# Image processing "Histogram-based operators" 

Mathieu Delalandre<br>University of Tours, Tours city, France<br>mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/image.html

## Histogram-based operators

1. Fundamentals of histogram-based operators
2. Some histogram-based operators
2.1. Image characterization
2.2. Optimum thresholding
2.3. Histogram equalization
2.4. Histogram-based distances
3. Further investigations

## Fundamentals of histogram-based operators (1)

The histogram of a digital image is a representation of its intensity distribution such as
The image

| $\mathrm{I}(\mathrm{i}, \mathrm{j})=\mathrm{v}$ | is a discrete function |
| :--- | :--- |
| $\mathrm{i}, \mathrm{j}$ | the coordinates of a pixel |
| $\mathrm{i} \in[0, \mathrm{~N}[$ and $\mathrm{j} \in[0, \mathrm{M}[$ |  |

v

| is the pixel intensity value with |  |
| :--- | :--- |
| $\mathrm{M} \times \mathrm{N}$ | $0 \leq v \leq L$ |

The histogram
$\mathrm{h}(\mathrm{k})=\mathrm{n}_{\mathrm{k}} \quad$ is a discrete function
$\mathrm{k} \quad$ the intensity value
$\mathrm{k} \in[0, \mathrm{~L}] \quad$ is the intensity level range
$\mathrm{n}_{\mathrm{k}} \quad$ is the number of pixels in
$\sum^{L} \quad$ the image of intensity k
$\sum_{k=0}^{L} h(k)=N \times M$
e.g.


a pixel distribution, $h(k=3)=3$
i.e. the number of " 3 "

## Fundamentals of histogram-based operators (2)

The basic image histogram is


The normalized image histogram is

$\mathrm{p}(\mathrm{k})$ defines the probability to get the value k in the image I
Raster with

| $\mathrm{N}=3$ |
| :--- |
| $\mathrm{M}=4$ |
| $\mathrm{~N} \times \mathrm{M}=12$ |
| $\mathrm{q}=3$ |
| $0 \leq I(i, j) \leq 7$ |


| 1 | 2 | 1 | 4 |
| :--- | :--- | :--- | :--- |
| 2 | 0 | 3 | 3 |
| 3 | 2 | 0 | 4 |

The accumulated image histogram is

$c(k)$ defines the probability to get the value less or equal to k in the image I

## Fundamentals of histogram-based operators (3)



## Fundamentals of histogram-based operators (4)

Histogram-based operations include any statistical processes of intensity distribution. They could be based on single or multiple entries.


Typical results include

- an image
- some features

e.g.

levels
To rank intensity levels by shifting one value $\mathrm{k}=2$ to



## Fundamentals of histogram-based operators (5)

Histogram-based operations include any statistical processes of intensity distribution. They could be based on single or multiple entries.


Typical results include

- an image
- some features


Histogram-based operations are related to
$\checkmark$ image characterization (or features extraction),
$\checkmark$ automatic thresholding,
$\checkmark$ image enhancement (histogram equalization),
$\checkmark$ image matching (histogram-based distances),
$\checkmark$ etc.

## Histogram-based operators

1. Fundamentals of histogram-based operators
2. Some histogram-based operators
2.1. Image characterization
2.2. Optimum thresholding
2.3. Histogram equalization
2.4. Histogram-based distances
3. Further investigations

| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Image characterization "Mean and standard deviation"

Characterization with mean and standard deviation

|  | From raster | From histogram | From normalized <br> histogram |
| :---: | :---: | :---: | :---: |
| Mean <br> $\mathbf{( m )}$ | $\frac{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} I(i, j)}{N \times M}$ | $\frac{\sum_{k=0}^{L} k \times h(k)}{N \times M}$ | $\sum_{k=0}^{L} k \times p(k)$ |
| Standard <br> deviation <br> $(\boldsymbol{\sigma})$ | $\frac{\sqrt{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1}(I(i, j)-m)^{2}}}{N \times M}$ | $\frac{\sqrt{\sum_{k=0}^{L}(k-m)^{2} \times h(k)}}{N \times M}$ | $\sqrt{\sum_{k=0}^{L}(k-m)^{2} \times p(k)}$ |

$$
\begin{gathered}
m=\frac{L}{2} \\
\sigma=0 \\
m=\frac{1}{2} \times 0+\frac{1}{2} \times L=\frac{L}{2} \\
\sigma=\sqrt{2 \times \frac{1}{2} \times\left(\frac{L}{2}\right)^{2}}=\frac{L}{2}
\end{gathered}
$$

Rq. Standard deviation is also defined as the squared root of the variance $\sigma=\sqrt{v}$
Complexity comparison of raster vs. histogram-based operations

|  | image | Image-based operation |  | access / increment operations | arithmetic operations |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | add/ subtract | multiply | square | divide |
|  |  |  | Mean raster | N $\times \mathrm{M}$ | N $\times$ M | 1 | 0 | 1 |
| image | Histogram extraction | based operation | Mean histogram | $2 \times \mathrm{N} \times \mathrm{M}$ | $2^{\text {q }}$ | $2^{\text {q }}$ | 0 | 1 |
|  |  |  | STD raster | $\mathrm{N} \times \mathrm{M}$ | $2 \times \mathrm{N} \times \mathrm{M}$ | 1 | $\mathrm{N} \times \mathrm{M}$ | 1 |
|  |  |  | STD histogram | $2 \times \mathrm{N} \times \mathrm{M}$ | $2 \times 2^{\text {q }}$ | $2^{\text {a }}$ | $2^{\text {q }}$ | 1 |

with $N \times M \gg 2^{q}$
and O (access) $\ll \mathrm{O}$ (arithmetic)
the histogram-based operations are most efficient.

| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Image characterization "Contrast" (1)

Characterization with contrast

|  | From standard <br> deviation | From standard <br> deviation (normalized) |
| :---: | :---: | :---: |
| Contrast <br> (r) | $r=1-\frac{1}{1+\sigma^{2}}$ | $r=1-\frac{1}{1+\frac{\sigma^{2}}{L^{2}}}$ |

Contrast is the difference in visual properties that makes objects in an image distinguishable from other objects and the background. There are many possible definitions of contrast, the one above is the variance-based.

Due to the large values meet for variance, a normalization of variance with the number of square level intensity could improve the global curvature function.



