
Distributed Systems

“Inter-Process Communication (IPC)”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/dsystems.html

1

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

2

Introduction (1)

3

Inter-Process Communication (IPC) is related to a set of methods for the exchange

of data among multiple threads and/or processes. Processes may be running on one or

more computers connected by a network. There are two main aspects to consider:

communication and interoperability.

Application

Presentation

Session

Transport

Network

Data Link

Physical

data sent data received

Introduction (2)

4

Socket: is a communication end point

to which an application can write/read

data over the underlying network.

It constitutes a standard transport

interface for delivering incoming data

packets between processes.

Inter-Process Communication (IPC) is related to a set of methods for the exchange

of data among multiple threads and/or processes. Processes may be running on one or

more computers connected by a network. There are two main aspects to consider:

communication and interoperability.

so
ck

et

so
ck

etProcess

A

Process

B

Computer 1 Computer 2

Communication: we must fix the

way to coordinate and to manage the

communication between processes.

Application

Presentation

Session

Transport

Network

Data Link

Physical

data sent data received

Introduction (3)

5

a

b

c

d

(1)

(2)

(3)

(4)

b(1)

a(3)

c(2)

d(4)
(1-4) are sending /

receiving orders

Buffer

ba c ba c

ba c

sending

receiving (ACK)

(1) (2) (3) (1) (2) (3)

Message-oriented communication (e.g.

UDP) is a data transmission method in

which each data packet carries information

in a header that contains a destination

address sufficient to permit the independent

delivery of the packet to its destination via

the network.

Stream-oriented communication (e.g.

TCP) is a data communication mode in

which the devices at the end points use a

protocol to establish an end-to-end logical

or physical connection before any data that

may be sent.

Communication: we must fix the

way to coordinate and to manage the

communication between processes.

Application

Presentation

Session

Transport

Network

Data Link

Physical

data sent data received

Inter-Process Communication (IPC) is related to a set of methods for the exchange

of data among multiple threads and/or processes. Processes may be running on one or

more computers connected by a network. There are two main aspects to consider:

communication and interoperability.

Introduction (4)

6

Persistent communication: with it, a message that has been submitted for transmission

is stored by the communication middleware as long as it takes to deliver it to the

receiver. In this case, the middleware will store the message at one or several storage

facilities. Various combinations of synchronization and persistence occur in practice:

Transient communication: with it, a message is stored by the communication system

only as long as the sending and receiving applications are executing. In this case, the

communication system consists of traditional store-and-forward routers.

transmission

interrupt

message storage

facility

P1

P2

(1) synchronize at

request submission

(2) synchronize at

request delivery

(3) synchronize after

processing by P2

Communication: we must fix the

way to coordinate and to manage the

communication between processes.

Application

Presentation

Session

Transport

Network

Data Link

Physical

data sent data received

Inter-Process Communication (IPC) is related to a set of methods for the exchange

of data among multiple threads and/or processes. Processes may be running on one or

more computers connected by a network. There are two main aspects to consider:

communication and interoperability.

Introduction (5)

7

Synchronous (asynchronous) communication requires that the sender is

blocked until its request is known to be accepted. It is asynchronous otherwise.

Quality of Service (QoS) refers requirements describing what is needed from the

underlying distributed system to ensure services. QoS for stream-oriented

communication concerns mainly timeliness, volume and reliability.

Failure model: communication suffers of failures (omissions, messages are not

guaranteed to be delivered in sender order, processes can crash, etc.) that must be handled.

Group communication: a group is a collection of processes that act together in some

system or user-specified way. The key property of a group is that when a message is

sent to the group itself, all members of the group receive it. It is a form of one-to-

many communication (one sender, many receivers).

Etc.

Communication: we must fix the

way to coordinate and to manage the

communication between processes.

Application

Presentation

Session

Transport

Network

Data Link

Physical

data sent data received

Inter-Process Communication (IPC) is related to a set of methods for the exchange

of data among multiple threads and/or processes. Processes may be running on one or

more computers connected by a network. There are two main aspects to consider:

communication and interoperability.

Blocking (non-blocking) primitive returns to the invoking process after the processing

for the primitive (whether in synchronous or asynchronous mode) completes. If the

control returns back immediately after invocation, it is non-blocking.

Introduction (6)

8

Interoperability: when a

communication is possible, the last

problem is to make data readable

between different systems.

IDL (Interface Definition Language): an open distributed system offers services

according to standard rules that describes the syntax and semantics of these services. Such

rules are formalized in protocols, and specified through interfaces described with an IDL.

