems as well as in the vast

majority of parallel systems.

- Synchronous systems: are systems where operations (instructions,

calculations, etc.) are coordinated by one, or more, centralized clock signals.

- Asynchronous systems: in contrast, has no global clock.

bus-based
switch-

based

distributed

systems

multi-

processor

computer

network

MIMD

synchronous asynchronous

Relations to parallel systems (3)

18

synchronous systems

Processing

mode

Hardware

Software

Clock
Commu-

nication
Memory

bus-based

multiprocessors

MIMD

synchronous

bus
shared

memory

tightly

coupled

tightly

coupledswitched

multiprocessors
switch

network

operating system
asynchronous

LAN
shared

files loosely

coupled

loosely

coupled

distributed

system
WAN

message

exchange

tightly

coupled

CPU

snoopy

cache

CPU

snoopy

cache

CPU

snoopy

cache

Memory

Memory Description Global

memory state

cache store reading /

writing events of

CPU only

incoherent

snoopy

cache

monitor all

events in the bus

coherent

e.g. bus based multiprocessor

Relations to parallel systems (4)

Network

operating

systems

Distributed

systems

S
o
ft

w
ar

e
IPC

no yes

Interoperability

Shared data

Time synchronization

System coordination

19

asynchronous systems

Processing

mode

Hardware

Software

Clock
Commu-

nication
Memory

bus-based

multiprocessors

MIMD

synchronous

bus
shared

memory

tightly

coupled

tightly

coupledswitched

multiprocessors
switch

network

operating system
asynchronous

LAN
shared

files loosely

coupled

loosely

coupled

distributed

system
WAN

message

exchange

tightly

coupled

Introduction

to distributed systems

1. Definitions and motivations

2. Use-cases and application domains

3. Trends in distributed systems

4. Relations to parallel systems

5. Goals and challenges of distributed systems

6. The layered model and design issues

7. Types of distributed systems

20

Goals and challenges

of distributed systems (1)

21

Accessibility: the main goal of distributed systems is to make it easy, for the users and

applications, to access remote resources and to share them in a controlled and efficient way.

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (2)

22

Security: as connectivity and sharing increase, security is becoming increasingly important.

Security for information resources has three components:

- confidentiality (access control and protection).

- integrity (protection against alteration or corruption).

- availability (protection against interference with the means to access resources).

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (3)

23

Failure handling: computer systems sometimes fail that could produce incorrect results of

programs. These failures are partial i.e. some components fail while others continue. The

handling of failures is difficult and relies on different techniques.

- Detecting failures: some failures can be easily detected (e.g. checksum of a message),

some other failures are difficult or even impossible to detect (e.g. crashed of a remote server).

- Masking failures: some failures that have been detected can be hidden or made less severe

(e.g. messages can be retransmitted, file data can be “rolled back” and retransmitted, etc.).

- Tolerating failures: for most of the applications in the Internet, it would be not practical to

attempt to detect and hide all the failures that might be large. Applications can be designed

to tolerate failures involving the users tolerating them as well (e.g. access problem from web

browser to a web server, etc.).

-Recovery from failures: recovery involves the design of software so that the state of

permanent data can be recovered or “rolled back” after a server has crashed.

- Redundancy: applications can be made tolerate to failures by the use of redundant

components (e.g. different routes to access a same router, a database can be replicated in

several servers, etc.).

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (4)

24

Concurrency: there is possibility that several applications will attempt to access a shared

resource at the same time. The process that manages a shared resource could take one request

at a time. Therefore, distributed components generally allow multiple application requests to

be processed concurrently.

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (5)

25

Heterogeneity: the Internet enables users and applications to access and run programs over an

heterogeneous collection of computers and networks. Heterogeneity applies to all the

following:

- networks,

- computer hardware,

- Operating Systems,

- programming languages,

- design issues (i.e. implemented by different developers),

- etc.