## Image characterization "Contrast" (2)

Characterization with contrast

|  | From standard <br> deviation | From standard <br> deviation (normalized) |
| :---: | :---: | :---: |
| Contrast <br> (r) | $r=1-\frac{1}{1+\sigma^{2}}$ | $r=1-\frac{1}{1+\frac{\sigma^{2}}{L^{2}}}$ |



Contrast is the difference in visual properties that makes objects in an image distinguishable from other objects and the background. There are many possible definitions of contrast, the one above is the variance-based.

| Standard deviation $\sigma$ | 2108 |
| :--- | :---: |
| Contrast (r) | 1 |
| Normalized contrast (r) | 0,98 |

Due to the large values meet for variance, a normalization of variance with the number of square level intensity could improve the global curvature function.


| Standard deviation $\sigma$ | 457 |
| :--- | :---: |
| Contrast $(\mathrm{r})$ | 1 |
| Normalized contrast $(\mathrm{r})$ | 0,76 |


| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Image characterization "Statistical moments" (1)

Characterization with statistical moments

|  | From histogram | From normalized <br> histogram |
| :---: | :---: | :---: |
| Moment <br> $\left(\mu_{\mathrm{n}}\right)$ | $\mu_{n}=\sum_{k=0}^{2^{q}-1} \frac{(k-m)^{n} \times h(k)}{N \times M}$ | $\mu_{n}=\sum_{k=0}^{2^{4}-1}(k-m)^{n} \times p(k)$ |

Statistical moments are the simplest approach to describe the image content, they are mainly applied to textures.
e.g.

| $\mathbf{n}$ | Moments | Description |
| :---: | :---: | :---: |
| $\mathbf{0}$ | $\mu_{0}=\sum_{k=0}^{2^{q}-1}(k-m)^{0} \times p(k)$ | The $0^{\text {th }}$ moment, <br> is still equal to one |
| $\mu_{0}=\sum_{k=0}^{2^{q}-1} p(k)=1$ | $\mu_{1}=\sum_{k=0}^{2^{q^{-}-1}}(k-m) \times p(k)$ | The $1^{\text {st }}$ moment, <br> is still equal to zero |
| $\mu_{1}=\sum_{k=0}^{2^{q^{-}-1}} 0 \times p(k)=0$ | $\mu_{2}=\sum_{k=0}^{2^{q}-1}(k-m)^{2} \times p(k)$ | The 2 $2^{\text {sd }}$ moment <br> is the variance |
| $\mathbf{3}$ | $\mu_{3}=\sum_{k=0}^{2^{q}-1}(k-m)^{3} \times p(k)$ | The 3 3rd moment <br> measure the skewness |
| $\mathbf{4}$ | $\mu_{4}=\sum_{k=0}^{2^{q}-1}(k-m)^{4} \times p(k)$ | The 4 4h moment <br> measures the flatness |


| $\mathbf{k}$ |
| :---: |
| $\mathbf{h ( k )}$ |
| $\mathbf{p}(\mathbf{k})$ |
| $(k-m)^{0}$ |
| $(k-m)^{1}$ |
| $(k-m)^{2}$ |
| $(k-m)^{3}$ |
| $(k-m)^{4}$ |


| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| 9 | 4 | 1 | 0 | 1 | 4 | 9 | 4 |
| -27 | -8 | -1 | 0 | 1 | 8 | 27 | 64 |
| 81 | 16 | 1 | 0 | 1 | 16 | 81 | 256 |

$$
\begin{aligned}
& m=\sum_{k=0}^{2^{q-1}-1} k \times p(k)=3 \\
& \begin{array}{|l|l|}
\hline 1 & \mu_{0} \\
\hline 0 & \mu_{1} \\
\hline 0 & \mu_{2} \\
\hline 0 & \mu_{3} \\
\hline 0 & \mu_{4} \\
\hline
\end{array}
\end{aligned}
$$

constant image null variance null skewness null flatness
intensity
level

## Image characterization "Statistical moments" (2)

Characterization with statistical moments

|  | From histogram | From normalized <br> histogram |
| :---: | :---: | :---: |
| Moment <br> $\left(\mu_{\mathrm{n}}\right)$ | $\mu_{n}=\sum_{k=0}^{2^{q}-1} \frac{(k-m)^{n} \times h(k)}{N \times M}$ | $\mu_{n}=\sum_{k=0}^{2^{4}-1}(k-m)^{n} \times p(k)$ |

Statistical moments are the simplest approach to describe the image content, they are mainly applied to textures.
e.g.

| $\mathbf{n}$ | Moments | Description |
| :---: | :---: | :---: |
| $\mathbf{0}$ | $\mu_{0}=\sum_{k=0}^{2^{q}-1}(k-m)^{0} \times p(k)$ | The $0^{\text {th }}$ moment, <br> is still equal to one |
| $\mu_{0}=\sum_{k=0}^{2^{q}-1} p(k)=1$ | $\mu_{1}=\sum_{k=0}^{2^{4}-1}(k-m) \times p(k)$ | The $1^{\text {st }}$ moment, <br> is still equal to zero |
| $\mu_{1}=\sum_{k=0}^{2^{4}-1} 0 \times p(k)=0$ | $\mu_{2}=\sum_{k=0}^{2^{q}-1}(k-m)^{2} \times p(k)$ | The 2 ${ }^{\text {sd }}$ moment <br> is the variance |
| $\mathbf{3}$ | $\mu_{3}=\sum_{k=0}^{2^{q}-1}(k-m)^{3} \times p(k)$ | The $3^{\text {rd }}$ moment <br> measure the skewness |
| $\mathbf{4}$ | $\mu_{4}=\sum_{k=0}^{2^{q}-1}(k-m)^{4} \times p(k)$ | The 4 4th moment <br> measures the flatness |


| $\mathbf{k}$ |
| :---: |
| $\mathbf{h ( k )}$ |
| $\mathbf{p}(\mathbf{k})$ |
| $(k-m)^{0}$ |
| $(k-m)^{1}$ |
| $(k-m)^{2}$ |
| $(k-m)^{3}$ |
| $(k-m)^{4}$ |


| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $-3,5$ | $-2,5$ | $-1,5$ | $-0,5$ | 0,5 | 1,5 | 2,5 | 3,5 |
| 12,5 | 6.25 | 2.25 | 0.25 | 0.25 | 2.25 | 6.25 | 12.25 |
| $-42,8$ | $-15-6$ | -3.3 | -0.12 | 0.12 | 3.3 | 15.6 | 42.8 |
| 150 | 39 | 5 | 0.06 | 0.06 | 5 | 39 | 150 |

$$
\begin{aligned}
& m=\sum_{k=0}^{2^{4}-1} k \times p(k)=3.5 \\
& \begin{array}{|c|c|}
\hline 1 & \mu_{0} \\
\hline 0 & \mu_{1} \\
\hline 5.25 & \mu_{2} \\
\hline 0 & \mu_{3} \\
\hline 48.6 & \mu_{4} \\
\hline
\end{array}
\end{aligned}
$$

gradient image strong variance null skewness strong flatness
intensity
level

## Image characterization "Statistical moments" (3)

Characterization with statistical moments

|  | From histogram | From normalized <br> histogram |
| :---: | :---: | :---: |
| Moment <br> $\left(\mu_{\mathrm{n}}\right)$ | $\mu_{n}=\sum_{k=0}^{2^{q}-1} \frac{(k-m)^{n} \times h(k)}{N \times M}$ | $\mu_{n}=\sum_{k=0}^{2^{4}-1}(k-m)^{n} \times p(k)$ |