Marshalling is the process of taking a collection of data items and assembling them into a

form suitable for transmission.

Unmarshmalling is the process if disassembling data on arrival to produce an equivalent

collection of data items at the destination.

Language

Type A

Implementation

Type A

Process

Type A

Marshalling

Data X

Type A

Process

Type C

Unmarshalling

Data X

Type C

Data X

Type B

Language

Type C

Implementation

Type C

Computer 1 Computer 2

Application

Presentation

Session

Transport

Network

Data Link

Physical

data sent data received

Inter-Process Communication (IPC) is related to a set of methods for the exchange

of data among multiple threads and/or processes. Processes may be running on one or

more computers connected by a network. There are two main aspects to consider:

communication and interoperability.

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

9

Socket Communication (1)

10

so
ck

et

so
ck

etProcess

A

Process

B

Computer 1 Computer 2

Sockets constitutes a mechanism for delivering incoming data packets to the

appropriate application process, based on a combination of local and remote

addresses and port numbers. Each socket is mapped by the operational system to a

communicating application process.

Socket is characterized by a unique combination of:

- a protocol transfer (UDP, TCP, etc.).

- the local socket address and port number.

- the remote socket address and port number.

Socket Communication (2)

11

a

b

c

d

(1)

(2)

(3)

(4)

b(1)

a(3)

c(2)

d(4)
(1-4) are sending /

receiving orders

co
n
n
ec

ti
o
n
le

ss

(U

D
P

)

Buffer

ba c ba c

ba c

sending

receiving (ACK)

(1) (2) (3) (1) (2) (3)

co
n
n
ec

ti
o
n

-o
ri

en
te

d

(T

C
P

)

(1-3) are sending /

receiving orders

so
ck

et

so
ck

etProcess

A

Process

B

Computer 1 Computer 2

Connectionless-oriented communication (e.g. UDP) is a data transmission method in

which each data packet carries information in a header that contains a destination address

sufficient to permit the independent delivery of the packet to its destination via the

network.

Connection-oriented communication (e.g. TCP) is a data communication mode in

which the devices at the end points use a protocol to establish an end-to-end logical or

physical connection before any data that may be sent.

Socket Communication (3)

12

Protocols Data

Process(es) Message Mode

sending receiving checking ordering buffer communi-

cation

send receive

message-

oriented
UDP Packet

1

1/n no/yes no/yes

yes

half duplex
asynchronous

/ non-blocking

asynchronous

/ blocking

stream-

oriented
TCP Stream 1 yes yes full duplex

synchronous /

non-blocking

synchronous /

blocking

so
ck

et

so
ck

etProcess

A

Process

B

Computer 1 Computer 2

Connectionless-oriented communication (e.g. UDP) is a data transmission method in

which each data packet carries information in a header that contains a destination address

sufficient to permit the independent delivery of the packet to its destination via the

network.

Connection-oriented communication (e.g. TCP) is a data communication mode in

which the devices at the end points use a protocol to establish an end-to-end logical or

physical connection before any data that may be sent.

Socket Communication (4)

13

Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to the socket

Close Release the connection

Common

primitives

Socket

Socket

Bind

Bind

Send

Receive

Receive

Send

Close

Close

Client

Server

Primitive Meaning

Send Send some data over the connection

Receive Receive some data over the connection

UDP

primitives

so
ck

et

so
ck

etProcess

A

Process

B

Computer 1 Computer 2

UDP sockets establish the UDP protocol.

Socket Communication (5)

14

Socket

Socket

Bind Listen Accept

Connect

Write

ReadClient

Server Read

Write

Close

Close

so
ck

et

so
ck

etProcess

A

Process

B

Computer 1 Computer 2

Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to the socket

Close Release the connection

Common

primitives

TCP sockets establish the TCP protocol.

TCP

primitives

Primitive Meaning

Listen Announce willingness to accept connections

Accept Block caller until a connexion request arrives

Connect Actively attempt to establish a connection

Read Read some data over the connection

Write Write some data over the connection

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

15

Stream-Oriented Communication

“Introduction” (1)

16

Stream oriented communication is a data communication mode whereby the devices at the end points use a protocol to

establish an end-to-end logical or physical connection before any data that may be sent.

Continuous (representation) media: temporal relationships

between data items are fundamental to interpret the data.

e.g. video, audio

Discrete (representation) media: temporal relationships

between data items are not fundamental to interpret the data.

e.g. exe files

Streaming stored data: data is not captured in real-time,

but stored in a remote computer.