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (6)

26

Openness: the openness in a distributed system is the characteristic that determines whether

the system can be extended and re-implemented in a various way. It is characterized by the

degree to which new resources-sharing and services can be added and made available for use

by a variety of applications.

Openness Portability

Extensibility

Inter-

operability

IDL

Proper,

(Complete,

Neutral)

P
ro

p
er

ty
 o

f

Property of

Support

Portability: characterizes the property for an application,

developed for a distributed system A, to be executed,

without modifications on a different distributed system B.

Extensibility: for a distributed system concerns how it

should be easy to configure the system out of different

components, and how it should be easy to add new

components or replacing the existing ones.

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (7)

27

Openness: the openness in a distributed system is the characteristic that determines whether

the system can be extended and re-implemented in a various way. It is characterized by the

degree to which new resources-sharing and services can be added and made available for use

by a variety of applications.

Openness Portability

Extensibility

Inter-

operability

IDL

Proper,

(Complete,

Neutral)

P
ro

p
er

ty
 o

f

Property of

Support

Interoperability: characterizes the extend by which two

implementations of systems or components from different

manufacturers, can co-exist and work together.

IDL (Interface Definition Language): an open

distributed system offers services according to standard

rules that describes the syntax and semantics of these

services. Such rules are formalized in protocols, and

specified through interfaces described with an IDL.

Proper: the IDL definition must be proper, and proper

specifications are complete and neutral.

-Complete: means that everything that is necessary to

make an implementation has indeed been specified.

-Neutral: means that the specifications do not prescribe

what an implementation should look like.

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (8)

28

Scalability: a system is described as scalable if it will remain effective considering a

significant increase in the number of resources and users.

The Internet provides an illustration of a distributed system in which the number of computers

and services has increased dramatically.

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (9)

29

Scalability: a system is described as scalable if it will remain effective considering a

significant increase in the number of resources and users.

The design of scalable distributed systems presents the following challenges.

- Avoiding performance bottlenecks: as the demand for a resource grows, it should be

possible to extend the system to meet it (e.g. bottle necks is supported with domain names

by partitioning the name table between different servers administered locally).

- Controlling the performance loss: as an example, if we consider the management of data

(e.g. corresponding table between domain names and IP addresses) of size n, algorithms

that use a linear structure scale with a complexity of O(n) whereas those that use hierarchic

structure scale in O(log(n)). Considering scalability, hierarchic ones are better.

- Preventing software resources running out: as an example, the data size used

to store Internet addresses was 32 bits late 1970s, then 128 bits early 2000s. It is difficult to

predict the demand that will be put on a system years ahead.

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (10)

30

Transparency: a distributed system that is able to present itself to users and applications as if

it were only a single computer system is said transparent. The concept of transparency can be

applied to several aspects of a distributed system:

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use

Replication Hide that a resource is duplicated

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Performance Allow the system to be reconfigured to improve performance as loads vary

Scalability Allow the system to expand in scale without change the system structure

There is a tradeoff between a high degree of transparency and performance of systems

e.g. when connection failures occur, applications repeatedly try to connect servers before finally

giving up. Consequently, to mask a connexion failure slows down the system as a whole.

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Goals and challenges

of distributed systems (11)

31

Pitfalls: developing a distributed system differs from traditional programming because

components are dispersed across network. No tacking this dispersion into account could result

in mistakes. We can formulated these mistakes as the following false assumptions:

1. the network is reliable,

2. the network is secure,

3. the network is homogeneous,

4. the topology does not change,

5. the latency is zero,

6. bandwidth is infinite,

7. transport cost is zero,

8. there is one administrator,

9. …

Accessibility Security

Failure

handling

Concurrency

Transparency

Scalability

Heterogeneity/

Openness

d
ea

ls
 w

it
h

Pitfalls

Introduction

to distributed systems

1. Definitions and motivations

2. Use-cases and application domains

3. Trends in distributed systems

4. Relations to parallel systems

5. Goals and challenges of distributed systems

6. The layered model and design issues

7. Types of distributed systems

32

The layered model

and design issues (1)

Operating System

(OS)

Applications, services

Hardware

User User User

L
ay

er
s

The layered model at the OS level

33

Operating system: interface between hardware and user, which is

responsible for the management and coordination of activities and the sharing

of the resources of a computer, that acts as a host for computing applications

run on the machine.