Statistical moments are the simplest approach to describe the image content, they are mainly applied to textures.
e.g.

| $\mathbf{n}$ | Moments | Description |
| :---: | :---: | :---: |
| $\mathbf{0}$ | $\mu_{0}=\sum_{k=0}^{2^{q}-1}(k-m)^{0} \times p(k)$ | The $0^{\text {th }}$ moment, <br> is still equal to one |
| $\mu_{0}=\sum_{k=0}^{2^{q}-1} p(k)=1$ | $\mu_{1}=\sum_{k=0}^{2^{q}-1}(k-m) \times p(k)$ | The $1^{\text {st }}$ moment, <br> is still equal to zero |
| $\mu_{1}=\sum_{k=0}^{2^{2-1}-1} 0 \times p(k)=0$ | $\mu_{2}=\sum_{k=0}^{2^{q}-1}(k-m)^{2} \times p(k)$ | The 2 <br> isd moment <br> is the variance |
| $\mathbf{3}$ | $\mu_{3}=\sum_{k=0}^{2^{q}-1}(k-m)^{3} \times p(k)$ | The 3 3rd moment <br> measure the skewness |
| $\mathbf{4}$ | $\mu_{4}=\sum_{k=0}^{2^{q}-1}(k-m)^{4} \times p(k)$ | The 4 4h moment <br> measures the flatness |


| $\mathbf{k}$ |
| :---: |
| $\mathbf{h}(\mathbf{k})$ |
| $\mathbf{p}(\mathbf{k})$ |
| $(k-m)^{0}$ |
| $(k-m)^{1}$ |
| $(k-m)^{2}$ |
| $(k-m)^{3}$ |
| $(k-m)^{4}$ |


| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | 60 | 50 | 40 | 30 | 20 | 10 | 00 |
| $7 / 28$ | $6 / 28$ | $5 / 28$ | $4 / 28$ | $3 / 28$ | $2 / 28$ | $1 / 28$ | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -2 | -1 | 0 | 1 | 2 | 3 | 4 | 4 |
| 4 | 1 | 0 | 1 | 4 | 9 | 16 | 25 |
| -8 | -1 | 0 | 1 | 8 | 27 | 64 | 125 |
| 16 | 1 | 0 | 1 | 16 | 81 | 256 | 625 |

$$
\begin{aligned}
& m=\sum_{k=0}^{2^{4-1}-1} k \times p(k)=2 \\
& \begin{array}{|l|l|}
\hline 1 & \mu_{0} \\
\hline 0 & \mu_{1} \\
\hline 3 & \mu_{2} \\
\hline 3 & \mu_{3} \\
\hline 21 & \mu_{4} \\
\hline
\end{array}
\end{aligned}
$$

## Image characterization "Statistical moments" (4)

Characterization with statistical moments

|  | From histogram | From normalized <br> histogram |
| :---: | :---: | :---: |
| Moment <br> $\left(\mu_{\mathrm{n}}\right)$ | $\mu_{n}=\sum_{k=0}^{2^{q}-1} \frac{(k-m)^{n} \times h(k)}{N \times M}$ | $\mu_{n}=\sum_{k=0}^{2^{4}-1}(k-m)^{n} \times p(k)$ |

Statistical moments are the simplest approach to describe the image content, they are mainly applied to textures.
e.g.

| $\mathbf{n}$ | Moments | Description |
| :---: | :---: | :---: |
| $\mathbf{0}$ | $\mu_{0}=\sum_{k=0}^{2^{q}-1}(k-m)^{0} \times p(k)$ | The $0^{\text {th }}$ moment, <br> is still equal to one |
| $\mu_{0}=\sum_{k=0}^{2^{q}-1} p(k)=1$ | $\mu_{1}=\sum_{k=0}^{2^{q^{-}-1}}(k-m) \times p(k)$ | The $1^{\text {st }}$ moment, <br> is still equal to zero |
| $\mu_{1}=\sum_{k=0}^{2^{q^{-}-1}} 0 \times p(k)=0$ | $\mu_{2}=\sum_{k=0}^{2^{q}-1}(k-m)^{2} \times p(k)$ | The 2 $2^{\text {sd }}$ moment <br> is the variance |
| $\mathbf{3}$ | $\mu_{3}=\sum_{k=0}^{2^{q}-1}(k-m)^{3} \times p(k)$ | The 3 3rd moment <br> measure the skewness |
| $\mathbf{4}$ | $\mu_{4}=\sum_{k=0}^{2^{q}-1}(k-m)^{4} \times p(k)$ | The 4 4h moment <br> measures the flatness |


| k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $m=\sum_{k=0}^{2^{q}-1} k \times p(k)=4$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| h(k) | 0 | 0 | 0 | 40 | 30 | 20 | 10 | 00 |  |  |
| p(k) | 0 | 0 | 0 | 4/10 | 3/10 | 2/10 | 1/10 | 0 |  |  |
| $(k-m)^{0}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\mu_{0}$ |
| $(k-m)^{1}$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 0 | $\mu_{1}$ |
| $(k-m)^{2}$ | 16 | 9 | 4 | 1 | 0 | 1 | 4 | 9 | 1 | $\mu_{2}$ |
| $(k-m)^{3}$ | -64 | -27 | -8 | -1 | 0 | 1 | 8 | 27 | 0.6 | $\mu_{3}$ |
| $(k-m)^{4}$ | 256 | 81 | 16 | 1 | 0 | 1 | 16 | 81 | 2.2 | $\mu_{4}$ |