Streaming live data: data is captured in real time and sent

over the network to recipients.

Simple stream consists of only a single sequence of data.

Complex stream consists of several related simple streams

called substreams. The relations between substreams in a

complex stream is often time independent.

Stream-Oriented Communication

“Introduction” (2)

17

Stream oriented communication is a data communication mode whereby the devices at the end points use a protocol to

establish an end-to-end logical or physical connection before any data may be sent.

End-to-end delay refers to the time taken for a packet to

be transmitted across a network from source to

destination.

 
procproptransendend dddNd 

dend-to-end end-to-end delay

N is the number of router switch.

dtrans Transmission delay is the amount of time

required to push all of the packet's bits into the

wire, this is the delay caused by the data-rate of the

link.

dprop Propagation delay is the amount of time it takes

for the head of the signal to travel from the sender.

It depends of the link length and the propagation

speed.

dproc Processing delay is the time it takes routers to

process the packet header.

Transmission mode: timing is crucial in continuous data

stream. To capture timing aspects, a distinction must be made

between different transmission modes.

synchronous dend-to-end < max

isochronous min < dend-to-end < max

asynchronous dend-to-end is free

Jitter is the dend-to-end delay variance.

Stream-Oriented Communication

“Quality of Service (QoS)” (1)

18

Quality of Service (QoS) refers requirements describing what is needed from the underlying distributed system to ensure

services. QoS for stream-oriented communication concerns mainly timeliness, volume and reliability.

(Minimum) bit rate is the rate at which data should be transported.

Maximum session delay is the delay until a session has been set up (i.e.

when an application can start sending data).

Min/max values of the

dend-to-end delay

are the bounded the dend-to-end delay

min < dend-to-end < max.

The dend-to-end delay jitter is the dend-to-end delay variance.

The round trip delay is the length of time it takes for a signal to be sent

plus the length of time it takes for an

acknowledgment of that signal to be received.

DB

Multimedia server

QoS

control

QoS

control

Stream

decoder(s)

Client

Network

Main requirements of QoS

Stream-Oriented Communication

“Quality of Service (QoS)” (2)

19

Quality of Service (QoS) refers requirements describing what is needed from the underlying distributed system to ensure

services. QoS for stream-oriented communication concerns mainly timeliness, volume and reliability.

Enforcing QoS means than a distributed system can try to

conceal as much as possible of the lack of QoS. There are

several mechanisms that it can deploy.

(1) Internet provides a mean for differentiating classes of data.

Expedited forwarding Specifies that a packet should be forwarded by

the current router with an absolute priority.

Assured forwarding By which traffic is divided into four subclasses,

along with three ways to drop packets if

network is congested.

(2) Buffering can help in getting data across the receivers.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Time

Time in buffer

Packet source

Packets arrive in buffer

Packets removed from buffer

Gap in

playback

Stream-Oriented Communication

“Quality of Service (QoS)” (3)

20

Quality of Service (QoS) refers requirements describing what is needed from the underlying distributed system to ensure

services. QoS for stream-oriented communication concerns mainly timeliness, volume and reliability.

Enforcing QoS means than a distributed system can try to

conceal as much as possible of the lack of QoS. There are

several mechanisms that it can deploy.

(3) To compensate packet lost, Forward Error Correction (FEC)

can be applied (any k of the n received packets is enough to

reconstruct k packets). To support gap resulting of packet lost,

interleaved transmission can be used.

1 2 3 4

Time

5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sent

Delivered

Lost frames

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sent

Delivered

Lost frames

No interleaved

transmission

Interleaved

transmission

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

21

Primitives for Communication (1)

22

Primitives for communication: all the message-oriented communication in a distributed system is based on

message passing; that refers the operations to send and to receive messages. It involves a set of primitives for

communication (e.g. UDP, RPC, MPI, etc.).

Primitives for Communication (2)

23

Send and receive primitives: in a message passing communication, a message is sent and received by explicitly

executing the send and receive primitives, respectively. The following are some definitions of primitives for

communication.

Send primitive: the send primitives has at least two parameters (a) the destination (b) the buffer in

the user space, containing the data to be sent.

Receive primitive: similarly, the receive primitive has at least two parameters (a) the source from

which the data is to be received (2) the user buffer into which the data is to be received.