Application: designed to help the user to perform a singular or multiple

related specific tasks (e.g. office, programming toolkit, web browser, etc.).

Hardware: physical electronic components and mechanical parts that make up

a piece of computer equipment (keyboard, disk drive, CPU, motherboard, etc.).

Users: could share a same computer (through session / terminal).

The layered model

and design issues (2)
The layered model at the distributed system level

App

OS OS OS OS

AppApp

Middleware

computer computer computer computer

network 34

Applications, services: designed to help the user to perform a singular or multiple

related specific tasks (e.g. office, programming toolkit, web browser, etc.).

Users: could share a same computer (through session / terminal).

Middleware

Applications, services

Operating Systems

User User User

L
ay

er
s

Middleware: is an application that logically lives (mostly) in the application

layer, but which contains many general-purpose protocols that warrant their

own layers, including the session and presentation layers. Some of the

middleware protocols could equally belong to the transport protocol.

The layered model

and design issues (3)
The layered model at the distributed system level

Middleware: is an application that logically lives (mostly) in the application

layer, but which contains many general-purpose protocols that warrant their

own layers, including the session and presentation layers. Some of the

middleware protocols could equally belong to the transport protocol.

35

Applications, services: designed to help the user to perform a singular or multiple

related specific tasks (e.g. office, programming toolkit, web browser, etc.).

Users: could share a same computer (through session / terminal).

Middleware

Applications, services

Operating Systems

User User User

L
ay

er
s

Protocols, e.g.

Application HTTP, FTP, SMTP, etc.

Presentation SSL, CORBA, etc.

Session RPC, RMI, etc.

Transport TCP, UDP, etc.

OSI Model (Open System Interconnection)

Application

Presentation

Session

Transport

Network

Data Link

Physical

data

sent

data

received

sender recipient

Middleware

The layered model

and design issues (4)

36

Two main programming approaches for middleware design exist.

Inter-Process Communication (IPC) and synchronization: is related to a set of methods for the exchange of data

among multiple threads and/or processes. Processes may be running on one or more computers connected by a network.

The methods of IPC may vary based on the bandwidth and latency of communication, and the type of data being

communicated. Synchronization refers to the idea that multiple processes are to join up or handshake at a certain point,

so as to reach an agreement or commit to a certain sequence of action.

Distributed objects / components and remote invocation: is concerned with programming models for distributed

applications. That is, these applications are composed of cooperating programs running in several different processes.

Such programs need to be able to invoke operations in other processes, often running in different computers.

Process, scheduling

Communication and synchronization

Resources management

Process synchronization and election

Time synchronization and global states

Consensus, communication and ordering

Remote Methods

Remote Procedures

Socket Programming

Framework

Networking

IPC and synchronization Distributed objects / components

and remote invocation

Computer

level

Middleware

level

Networking

level

invocation

compilation / execution

Introduction

to distributed systems

1. Definitions and motivations

2. Use-cases and application domains

3. Trends in distributed systems

4. Relations to parallel systems

5. Goals and challenges of distributed systems

6. The layered model and design issues

7. Types of distributed systems

37

Types of distributed systems (1)

“Distributed information systems”

38

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Distributed information systems: are found in organizations that were confronted

with a wealth of networked applications, but for which interoperability turned out

to be a painful experience.

We can distinguish several levels at which integration took place.

Distributed transactions: appear with server connected to a database and made available to remote programs

called clients. Such clients could send a request to the server, after which a response would be sent back. Clients can

wrap a number of requests for different servers, into a single largest request executed as a distributed transaction.

A transaction guaranties that all, or none of the requests, would be executed.