## pixel <br> number



## Image characterization <br> "Statistical moments" (5)




| $\mathbf{n}$ | value | scale |
| :---: | :---: | :---: |
| $\mu_{0}$ | 1 | $10^{0}$ |
| $\mu_{1}$ | 0 | $10^{0}$ |
| $\mu_{2}$ | 5.86 | $10^{3}$ |
| $\mu_{3}$ | -32.07 | $10^{3}$ |
| $\mu_{4}$ | 6720.60 | $10^{3}$ |




| $\mathbf{n}$ | value | scale |
| :---: | :---: | :---: |
| $\mu_{0}$ | 1 | $10^{0}$ |
| $\mu_{1}$ | 0 | $10^{0}$ |
| $\mu_{2}$ | 0,96 | $10^{3}$ |
| $\mu_{3}$ | 23,05 | $10^{3}$ |
| $\mu_{4}$ | 2764.90 | $10^{3}$ |


| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Image characterization <br> "Entropy" (1)

Characterization with Entropy

|  | From histogram | From normalized <br> histogram |
| :---: | :---: | :---: |
| Entropy <br> (e) | $-\sum_{k=0}^{2^{q}-1} \frac{h(k) \times \log _{b}(h(k) / M \times N)}{M \times N}$ | $-\sum_{k=0}^{2^{q}-1} p(k) \times \log _{b}(p(k))$ |

b is the base of the logarithm, common value is 2
Entropy measures the randomness of the image.

Entropy of two variables $(\mathrm{x}, \mathrm{y})$ with $\mathrm{b}=2\left(\log _{2}\right)$ and $x=p(0) \quad y=p(1)=1-x$

Max Entropy values (equiprobability) of n variables with $\mathrm{b}=2\left(\log _{2}\right)$


## Image characterization "Entropy" (2)

Characterization with Entropy

|  | From histogram | From normalized <br> histogram |
| :---: | :---: | :---: |
| Entropy <br> (e) | $-\sum_{k=0}^{2^{q}-1} \frac{h(k) \times \log _{b}(h(k) / M \times N)}{M \times N}$ | $-\sum_{k=0}^{2^{q}-1} p(k) \times \log _{b}(p(k))$ |

b is the base of the logarithm, common value is 2
Entropy measures the randomness of the image.

Max Entropy values (equiprobability)

e.g.

| $\mathbf{k}$ |
| :---: |
| $\mathbf{h ( k )}$ |
| $\mathbf{p ( k )}$ |
| $\log _{2}(p(k))$ |


| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ |
| -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 |


| res |  |
| :---: | :---: |
| 80 | pixel number |
| 1 | sum of probability |
| 3 | Entropy (e) |



level

## Image characterization "Entropy" (3)

Characterization with Entropy

|  | From histogram | From normalized <br> histogram |
| :---: | :---: | :---: |
| Entropy <br> (e) | $-\sum_{k=0}^{2^{q}-1} \frac{h(k) \times \log _{b}(h(k) / M \times N)}{M \times N}$ | $-\sum_{k=0}^{2^{q}-1} p(k) \times \log _{b}(p(k))$ |

b is the base of the logarithm, common value is 2
Entropy measures the randomness of the image.

Max Entropy values (equiprobability)

e.g.

| $\mathbf{k}$ |
| :---: |
| $\mathbf{h}(\mathbf{k})$ |
| $\mathbf{p ( k )}$ |
| $\log _{2}(p(k))$ |


| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 80 |  |  |  |  |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| $-\infty$ | $-\infty$ | $-\infty$ | 0 | $-\infty$ | $-\infty$ | $-\infty$ | $-\infty$ |


| res |  |
| :---: | :---: |
| 80 | pixel number |
| 1 | sum of probability |
| 0 | Entropy (e) |


level

| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Image characterization "Co-occurrence matrix"

A co-occurrence matrix is a distribution that is defined over an image to be the distribution of co-occurring values at a given offset.

| equation | description |
| :---: | :---: |
| $n=\sum_{i=0}^{2^{q}-12^{q}-1} g(i, j)$ | Co-occurrence <br> number |
| $p(i, j)=g(i, j) / n$ | Probability <br> estimation of g |
| $\sum_{i=0}^{2^{q}-12^{q}-1} p(i, j)=1$ |  |

an image I
$\mathrm{N} \times \mathrm{M}=6 \times 6$
$q=3$ (i.e. $k \in[0-7]$

| 0 | 0 | 6 | 4 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 0 | 5 | 0 | 1 | 4 |
| 7 | 7 | 5 | 7 | 0 | 1 |
| 3 | 2 | 3 | 4 | 4 | 0 |
| 7 | 6 | 7 | 6 | 5 | 1 |
| 6 | 7 | 5 | 1 | 5 | 1 |

The corresponding co-occurrence matrix $g$ using a [11] structuring element

using a [11 1] structuring element, 5 is neighbor of 0 ,
we increase the corresponding $g(i, j)$ element in the cooccurrence matrix

| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Image characterization "Uniformity, homogeneity" (1)

Characterization with uniformity and homogeneity

|  | Equation |
| :---: | :---: |
| Uniformity | $\sum_{i=0}^{2^{q}-12^{q}-1} \sum_{j=0} p(i, j)^{2}$ |
| Homogeneity | $\sum_{i=0}^{2^{q}-12^{q}-1} \sum_{j=0} \frac{p(i, j)}{1+\|i-j\|}$ |

Uniformity (also called Energy) estimates image as a constant.
Homogeneity measures the spatial closeness of the element distribution in g.


## Image characterization "Uniformity, homogeneity" (2)

Characterization with uniformity and homogeneity

|  | Equation |
| :---: | :---: |
| Uniformity | $\sum_{i=0}^{2^{q}-12^{q}-1} \sum_{j=0} p(i, j)^{2}$ |
| Homogeneity | $\sum_{i=0}^{2^{q}-12^{q}-1} \sum_{j=0} \frac{p(i, j)}{1+\|i-j\|}$ |

Uniformity (also called Energy) estimates image as a constant.
Homogeneity measures the spatial closeness of the element distribution in g.