Primitives for Communication (3)

24

Send and receive primitives: in a message passing communication, a message is sent and received by explicitly

executing the send and receive primitives, respectively. The following are some definitions of primitives for

communication.

Blocking primitives: a primitive is blocking if control returns to the invoking process after the

processing for the primitive (whether in synchronous or asynchronous mode) completes.

Non-blocking primitives: a primitive is non-blocking if control returns back to the invoking

process immediately after invocation, even though the operation has not completed.

Primitives for Communication (4)

25

Send and receive primitives: in a message passing communication, a message is sent and received by explicitly

executing the send and receive primitives, respectively. The following are some definitions of primitives for

communication.

Synchronous primitives: a send (or a receive) primitive is synchronous if both handshake with

each other.

Asynchronous primitives: a send primitive is said to be asynchronous if control returns back to the

invoking process after the data item to be sent has been copied out of the user-specified buffer. The

asynchronous receive could be presented as a specific setting of the synchronous case (i.e no reply).

Primitives for Communication (5)

26

blocking

synchronous

(1)

non-blocking

synchronous

(2)

blocking

asynchronous

(3)

non-blocking

asynchronous

(4)

synchronous

send

asynchronous

send

blocking

synchronous

(5)

non-blocking

synchronous

(6)

synchronous

receive

send receive

Send and receive primitives: in a message passing communication, a message is sent and received by explicitly

executing the send and receive primitives, respectively. The following are some definitions of primitives for

communication.

There are therefore four versions of the send primitive (1) blocking synchronous (2) non-blocking synchronous

(3) blocking asynchronous (4) non-blocking asynchronous. For the receive primitive, there are two versions (5)

blocking synchronous (6) non-blocking synchronous.

Primitives for Communication (6)

27

(1) Blocking synchronous send: the data gets copied from the user buffer

to the kernel buffer and is then sent over the network. After the data is

copied to the receiver’s system buffer, an acknowledgement back to the

sender causes control to return to the process and completes the send.

(5) Blocking synchronous receive: the receive call blocks until the data

expected arrives and is written in the specified user buffer. Then control is

returned to the user process.

The following are some definitions of primitives for communication:

Primitives for Communication (7)

28

(2) Non-blocking synchronous send: control returns back to the invoking

process as soon as the copy of data from the user buffer to the kernel

buffer is initiated. A parameter in the non-blocking call also gets set with

the handle of a location. The user process can invoke the blocking wait

operation on the returned handle.

(6) Non-blocking synchronous receive: the receive call will cause the

kernel to register the call and return the handle of a location that the user

process can later check for the completion. This location gets posted by the

kernel after the expected data arrives and is copied to the user-specified

buffer.

The following are some definitions of primitives for communication:

Primitives for Communication (8)

29

(3) Blocking asynchronous send: the user process that invokes the send is

blocked until the data is copied from the user’s buffer to the kernel buffer.

(4) Non-blocking asynchronous send: the user process that invokes the

send is blocked until the transfer of the data from the user’s buffer to the

kernel buffer is initiated. The asynchronous send completes when the data

has been copied out of the user’s buffer.

The following are some definitions of primitives for communication:

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

30

Request-Reply Protocols (1)

31

The Request-Reply protocol is one of the basic protocol that computers use to communicate to each other. When using

request-reply, the first computer requests some data and the second computer responds to the request.

(1) doOperation

wait

continue

(2) getRequest

process request

(3) sendReply

Computer 1 Computer 2

Operations Meaning

doOperation is used by a process to invoke a remote

operation. The process sends a request message

and invokes a receive to get a reply message.

getRequest is used by the remote process to get the request

from the caller process.

sendReply is used by the remote process to send the reply to

the caller process.

Communication operations: the Request-Reply protocol is based on trio of communication operations.

Request-Reply Protocols (2)

32

The Request-Reply protocol is one of the basic protocol that computers use to communicate to each other. When using

request-reply, the first computer requests some data and the second computer responds to the request.

Message structure: is related to the information to be transmitted.

Field Type Description

messageType integer or

boolean

request (= 0) or reply (=1)

MessageId integer is a message identifier, to check that a reply message is the result of the

current request. It is composed of two parts:

- a request id: an increasing sequence of integers of the sending process.

- an identifier for the sender process (e.g. port and internet address).

Data any Na

Request-Reply Protocols (3)

33

The Request-Reply protocol is one of the basic protocol that computers use to communicate to each other. When using

request-reply, the first computer requests some data and the second computer responds to the request.

