Image processing "Digital image modeling"

Mathieu Delalandre
University of Tours, Tours city, France
mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/image.html

Digital image modeling

1. Representing digital image
2. Sampling and quantization
3. Color spaces
4. Relationships between pixels

Representing digital image (1)

Representing digital image (2)

The histogram of a digital image is a representation of its intensity distribution such as
The image

$\mathrm{I}(\mathrm{i}, \mathrm{j})=\mathrm{v}$	is a discrete function
i, j	the coordinates of a pixel
$\mathrm{i} \in[0, \mathrm{~N}[$ and $\mathrm{j} \in[0, \mathrm{M}[$	
v	is the pixel intensity value with
	$0 \leq v \leq L$
$\mathrm{M} \times \mathrm{N}$	is the size of the array (in pixels)

The histogram
$h(k)=n_{k} \quad$ is a discrete function
$\mathrm{k} \quad$ the intensity value
$\mathrm{k} \in[0, \mathrm{~L}] \quad$ is the intensity level range
$\mathrm{n}_{\mathrm{k}} \quad$ is the number of pixels in
\sum^{L} the image of intensity k
$\sum_{k=0}^{L} h(k)=N \times M$
e.g.

$h(k=3)=3$
i.e. the number of " 3 "

Digital image modeling

1. Representing digital image
2. Sampling and quantization
3. Color spaces
4. Relationships between pixels

Sampling and quantization (1)

To be suitable for computer processing digital image are first captured (camera, digitized, screenshot ...) both spatially and in amplitude

Specification of amplitude is called quantification
Specification of spatial coordinate is called sampling

$$
b=2^{2 k} \times q \quad \begin{array}{ll}
\text { size of image (in bits) } \\
& / 2^{3} \text { bytes } \\
& / 2^{13} \mathrm{Kbytes} \\
& / 2^{23} \mathrm{Mbytes} \\
& \text { etc. }
\end{array}
$$

Sampling and quantization (2)

Quantification and sampling parameters impact the image quality, they must be set considering the image content.

Digital image modeling

1. Representing digital image
2. Sampling and quantization
3. Color spaces
4. Relationships between pixels

Color spaces (1)

Quantification specifies the maximum number of possible amplitude values, correspondence between these values and colors is ensured by a color space.

q per channel	channels	color codes				
		black	white	red	blue	green

binary "miniswhite"	1	\varnothing	1	0	\varnothing	\varnothing	\varnothing
binary "minisblack"	1	\varnothing	0	1	\varnothing	\varnothing	\varnothing

gray level	8	\varnothing	0	255	\varnothing	\varnothing	\varnothing

RGB	8 (to 24)	G	0	255	255	0	0
		B	0	255	0	255	0
		255	0	0	255		

	CMY	(to 24)	C	255	0	0	255
255							
		Y	255	0	255	255	0
		255	0	255	0	255	

Others are at the corner: YIQ, HSV, etc.

Color spaces (2)

To convert color space is a tradeoff between preserving information and to gain storage capacity.

Digital image modeling

1. Representing digital image
2. Sampling and quantization
3. Color spaces
4. Relationships between pixels

Relationships between pixels (1)

Considering a pixel p of coordinates (i,j), its 4 horizontal and vertical neighbors, denoted $\mathbf{N}_{4}(\mathbf{p})$, are

Considering a pixel p of coordinates
(i,j), its 4 diagonal neighbors, denoted $\mathbf{N}_{\mathbf{D}}(\mathbf{p})$, are

Considering a pixel p of coordinates (i,j), its 8 neighbors, denoted $\mathbf{N}_{\mathbf{8}}(\mathbf{p})$, are a combination of $\mathbf{N}_{4}(\mathbf{p})$ and $\mathbf{N}_{\mathbf{D}}(\mathbf{p})$

0	0	0	0	0	0
0	0	0	0	0	0
0	0	1	2	2	0
0	0	0	2	3	1
0	0	0	1	1	0
0	0	0	0	0	0

(i,j)

Considering two pixels, p of coordinates (i, j) and q of coordinates (u, v)

p and q are 4-adjacent if	$q \in N_{4}(p)$ and $p \in N_{4}(q)$
p and q are 8-adjacent if	$q \in N_{8}(p)$ and $p \in N_{8}(q)$

Relationships between pixels (2)

Considering the three pixels

- p of coordinates (i,j)
- q of coordinates (u, v)
- z of coordinates (x, y)

We define a relation D between p, q and z as distance if

(i)	$D(p, q) \geq 0$	non-negativity
(ii)	$D(p, q)=0 \quad$ if $\quad p=q$	reflexivity
(iii)	$D(p, q)=D(q, p)$	commutativity
(iv)	$D(p, z) \leq D(q, p)+D(q, z)$	triangle inequality

Definitions

The Euclidean distance is defined as

$$
D_{e}(p, q)=\left[(i-u)^{2}+(j-v)^{2}\right]^{\frac{1}{2}} \quad D_{e}(p, q)=\left[(2-3)^{2}+(1-3)^{2}\right]^{\frac{1}{2}}=\sqrt{1+4}=\sqrt{5}
$$

The city-block distance is defined as

$$
D_{4}(p, q)=|i-u|+|j-v| \quad D_{4}(p, q)=|2-3|+|1-3|=1+2=3
$$

Example

The chessboard distance is defined as

$$
D_{8}(p, q)=\max (|i-u|,|j-v|) \quad D_{8}(p, q)=\max (|2-3|,|1-3|)=\max (1,2)=2
$$

Relationships between pixels (3)

Considering the three pixels

- p of coordinates (i,j)
- q of coordinates (u, v)
- z of coordinates (x, y)

We define a relation D between p, q and z as distance if

(i)	$D(p, q) \geq 0$	non-negativity
(ii)	$D(p, q)=0 \quad$ if $\quad p=q$	reflexivity
(iii)	$D(p, q)=D(q, p)$	commutativity
(iv)	$D(p, z) \leq D(q, p)+D(q, z)$	triangle inequality

Definitions

The Euclidean distance is defined as

$$
D_{e}(p, q)=\left[(i-u)^{2}+(j-v)^{2}\right]^{\frac{1}{2}}
$$

Distance maps of pixel p
at coordinates (i, j)

$\sqrt{ } 8$	$\sqrt{5}$	2	$\sqrt{5}$	$\sqrt{ } 8$
$\sqrt{ } 5$	$\sqrt{ } 2$	1	$\sqrt{ } 2$	$\sqrt{ } 5$
2	1	\mathbf{p}	1	2
$\sqrt{5}$	$\sqrt{ } 2$	1	$\sqrt{2}$	$\sqrt{5}$
$\sqrt{ } 8$	$\sqrt{ } 5$	2	$\sqrt{ } 5$	$\sqrt{ } 8$

The city-block distance is defined as

$$
D_{4}(p, q)=|i-u|+|j-v|
$$

4	3	2	3	4
3	2	1	2	3
2	1	\mathbf{p}	1	2
3	2	1	2	3
4	3	2	3	4

The chessboard distance is defined as

$$
D_{8}(p, q)=\max (|i-u|,|j-v|)
$$

2	2	2	2	2
2	1	1	1	2
2	1	\mathbf{p}	1	2
2	1	1	1	2
2	2	2	2	2