## Image characterization "Uniformity, homogeneity" (3)

Characterization with uniformity and homogeneity

|  | Equation |
| :---: | :---: |
| Uniformity | $\sum_{i=0}^{2^{q}-12^{q}-1} \sum_{j=0} p(i, j)^{2}$ |
| Homogeneity | $\sum_{i=0}^{2^{q}-12^{q}-1} \sum_{j=0} \frac{p(i, j)}{1+\|i-j\|}$ |

Uniformity (also called Energy) estimates image as a constant.
Homogeneity measures the spatial closeness of the element distribution in g.


| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Image characterization "Correlation" (1)

Characterization with correlation

|  | Equation |
| :---: | :---: |
| Correlation | $\sum_{i=0}^{2^{q}-12^{2^{q}-1}} \sum_{j=0} \frac{\left(i-m_{r}\right)\left(j-m_{c}\right)}{\sigma_{r} \sigma_{c}} p(i, j)$ |


|  | Equation |
| :---: | :---: |
| Row-mean and <br> standard deviation | $m_{r}=\sum_{i=0}^{2^{q}-1} i \sum_{j=0}^{2^{q}-1} p(i, j) \quad \sigma_{r}^{2}=\sum_{i=0}^{2^{q}-1}\left(i-m_{r}\right)^{2^{2^{q}-1}} \sum_{j=0} p(i, j)$ |
| Column-mean and <br> standard deviation | $m_{c}=\sum_{j=0}^{2^{q}-1} j \sum_{i=0}^{2^{q}-1} p(i, j) \quad \sigma_{c}^{2}=\sum_{j=0}^{2^{q}-1}\left(j-m_{c}\right)^{2^{2}} \sum_{i=0}^{2^{q}-1} p(i, j)$ |

Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1 corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.


## Image characterization "Correlation" (2)

Characterization with correlation

|  | Equation |
| :---: | :---: |
| Correlation | $\sum_{i=0}^{2^{q}-12^{2^{q}-1}} \sum_{j=0} \frac{\left(i-m_{r}\right)\left(j-m_{c}\right)}{\sigma_{r} \sigma_{c}} p(i, j)$ |


|  | Equation |
| :---: | :---: |
| Row-mean and <br> standard deviation | $m_{r}=\sum_{i=0}^{2^{q}-1} i \sum_{j=0}^{2^{q}-1} p(i, j) \quad \sigma_{r}^{2}=\sum_{i=0}^{2^{q}-1}\left(i-m_{r}\right)^{2^{2}} \sum_{j=0}^{2^{q}-1} p(i, j)$ |
| Column-mean and <br> standard deviation | $m_{c}=\sum_{j=0}^{2^{q}-1} j \sum_{i=0}^{2^{q}-1} p(i, j) \quad \sigma_{c}^{2}=\sum_{j=0}^{2^{q}-1}\left(j-m_{c}\right)^{2^{q}-1} \sum_{i=0} p(i, j)$ |

Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1 corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.


## Image characterization "Correlation" (3)

Characterization with correlation

|  | Equation |
| :---: | :---: |
| Correlation | $\sum_{i=0}^{2^{q}-12^{q}-1} \sum_{j=0} \frac{\left(i-m_{r}\right)\left(j-m_{c}\right)}{\sigma_{r} \sigma_{c}} p(i, j)$ |


|  | Equation |
| :---: | :---: |
| Row-mean and <br> standard deviation | $m_{r}=\sum_{i=0}^{2^{q}-1} i \sum_{j=0}^{2^{q}-1} p(i, j) \quad \sigma_{r}^{2}=\sum_{i=0}^{2^{q}-1}\left(i-m_{r}\right)^{2^{2}} \sum_{j=0}^{2^{q}-1} p(i, j)$ |
| Column-mean and <br> standard deviation | $m_{c}=\sum_{j=0}^{2^{q}-1} j \sum_{i=0}^{2^{q}-1} p(i, j) \quad \sigma_{c}^{2}=\sum_{j=0}^{2^{q}-1}\left(j-m_{c}\right)^{2^{q}-1} \sum_{i=0} p(i, j)$ |

Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1 corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.
e.g.
k (intensity levels) - j

in a band image with pixels that cooccur the correlation reaches the "maximum"-1


## Image characterization "Correlation" (4)

Characterization with correlation

|  | Equation |
| :---: | :---: |
| Correlation | $\sum_{i=0}^{2^{q}-12^{q}-1} \sum_{j=0} \frac{\left(i-m_{r}\right)\left(j-m_{c}\right)}{\sigma_{r} \sigma_{c}} p(i, j)$ |


|  | Equation |
| :---: | :---: |
| Row-mean and standard deviation | $m_{r}=\sum_{i=0}^{2^{q}-1} i \sum_{j=0}^{2^{q}-1} p(i, j) \quad \sigma_{r}^{2}=\sum_{i=0}^{2^{q}-1}\left(i-m_{r}\right)^{2^{2}} \sum_{j=0}^{q^{-}-1} p(i, j)$ |
| Column-mean and standard deviation | $m_{c}=\sum_{j=0}^{2^{q}-1} j \sum_{i=0}^{2^{q}-1} p(i, j) \quad \sigma_{c}^{2}=\sum_{j=0}^{2^{q}-1}\left(j-m_{c}\right)^{2} \sum_{i=0}^{2^{q}-1} p(i, j)$ |

Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1 corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.
e.g.
k (intensity levels) - j

in a band image with pixels that don't co-occur the correlation reaches the "maximum" 1


## Histogram-based operators

1. Fundamentals of histogram-based operators
2. Some histogram-based operators
2.1. Image characterization
2.2. Optimum thresholding
2.3. Histogram equalization
2.4. Histogram-based distances
3. Further investigations

| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Optimum thresholding "Otsu's method" (1)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu's method is optimum in the sense that it maximizes the between-class variance.


## Optimum thresholding "Otsu's method" (2)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu's method is optimum in the sense that it maximizes the between-class variance.

|  | Equation |
| :---: | :---: |
| Probability density <br> function (i.e. <br> normalized histogram) | $\sum_{k=0}^{2^{q}-1} p(k)=1$ |
| Mean | $m=\sum_{k=0}^{2^{q}-1} k \times p(k)$ |


|  | Equation |
| :---: | :---: |
| Probability $\mathbf{P}_{\mathbf{i}}$ of a <br> class $\mathbf{C}_{\mathbf{i}}$ to have a pixel <br> assigned to it | $P_{1}=\sum_{k=0}^{t} p(k) \quad P_{2}=\sum_{k=t+1}^{2^{q}-1} p(k) \quad P_{1}+P_{2}=1$ |
| Mean intensity value <br> of the pixel assigned to <br> class $\mathbf{C}_{\mathbf{i}}$ | $m_{1}=\frac{1}{P_{1}} \sum_{k=0}^{t} k \times p(k) \quad m_{2}=\frac{1}{P_{2}} \sum_{k=t+1}^{2^{q}-1} k \times p(k)$ |
| $P_{1} \times m_{1}+P_{2} \times m_{2}=m$ |  |