Client Server

1. Request

2. ACK

3. Reply

4. ACK

Protocols 1. request 2. ACK 3. reply 4. ACK

Request (R) 

Request -Acknowledge

Request (RA)
 

Request Reply (RR)  

Request Reply-Acknowledge

Reply (RRA)
  

Failure model: the Request-Reply protocol suffers of same communication failures (omissions, messages are not

guaranteed to be delivered in sender order, processes can crash, etc.). Different aspects must be considered.

Exchange protocols: three protocols, with different semantics in the presence of communication failures, are used to

implement various types of request-reply protocols.

Computer 1 Computer 2

Request-Reply Protocols (4)

34

Description

To return immediately from doOperation with an indication that the communication has failed.

To send the request message repeatedly until either it gets a reply or else it is reasonably sure

that the delay is due to lack of response of the remote process rather than a lost message.

The Request-Reply protocol is one of the basic protocol that computers use to communicate to each other. When using

request-reply, the first computer requests some data and the second computer responds to the request.

Failure model: the Request-Reply protocol suffers of same communication failures (omissions, messages are not

guaranteed to be delivered in sender order, processes can crash, etc.). Different aspects must be considered.

Timeouts: when a communication fails, the doOperation uses a timeout when it is waiting to get the reply of the remote

process. There are various options that can do a doOperation after a timeout.

Request-Reply Protocols (5)

35

The Request-Reply protocol is one of the basic protocol that computers use to communicate to each other. When using

request-reply, the first computer requests some data and the second computer responds to the request.

Failure model: the Request-Reply protocol suffers of same communication failures (omissions, messages are not

guaranteed to be delivered in sender order, processes can crash, etc.). Different aspects must be considered.

Discarding duplicate request messages: when a request message is retransmitted, the receiver may repeat the operation.

The receiver recognizes successive messages using the request identifier, and filters out the duplicates.

Request-Reply Protocols (6)

36

The Request-Reply protocol is one of the basic protocol that computers use to communicate to each other. When using

request-reply, the first computer requests some data and the second computer responds to the request.

Failure model: the Request-Reply protocol suffers of same communication failures (omissions, messages are not

guaranteed to be delivered in sender order, processes can crash, etc.). Different aspects must be considered.

Lost reply message: if the remote process receives a duplicate request, it needs to resend the reply. We must distinguish

two operation cases:

- idempotent operation can be performed repeatability with the same effect as if it has been performed exactly once.

- if false, it is not an idempotent operation and an history must be used. History refers to a data structure that contains

the record of (reply) messages. A problem associated with the use of history is the extra memory cost.

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

37

Group Communication (1)

38

Point to point communication

(2 processes)

P1 P2 P1Pi

Pi

Pi

Pi

Pi

Pi

Pi

Pi

Group communication

(n client(s), 1 or n server(s))

Group communication: a group is a collection of processes that act together in some system or user-specified way. It is a

form of one-to-many communication (one sender, many receivers), and is contrasted with point-to-point communication.

Group Communication (2)

39

G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

Design issue: group communication has many as the same design possibility as regular message passing, but there are a

large number of additional choices that must be made, including.

Group communication: a group is a collection of processes that act together in some system or user-specified way. It is a

form of one-to-many communication (one sender, many receivers), and is contrasted with point-to-point communication.

Group Communication (3)

40

can’t

access

can

access

coordinator

worker

worker

worker

worker

G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

A closed group: only the members

of the group can send to the group.

An open group: any process in the

system can send to the group.

A peer group: all the processes

are equal, no one is the “boss” and

all decisions are made collectively.

A hierarchical group: one process

is the coordinator and all the others

are workers.

Group Communication (4)

41

1
.

I
w

an
t

to
 j

o
in

2
.

Y
o
u
 c

an

Sever

Client
3. The client

joins the group

Group A

Group A

1. I want

to join

2. You can

3. The process

joins the group

G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

Server membership: the group server

maintains a database about the groups and

their membership. Requests are sent to the

server to delete, to create, to leave or to

join a group.

Distributed membership: an outsider can

send a message to all the group members

announcing its presence.

Group Communication (5)

communication

in one shot

Communication

to all, () are not

concerned





IP Multicast

Communication

in n shots

(1) (2) (3)

(1)
(2)

(3)
Unicast

Broadcast

G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

42

Addressing: in order to send a message to a group, a

process must have some way of specifying which

group it means. Group must be addressed just as

processes do. Three implementation methods exist.