Programming using transactions requires special primitives:

Primitive Description

Begin_transaction Make start of transaction

End_transation Terminate the transaction and try to commit

Abort_transaction Kill the transaction and restore the old value

Read Read data from a file, a table or otherwise

Write Write data from a file, a table or otherwise

Transactions and primitives follow the ACID properties:

1. Atomic (transaction is indivisibly)

2. Consistent (it does not violate system invariants)

3. Isolated (transactions do not interfere each other)

4. Durable (once it commits, changes are permanent)

Types of distributed systems (2)

“Distributed information systems”

39

Distributed information systems: are found in organizations that were confronted

with a wealth of networked applications, but for which interoperability turned out

to be a painful experience.

We can distinguish several levels at which integration took place.

Nested transaction: is constructed from a number of

subtransactions. The top-level transaction may fork off

children that run in parallel, on different machines, to gain

performance or simplify programming. Each of these

children may also execute one or more subtransactions, or

fork off its own children.

DB1 DB2

subtransaction subtransaction

nested transaction

two different

independent databases

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Distributed transactions: appear with server connected to a database and made available to remote programs

called clients. Such clients could send a request to the server, after which a response would be sent back. Clients can

wrap a number of requests for different servers, into a single largest request executed as a distributed transaction.

A transaction guaranties that all, or none of the requests, would be executed.

Programming using transactions requires special primitives:

Types of distributed systems (3)

“Distributed information systems”

40

Distributed information systems: are found in organizations that were confronted

with a wealth of networked applications, but for which interoperability turned out

to be a painful experience.

We can distinguish several levels at which integration took place.

DB

DB

DB

server

server

server

TP MonitorClient

Transaction processing monitor (TP Monitor): handles

distributed (or nested) transactions. Its main task was to

allow an application to access multiple servers / databases

by offering it a transactional programming model.

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Distributed transactions: appear with server connected to a database and made available to remote programs

called clients. Such clients could send a request to the server, after which a response would be sent back. Clients can

wrap a number of requests for different servers, into a single largest request executed as a distributed transaction.

A transaction guaranties that all, or none of the requests, would be executed.

Programming using transactions requires special primitives:

Types of distributed systems (4)

“Distributed information systems”

41

Distributed information systems: are found in organizations that were confronted

with a wealth of networked applications, but for which interoperability turned out

to be a painful experience.

We can distinguish several levels at which integration took place.

Enterprise Application Integration (EAI): the more the applications became decoupled from their databases, the

more it became evident to integrate them. In particular, application components should be able to communicate

directly with each other and not merely by means of the request/reply behavior or transactions with the database.

Then, the main idea was that existing application components could directly exchange information.

DB DB

server-side

application

server-side

application

DB

server-side

application

communication middleware

client

application

component

client

application

component

exchange between

components

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Types of distributed systems (5)

“Distributed computing systems”

42

Distributed computing systems: are used for high performance computing tasks.

One can make difference between two subgroups:

Cluster computing: the underlying hardware consists of a collection of similar computers, closely connected by

means of a high-speed local network. In addition, each node runs the same operating system.

Component

of parallel

application

Local OS

Component

of parallel

application

Local OS

Component

of parallel

application

Local OS

Component

of parallel

application

Local OS

High-speed network

Standard network

Management

of application

+ parallel libs

Local OS

…

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Types of distributed systems (6)

“Distributed computing systems”

Distributed computing systems: are used for high performance computing tasks.

One can make difference between two subgroups:

Grid computing: consists in a distributed system constructed as a federation of computers presenting different

hardware, software and network technologies. Much of the software for realizing grid computing evolves around

providing access to resources from different systems through interfaces. Focus is often on architectural issues.

e.g. the Foster’s architecture

Applications

Collective layer

Connectivity layer Resource layer

Fabric layer

Layer Description

Applications Applications that operate within a virtual

organization and which make use of the grid

computing environment.

Collective

layer

It deals with the access to multiple resources

(discovery, allocation, scheduling, replication).