## Optimum thresholding "Otsu's method" (3)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu's method is optimum in the sense that it maximizes the between-class variance.

|  | Equation |
| :---: | :---: |
| Variance | $\sigma^{2}=\sum_{k=0}^{2^{4}-1}(k-m)^{2} \times p(k)$ |


|  | Equation |
| :---: | :---: |
| The $\mathrm{C}_{\mathrm{i}}$ variance | $\sigma_{1}^{2}=\frac{1}{P_{1}} \sum_{k=0}^{t}\left(k-m_{1}\right)^{2} \times p(k) \quad \sigma_{2}^{2}=\frac{1}{P_{2}} \sum_{k=t+1}^{2^{q}-1}\left(k-m_{2}\right)^{2} \times p(k)$ |
| The between-class and intra-class variances | $\begin{gathered} \sigma_{B}^{2}=P_{1}\left(m_{1}-m\right)^{2}+P_{2}\left(m_{2}-m\right)^{2} \quad \sigma_{I}^{2}=P_{1} \sigma_{1}^{2}+P_{2} \sigma_{2}^{2} \\ \sigma^{2}=\sigma_{B}^{2}+\sigma_{I}^{2} \end{gathered}$ |
| Goodness of the threshold | $\eta=\frac{\sigma_{B}^{2}}{\sigma^{2}}$ |

$\xrightarrow[l]{\text { Clal }}$

## Optimum thresholding "Otsu's method" (4)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu's method is optimum in the sense that it maximizes the between-class variance.


## Optimum thresholding "Otsu's method" (5)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu's method is optimum in the sense that it maximizes the between-class variance.
e.g. Implementation in Matlab of the Otsu algorithm

```
% probability density
k}=[\begin{array}{lllllllll}{0}&{1}&{2}&{3}&{4}&{5}&{6}&{7}\end{array}]
h}=[\begin{array}{lllllllll}{40}&{30}&{20}&{10}&{20}&{30}&{40}&{50}\end{array}]
p=h / sum(h); sum(p);
% probability
p1 = zeros(1,7); p2 = zeros(1,7);
for t=1:7
    p1(t) = sum(p(1:t));
    p2(t) = sum(p(t+1:8));
end
p1 + p2;
% global mean
m = sum(k.* p);
% mean
m1 = zeros(1,7); m2 = zeros(1,7);
for t=1:7
    m1(t) = sum(k(1:t).*p(1:t)) / p1(t);
    m2(t) = sum(k(t+1:8).*p(t+1:8)) / p2(t);
end
(p1.*m1 + p2.*m2)-m;
```

```
% global variance
```

% global variance
v}=\operatorname{sum}(((k-m)\cdot^2) .* p )
v}=\operatorname{sum}(((k-m)\cdot^2) .* p )
% variance
% variance
v1 = zeros(1,7); v2 = zeros (1,7);
v1 = zeros(1,7); v2 = zeros (1,7);
for t=1:7
for t=1:7
v1(t) = sum ( ((k(1:t)-m1(t)).^2).*p(1:t) ) / p1(t);
v1(t) = sum ( ((k(1:t)-m1(t)).^2).*p(1:t) ) / p1(t);
v2(t) = sum ( ((k(t+1:8)-m2(t)).^2).*p(t+1:8)) / p2(t
v2(t) = sum ( ((k(t+1:8)-m2(t)).^2).*p(t+1:8)) / p2(t
end
end
% i and b variances
% i and b variances
vb = zeros(1,7); vi = zeros(1,7);
vb = zeros(1,7); vi = zeros(1,7);
for t=1:7
for t=1:7
vb}(t)=p1(t)*(m1(t)-m)^2 + p2(t)* (m2(t)-m)^2
vb}(t)=p1(t)*(m1(t)-m)^2 + p2(t)* (m2(t)-m)^2
vi(t) = p1(t)*v1(t) + p2(t)*v2(t);
vi(t) = p1(t)*v1(t) + p2(t)*v2(t);
end
end
(vi+vb) -v;
(vi+vb) -v;
% goodness
% goodness
g=zeros(1,7); g=vb / v; [Y,I] = max(g);

```
g=zeros(1,7); g=vb / v; [Y,I] = max(g);
```


## Histogram-based operators

1. Fundamentals of histogram-based operators
2. Some histogram-based operators
2.1. Image characterization
2.2. Optimum thresholding
2.3. Histogram equalization
2.4. Histogram-based distances
3. Further investigations

| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Histogram equalization (1)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.


## Histogram equalization (2)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

|  | Equation |
| :--- | :---: |
| The input <br> histogram $\boldsymbol{r}$ | $\sum_{k=0}^{2^{q}-1} r(k)$ |
| The output <br> (equalized) <br> histogram $\boldsymbol{s}$ | $\sum_{k=0}^{2^{q}-1} s(k)$ |


|  | Equation | Comments |
| :--- | :--- | :--- |
| Size equality | $\sum_{k=0}^{2^{q}-1} r(k)=\sum_{k=0}^{2^{q}-1} s(k)=N M$ | Since the size is preserved in the <br> input and output images, we have |
| Mapping rule for cumulative <br> histograms $r(k \in[0, u])$, <br> $s(k \in[0, v])$ | $\sum_{k=0}^{u} r(k)=\sum_{k=0}^{v} s(k)$ | The cumulative input histogram $r$ <br> up to level $u$ should be transformed <br> to cover up to level $v$ in the output <br> cumulative histogram $s$ |
| Uniform output discrete <br> function s(k) | $s(k)=\frac{N M}{2^{q}-1} \forall k$ | Since the output histogram $s$ is <br> uniformly flat, we have |
| Uniform cumulative <br> histograms $r(k \in[0, u])$, <br> $s(k \in[0, v])$ | $\sum_{k=0}^{v} s(k)=v \times \frac{N M}{2^{q}-1}=\sum_{k=0}^{u} r(k)$ | The cumulative histograms $r, s$ of <br> output and input images are then <br> equal to |
| Mapping function | $v=\frac{\left(2^{q}-1\right)}{N M} \sum_{k=0}^{u} r(k)=\left(2^{q}-1\right) \sum_{k=0}^{u} p_{r}(k)$ | The mapping function, for a pixel <br> at level $v$, from the input pixel at <br> level $u$, is then |