Group Communication (6)

1. send to n

without failure
3. yes,

send n

ACK Is atomic

2. not receive

n ACK

Is not atomic

2. check if n

receipts

1. send to n

with a failure ()



G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

3. send

none ACK

2. check if n

receipts

1. send to n

with a failure ()



Atomicity: is when a message is sent to the group, it

must arrive correctly to all the members of the group,

or at none of them.

43

Group Communication (7)

44

G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

P1 P2P0
(1) a b(2)

P1 P2P0
(1) a b(2)

P1 P2P0
(2) a b(1)

(1-2) are sending / receiving orders

Message ordering: in basic group communication,

messages are delivered to processes in arbitrary order.

In many cases, this lack of ordering is not satisfactory.

Group communication has to deal with message ordering.

Concurrent: two events (e.g. message exchange) are

concurrent because they neither can influence each other.

e.g. P0 can deliver a message to P1 before or after P2

Causal: two events (e.g. message exchange) are causally

related if the nature of behavior of the second one might

have been influenced in any way by the first one.

P0 delivers before P1

P1 delivers before P0

P0 must deliver before P1

Group Communication (8)

45

G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

A B C D

ti
m

e M1

M2

A B C D

M1

M2
ti

m
e

Message ordering: in basic group communication,

messages are delivered to processes in arbitrary order.

In many cases, this lack of ordering is not satisfactory.

Group communication has to deal with message ordering.

A synchronous system is one in which events

happen strictly sequentially (ie. zero time)

(e.g. IP Multicast, broadcast).

A loosely synchronous system is one in which

events take a finite amount of time but all events

appear in the same order to all parties.

process/computer process/computer

Group Communication (9)

46

G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

A B C D

M1
M2

ti
m

e

Case M1 before M2 Case M2 before M1

Message ordering: in basic group communication,

messages are delivered to processes in arbitrary order.

In many cases, this lack of ordering is not satisfactory.

Group communication has to deal with message ordering.

A virtually synchronous system is one in which

the ordering constraint has been relaxed, but in

such a way that under carefully selected

circumstances, it does not matter.

process/computer

Group Communication (10)

47

G
ro

u
p

co
m

m
u

n
ic

a
ti

o
n Access Organization Membership Addressing Atomicity

Message

Ordering

Group

Overlapping

Closed Peer Server Multicast no

properties

no

Unicast

Open Hierarchical Distributed yes yes
Broadcast

Group A Group B

Group A Group B

Group AB

no overlapping

overlapping, processes

belonging to both groups

can work as a bridge

Group overlapping: when a process can be member of

multiple groups, we’re discussing of group overlapping.

One must take care, although there is a message ordering

within each group, there is not necessarily any

coordination between the groups.

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

48

The Message Passing Interface (MPI) (1)

49

Message Passing Interface (MPI) is a standardized and portable message-passing system. It defines the syntax and

semantics of a core of library routines (i.e. primitives) useful to write message-passing programs. MPI

- is tailored for transient communication.

- makes direct use of underlying network.

- assumes communication takes place within a group of known processes.

- has a static runtime system.

The Message Passing Interface (MPI) (2)

50

A run-time system is a software component that provides

an abstraction layer to hide the complexity of services

offered by the OS. The run-time systems can be used for

drawing text, Internet connection, etc.

MPI

runtime

MPI

runtime

1. send

1. send

2. receive 2. receive

computer 1 computer 2

Process Process

Synchronization

primitive

Synchronization

primitive

v
isib

le p
art

d
eep

 p
art

so
ck

et

so
ck

et

Message Passing Interface (MPI) is a standardized and portable message-passing system. It defines the syntax and

semantics of a core of library routines (i.e. primitives) useful to write message-passing programs. MPI

- is tailored for transient communication.

- makes direct use of underlying network.

- assumes communication takes place within a group of known processes.

- has a static runtime system.

The Message Passing Interface (MPI) (3)

51

Blocking Non-blocking

Synchronous MPI_Ssend MPI_Issend

Asynchronous

Generic MPI_Send MPI_Isend

Ready MPI_Rsend MPI_Irsend

Buffered MPI_Bsend MPI_Ibsend

kernel

process

data transmission

process blocked

message exchange

interruption

buffer buffer copy

P
S

P
S

MPI_Bsend
MPI_Send

MPI_Rsend

Message Passing Interface (MPI) is a standardized and portable message-passing system. It defines the syntax and

semantics of a core of library routines (i.e. primitives) useful to write message-passing programs. MPI

- is tailored for transient communication.