Connectivity

layer

It groups communication protocols to support grid

transactions and security access.

Resource

layer

This layer is responsible of the access control, it

will rely on transaction and authentication of the

connectivity layer, and the management functions

of the fabric layer.

Fabric layer It contains functions for local resource management

(state checking, synchronization, etc.).

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Types of distributed systems (7)

“Distributed pervasive systems”

44

Distributed pervasive systems: are concerned with mobile and embedded

computing devices. Within, we are confronted to systems in which instability is the

default behavior. Devices are small, mobile, battery powered and have, in most of

the cases, only wireless connexion.

An important feature of pervasive distributed systems is the general lack of human administrative control. At best,

devices can be configured by their owners, otherwise they need to automatically discover their environment and

nestle in. This nestle in is concerned with three requirements:

1. Embrace contextual changes: devices must be aware that his environment may change all the time.

2. Encourage ad hoc composition: devices can be used in very different ways by users, as a result it should be

easy to configure the suite of applications running on a device.

3. Recognize sharing as the default: devices generally join the system to access and share information. This

calls for means to easily read, store, manage and share information. In light of the intermittent and changing

connectivity of devices, the space where accessible information resides will most change all the time.

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Types of distributed systems (8)

“Distributed pervasive systems”

45

Distributed pervasive systems: are concerned with mobile and embedded

computing devices. Within, we are confronted to systems in which instability is the

default behavior. Devices are small, mobile, battery powered and have, in most of

the cases, only wireless connexion.

Home systems consist of:

- one or more personal computers.

- typical consumer electronics such as TVs, audio and video equipments, gaming devices, smartphones, PDAs, etc.,

- misc devices such as kitchen applications, surveillance cameras, clocks, lighting controllers, etc.

Main challenges are:

- these systems should be completely self-configuring and self-managing (e.g. Universal Plug and Play “UPnP”).

- within these systems, we must manage what is known as “personal space” (e.g. single machine acts as a master to

collect and synchronize data).

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Types of distributed systems (9)

“Distributed pervasive systems”

46

Distributed pervasive systems: are concerned with mobile and embedded

computing devices. Within, we are confronted to systems in which instability is the

default behavior. Devices are small, mobile, battery powered and have, in most of

the cases, only wireless connexion.

Electronics Health Care systems are sets of devices being developed to monitor the well-being of

individuals and to contact physicians. These systems consist of:

- various sensors (ECG, motion) organized in a Body Area Network (BAN), preferably wireless.

- a central hub that manages the BAN and collects data from sensors, from time to time, the collected

data are then offloaded to a larger storage device.

The main challenges are:

- BAN should be able to operate when a person is moving (i.e. wireless only).

- for reason of efficiency, BAN will be required to support in-network data processing, meaning that

monitoring data will have to be aggregated before permanently storing it or sending it to a physician.

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

Types of distributed systems (10)

“Distributed pervasive systems”

47

Distributed pervasive systems: are concerned with mobile and embedded

computing devices. Within, we are confronted to systems in which instability is the

default behavior. Devices are small, mobile, battery powered and have, in most of

the cases, only wireless connexion.

Sensor Networks: most of the sensor networks use wireless communication, and the nodes are often

battery powered. They consist of:

- tens to thousands of relatively small nodes, each equipped with a sensing device.

- each sensing device should supports storage capabilities, otherwise a distributed database must be

around to collect sensor data through the network, which waste network resources and energy.

The main challenge is:

- sensor networks will be required to support in-network data processing, meaning that a query must

be forwarded to all the sensor nodes (e.g. along a tree encompassing all nodes) and to subsequently

aggregate the results, as they are propagated back to the root, where the initiator is located.

Operator’s

site

Distributed

information systems

Transaction processing

systems

Enterprise Application

Integration (EAI)

Distributed

computing systems

Cluster computing

Grid computing

Distributed

pervasive systems

Home systems

Electronic health care

systems

Sensor networks