## Histogram equalization (3)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

|  | Equation |
| :--- | :--- |
| The input <br> histogram $\boldsymbol{r}$ | $\sum_{k=0}^{2^{q}-1} r(k)$ |
| Mapping function | $p_{r}(k)=\frac{r(k)}{N M}$ |
| $T(u)=\left(2^{q}-1\right) \sum_{k=0}^{u} p_{r}(k)$ |  |
| The output <br> (equalized) <br> histogram $\boldsymbol{s}$ | $\sum_{k=0}^{2^{q}-1} s(k)$ |

## Histogram equalization (4)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

|  | Equation |
| :--- | :--- |
| The input <br> histogram $\boldsymbol{r}$ | $\sum_{k=0}^{2^{q}-1} r(k)$ |
| Mapping function | $p_{r}(k)=\frac{r(k)}{N M}$ |
| $T(u)=\left(2^{q}-1\right) \sum_{k=0}^{u} p_{r}(k)$ |  |
| The output <br> (equalized) <br> histogram $\boldsymbol{s}$ | $\sum_{k=0}^{2^{q}-1} s(k)$ |

e.g. to achieve the histogram equalization on the following $r$ histogram
(1) we compute $\mathrm{p}_{\mathrm{r}}$ first

| $\boldsymbol{k}$ | $\boldsymbol{r}(\boldsymbol{k})$ | $\boldsymbol{p}_{\boldsymbol{r}}(\boldsymbol{k})$ |
| :---: | :---: | :---: |
| 0 | 790 | 0,19 |
| 1 | 1023 | 0,25 |
| 2 | 850 | 0,21 |
| 3 | 656 | 0,16 |
| 4 | 329 | 0,08 |
| 5 | 245 | 0,06 |
| 6 | 122 | 0,03 |
| 7 | 81 | 0,02 |

$$
\sum_{k=0}^{2^{q}-1} r(k)=4096=64^{2}
$$

## Histogram equalization (5)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

|  | Equation |
| :--- | :--- |
| The input <br> histogram $\boldsymbol{r}$ | $\sum_{k=0}^{2^{q}-1} r(k)$ |
| Mapping function | $p_{r}(k)=\frac{r(k)}{N M}$ |
| $T(u)=\left(2^{q}-1\right) \sum_{k=0}^{u} p_{r}(k)$ |  |
| The output <br> (equalized) <br> histogram $\boldsymbol{s}$ | $\sum_{k=0}^{2^{q}-1} s(k)$ |

e.g. to achieve the histogram equalization on the following $r$ histogram
(2) when $\mathrm{p}_{\mathrm{r}}$ known, we compute $\mathrm{T}(\mathrm{u})$

| $\boldsymbol{k}$ | $\boldsymbol{p}_{\boldsymbol{r}}(\boldsymbol{k})$ |
| :---: | :---: |
| 0 | 0,19 |
| 1 | 0,25 |
| 2 | 0,21 |
| 3 | 0,16 |
| 4 | 0,08 |
| 5 | 0,06 |
| 6 | 0,03 |
| 7 | 0,02 |


| $\boldsymbol{u}$ | $T(u)$ | $=T(2)=7 \sum_{k=0}^{2} p_{r}(k)=7 \times(0,19+0,25+0,21)$ |
| :---: | :---: | :---: |
| 0 | 1,33 |  |
| 1 | 3,08 |  |
| 2 | 4,55 |  |
| 3 | 5,67 |  |
| 4 | 6,23 |  |
| 5 | 6,65 | $=T(5)=7 \sum^{5} p_{r}(k)$ |
| 6 | 6,86 |  |
| 7 | 7 |  |

## Histogram equalization (6)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

|  | Equation |
| :--- | :--- |
| The input <br> histogram $\boldsymbol{r}$ | $\sum_{k=0}^{2^{q}-1} r(k)$ |
| Mapping function | $p_{r}(k)=\frac{r(k)}{N M}$ |
| $T(u)=\left(2^{q}-1\right) \sum_{k=0}^{u} p_{r}(k)$ |  |
| The output <br> (equalized) <br> histogram $\boldsymbol{s}$ | $\sum_{k=0}^{2^{q}-1} s(k)$ |

e.g. to achieve the histogram equalization on the following $r$ histogram
(3) $T(u)$ have fractions because they are generated by summing probabilities, so $T^{\prime}(u)$ round them to the nearest integers

| $\boldsymbol{k}$ | $\boldsymbol{p}_{\boldsymbol{r}}(\boldsymbol{k})$ |
| :---: | :---: |
| 0 | 0,19 |
| 1 | 0,25 |
| 2 | 0,21 |
| 3 | 0,16 |
| 4 | 0,08 |
| 5 | 0,06 |
| 6 | 0,03 |
| 7 | 0,02 |


| $\boldsymbol{u}$ | $\boldsymbol{T}(\boldsymbol{u})$ | $\boldsymbol{T}(\boldsymbol{u})$ |
| :---: | :---: | :---: |
| 0 | 1,33 | 1 |
| 1 | 3,08 | 3 |
| 2 | 4,55 | 5 |
| 3 | 5,67 | 6 |
| 4 | 6,23 | 6 |
| 5 | 6,65 | 7 |
| 6 | 6,86 | 7 |
| 7 | 7 | 7 |

## Histogram equalization (7)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

|  | Equation |
| :--- | :--- |
| The input <br> histogram $\boldsymbol{r}$ | $\sum_{k=0}^{2^{q}-1} r(k)$ |
| Mapping function | $p_{r}(k)=\frac{r(k)}{N M}$ |
| $T(u)=\left(2^{q}-1\right) \sum_{k=0}^{u} p_{r}(k)$ |  |
| The output <br> (equalized) <br> histogram $\boldsymbol{s}$ | $\sum_{k=0}^{2^{q}-1} s(k)$ |

e.g. to achieve the histogram equalization on the following $r$ histogram
(4) when T'(u) known, we can obtain s

| $\boldsymbol{k}$ | $\boldsymbol{r}(\boldsymbol{k})$ |
| :---: | :---: |
| 0 | 790 |
| 1 | 1023 |
| 2 | 850 |
| 3 | 656 |
| 4 | 329 |
| 5 | 245 |
| 6 | 122 |
| 7 | 81 |


| $\boldsymbol{u}$ | $\boldsymbol{T}^{\prime}(\boldsymbol{u})$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 3 |
| 2 | 5 |
| 3 | 6 |
| 4 | 6 |
| 5 | 7 |
| 6 | 7 |
| 7 | 7 |


| $k$ | $s(k)$ | $=r(0)$ |
| :---: | :---: | :---: |
| 0 | 0 |  |
| 1 | 790 |  |
| 2 | 0 | $=r(1)$ |
| 3 | 1023 |  |
| 4 | 0 |  |
| 5 | 850 | $=r(2)$ |
| 6 | 985 | $=r(3)+r(4)=656+329$ |
| 7 | 448 | $=r(5)+r(6)+r(7)$ |
|  |  | $=245+122+81$ |