- makes direct use of underlying network.

- assumes communication takes place within a group of known processes.

- has a static runtime system.

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

52

Message Queuing Systems (1)

53

Message Queuing Systems provide extensive support for persistent asynchronous communication. The essence of such

system sis that they offer intermediate-term storage capacity for message (i.e. the queues), without requiring either the

sender or receiver to be active during the message transmission. It permits communication loosely coupled in time, an

important difference with Socket/MPI based communication is that message transfers with queuing can take minutes.

System queues: two queue levels, the source and destination queues. In principle, within a local OS each application has

its own queue, but it is also possible for multiple applications to share a single queue.

Database of queue names: a queuing system must maintain a database of queue names to network locations.

P1 P2

Queuing

layer

Queuing

layer

Local OS Local OS

address look-up

database

source queue

network

transport-level

address

destination queue

transport-level

address

Message Queuing Systems (2)

54

Relay queue manager: there are special queue managers that operate as a relay; they forward incoming messages to

other queue managers.

Application

_ _ _ _

_ _ _ _

_ _ _

_ _ _

_ _ _

_ _ _

Application

Application

_ _ _

_ _ _

Application

_ _ _ _

_ _ _ _

Relay1

Relay2

Relay3

Message Queuing Systems provide extensive support for persistent asynchronous communication. The essence of such

system sis that they offer intermediate-term storage capacity for message (i.e. the queues), without requiring either the

sender or receiver to be active during the message transmission. It permits communication loosely coupled in time, an

important difference with Socket/MPI based communication is that message transfers with queuing can take minutes.

Message Queuing Systems (3)

55

Primitives Meaning

Put append a message to a specified queue

Get block until the specified queue is

nonempty, and remove the first message

Poll check a specified queue for message, and

remove the first, never block

Notify install a handler to be called when a

message is put into the specified queue

Queue manager: queues are managed by queue managers, they interact directly with the application that is sending or

receiving a message. Interface offered by a queue manager can be extremely simple:

Message Queuing Systems provide extensive support for persistent asynchronous communication. The essence of such

system sis that they offer intermediate-term storage capacity for message (i.e. the queues), without requiring either the

sender or receiver to be active during the message transmission. It permits communication loosely coupled in time, an

important difference with Socket/MPI based communication is that message transfers with queuing can take minutes.

Message Queuing Systems (4)

56

Loosely-coupled communication modes: once a message has been deposited in a queue, it will remain there while its

sender or receiver executing, or removed. This gives us four combinations in respect to the execution mode.

_

_

_

_

sender

queue

receiver

_

_

_

_

_

_

_

_

_

_

_

_

both active receiver passive sender passive both passive

Message Queuing Systems provide extensive support for persistent asynchronous communication. The essence of such

system sis that they offer intermediate-term storage capacity for message (i.e. the queues), without requiring either the

sender or receiver to be active during the message transmission. It permits communication loosely coupled in time, an

important difference with Socket/MPI based communication is that message transfers with queuing can take minutes.

Inter-Process Communication

in Distributed Systems

1. Introduction

2. Socket Communication

3. Stream-Oriented Communication

4. Message-Oriented Communication

4.1. Primitives for Communication

4.2. Request-Reply Protocols

4.3. Group Communication

4.4. The Message Passing Interface (MPI)

4.5. Message Queuing Systems

5. Interoperability

57

Interoperability (1)

58

Openness: the openness in a distributed system is the characteristic that determines whether

the system can be extended and re-implemented in a various way. It is characterized by the

degree to which new resources-sharing and services can be added and made available for use

by a variety of applications.

Portability characterizes to what extent an application

developed for a distributed system A can be executed,

without modifications, on a different distributed system B.

Extensibility for and opened distributed system concerns

how it should be easy to configure the system out of

different components, and how it should be easy to add

new components or replacing the existing ones.

Interoperability characterizes the extend by which two

implementations of systems or components from different

manufacturers, can co-exist and work together.

Openness Portability

Extensibility

Inter-

operability

IDL

P
ro

p
er

ty
 o

f

Support

IDL (Interface Definition Language): an open

distributed system offers services according to standard

rules that describes the syntax and semantics of these

services. Such rules are formalized in protocols, and

specified through interfaces described with an IDL.

Interoperability (2)

59

Openness
Inter-

operability

IDL

Property of

Support

Interoperability characterizes the extend by which two implementations of systems or components

from different manufacturers, can co-exist and work together.