## Histogram equalization (8)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

|  | Equation |
| :--- | :--- |
| The input <br> histogram $\boldsymbol{r}$ | $\sum_{k=0}^{2^{q}-1} r(k)$ |
| Mapping function | $p_{r}(k)=\frac{r(k)}{N M}$ |
| $T(u)=\left(2^{q}-1\right) \sum_{k=0}^{u} p_{r}(k)$ |  |
| The output <br> (equalized) <br> histogram $\boldsymbol{s}$ | $\sum_{k=0}^{2^{q}-1} s(k)$ |

e.g. to achieve the histogram equalization on the following $r$ histogram (5) and then $p_{s}$

| $\boldsymbol{k}$ | $\boldsymbol{r}(\boldsymbol{k})$ | $\boldsymbol{p}_{r}(\boldsymbol{k})$ |
| :---: | :---: | :---: |
| 0 | 790 | 0,19 |
| 1 | 1023 | 0,25 |
| 2 | 850 | 0,21 |
| 3 | 656 | 0,16 |
| 4 | 329 | 0,08 |
| 5 | 245 | 0,06 |
| 6 | 122 | 0,03 |
| 7 | 81 | 0,02 |


| $\boldsymbol{u}$ | $\boldsymbol{T}^{\prime}(\boldsymbol{u})$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 3 |
| 2 | 5 |
| 3 | 6 |
| 4 | 6 |
| 5 | 7 |
| 6 | 7 |
| 7 | 7 |


| $\boldsymbol{k}$ | $\boldsymbol{s}(\boldsymbol{k})$ | $\boldsymbol{p}_{\boldsymbol{s}}(\boldsymbol{k})$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 790 | 0,19 |
| 2 | 0 | 0 |
| 3 | 1023 | 0,25 |
| 4 | 0 | 0 |
| 5 | 850 | 0,21 |
| 6 | 985 | 0,24 |
| 7 | 448 | 0,11 |

## Histogram equalization (9)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

> e.g. the final plot



## Histogram-based operators

1. Fundamentals of histogram-based operators
2. Some histogram-based operators
2.1. Image characterization
2.2. Optimum thresholding
2.3. Histogram equalization
2.4. Histogram-based distances
3. Further investigations

| Type | Methods | Application |
| :---: | :--- | :---: |
| Image <br> characterization | Mean, standard deviation |  |
|  | Contrast |  |
|  | Moments |  |
|  | Co-occurrence matrix |  |
|  | Uniformity, homogeneity |  |
|  | Correlation | Enhancement, <br> segmentation |
| Thresholding | Otsu's method |  |
| Histogram <br> equalization | Histogram equalization | Comparison, <br> retrieval, spotting |
| Histogram-based <br> distance | Minkowski, $\chi^{2}$, <br> Kulback-Leibler and Jeffrey |  |

## Histogram-based distances (1)

Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are $h_{A}$ and $h_{B}$, we define an histogram-based distance as $D\left(h_{A}, h_{B}\right)$ between the histograms $h_{A}$ and $h_{B}$.

Example Usage:
Tracking Image retrieval Registration Detection Many more ...


## Histogram-based distances (2)

Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are $h_{A}$ and $h_{B}$, we define an histogram-based distance as $D\left(h_{A}, h_{B}\right)$ between the histograms $h_{A}$ and $h_{B}$.
e.g. within bin-by-bin distances, only pairs of bins in the two histograms that have the same index are matched.

Minkowski distance: is a metric on Euclidean space which can be considered as a generalization of both the Euclidean distance and the Manhattan distance.

$$
D_{p}(A, B)=\left[\sum_{k=0}^{2^{q}-1}\left|h_{A}(k)-h_{B}(k)\right|^{p}\right]^{1 / p}
$$

| $\mathbf{p}$ | $\mathbf{D}(\mathbf{A}, \mathbf{B})$ |
| :---: | :--- |
| $-\propto$ | min distance |
| $\mathbf{1}$ | Manhattan distance |
| $\mathbf{2}$ | Euclidean distance |
| $+\propto$ | max distance |

$\chi^{2}$ statistics: measures how unlikely it is that one distribution was drawn from the population represented by the other.

$$
\begin{aligned}
& D_{\chi^{2}}(A, B)=\sum_{k=0}^{2^{q-1}} \frac{\left(h_{A}(k)-m(k)\right)^{2}}{m(k)} \\
& m(k)=\frac{h_{A}(k)+h_{B}(k)}{2}
\end{aligned}
$$

## Histogram-based distances (3)

Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are $h_{A}$ and $h_{B}$, we define an histogram-based distance as $D\left(h_{A}, h_{B}\right)$ between the histograms $h_{A}$ and $h_{B}$.
e.g. within bin-by-bin distances, only pairs of bins in the two histograms that have the same index are matched.

Kullback-Leibler (KL) divergence measures the amount of added information needed to encode image $A$ based on the histogram of image $B$. The KL divergence is not symmetric $D_{K L}(A, B) \neq D_{K L}(B, A)$, and then not a distance

Jeffrey distance: is a modification of the K-L divergence that is numerically stable, symmetric (then a distance) and robust with respect to noise and the size of histogram bins

$$
\begin{aligned}
& D_{J}(A, B)=\sum_{k=0}^{2^{q}-1} h_{A}(k) \log \frac{h_{A}(k)}{m(k)}+h_{B}(k) \log \frac{h_{B}(k)}{m(k)} \\
& m(k)=\frac{h_{A}(k)+h_{B}(k)}{2}
\end{aligned}
$$

## Histogram-based operators

1. Fundamentals of histogram-based operators
2. Some histogram-based operators
2.1. Image characterization
2.2. Optimum thresholding
2.3. Histogram equalization
2.4. Histogram-based distances
3. Further investigations

## Further investigations

- Other characterization methods / features (e.g. the Intensity Variation Number)
- Multiple thresholding (extension of the Otsu method)
- Histogram specification
- Comparison of histograms (cross-bin measures)
- Etc.