Hardware Software Scalability IDL

Cluster of

computers
Same Same Medium no

Implementing

remote interfaces
Different Different Low no

External data

representation
Different Different High yes

Serialization Different Same Medium yes

Interoperability (3)

60

clone of

clone of

clone of

clone of

B

B

A

A

A

A

Cluster computing: the underlying hardware consists of a collection of similar computers, closely connected by

means of a high-speed local network. In addition, each node runs the same OS.

Hardware Software Scalability IDL

Cluster of

computers
Same Same Medium no

Implementing

remote interfaces
Different Different Low yes

External data

representation
Different Different High yes

Serialization Different Same Medium yes

Interoperability (4)

61

Implementing remote interfaces: the values are transmitted in the sender’s format, together with an indication of

the format used, and the recipient converts values if necessary.

Process

Socket

Data

Process

Socket

Data Language B

Architecture B

Language A

Architecture A

Interface

A priori hardware/software

constraints of computer 1

Computer 1 Computer 2

message
Format

specification

Hardware Software Scalability IDL

Cluster of

computers
Same Same Medium no

Implementing

remote interfaces
Different Different Low yes

External data

representation
Different Different High yes

Serialization Different Same Medium yes

Interoperability (5)

62

Language

Type A

Implementation

Type A

Process

Type A

Marshalling

Data X

Type A

Process

Type C

Unmarshalling

Data X

Type C

Data X

Type B

Language

Type C

Implementation

Type C

Computer 1 Computer 2

Marshalling is the process of taking a

collection of data items and assembling

them into a form suitable for transmission.

Unmarshmalling is the process if disassembling

data on arrival to produce an equivalent collection

of data items at the destination.

Hardware Software Scalability IDL

Cluster of

computers
Same Same Medium no

Implementing

remote interfaces
Different Different Low yes

External data

representation
Different Different High yes

Serialization Different Same Medium yes

External data representation is interested with standard for the representation of data structures and primitive values.

Interoperability (6)

63

External data representation is interested with standard for the representation of data structures and primitive values.

e.g. XML Schema

<xsd:schema xmlns:xsd = URL of XML schema definitions >

<xsd:element name= "person" type ="personType" />

<xsd:complexType name="personType">

<xsd:sequence>

<xsd:element name = "name" type="xs:string"/>

<xsd:element name = "place" type="xs:string"/>

<xsd:element name = "year" type="xs:positiveInteger"/>

</xsd:sequence>

<xsd:attribute name= "id" type = "xs:positiveInteger"/>

</xsd:complexType>

</xsd:schema>

Hardware Software Scalability IDL

Cluster of

computers
Same Same Medium no

Implementing

remote interfaces
Different Different Low yes

External data

representation
Different Different High yes

Serialization Different Same Medium yes

Interoperability (7)

64

Serialization refers to the activity of flattening an object or a connected set of objects into a serial form that is suitable for

storing on disk or transmitting in a message.

Process

Interface

Data X

Type A

Process

Interface

Data X

Type A

Data X

Type A

serialized

Language A

Serialize Deserialize

Virtual

Machine

Language A

Virtual

Machine

Hardware Software Scalability IDL

Cluster of

computers
Same Same Medium no

Implementing

remote interfaces
Different Different Low yes

External data

representation
Different Different High yes

Serialization Different Same Medium yes

Interoperability (8)

65

Serialization refers to the activity of flattening an object or a connected set of objects into a serial form that is suitable for

storing on disk or transmitting in a message.

Hardware Software Scalability IDL

Cluster of

computers
Same Same Medium no

Implementing

remote interfaces
Different Different Low yes

External data

representation
Different Different High yes

Serialization Different Same Medium yes

e.g. Person p = new Person(“Smith”, “London”, 1934);

Fields Description

1 Person Class name

2 42L Serial version UID

3 3 Number of variables

4 int years

Types of variables5 String name

6 String place

7 1394 value

8 5 Smith length value

9 6 London length value

Reflexion: serialization is based on the reflexion, the abilities in

OOP to enquire about the properties of a class (type and names

of instance variables and methods). Object can be also created

from their names.

Handles: when an object is serialized, all the objects that it

references are serialized together to ensure the deserialization.

Transient: serialization / deserialization are full automatic

processes, but can be tuned by programmers by implementing

their own methods. Part(s) of objects can be protected from

serialization / deserialization processes as transient members.

