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Fundamentals of histogram-based operators (1)

The histogram of a digital image is a representation of its intensity distribution such as

The image The histogram
I(i,j))=v  1is a discrete function h(k) = n, is a discrete function
1,j the coordinates of a pixel k the intensity value
ie[0,N[andj € [0, M] ke[0, L] is the intensity level range
\ is the pixel intensity value with n, is the number of pixels in
0<v<L . the image of intensity k
MxN is the size of the array (in pixels) D h(k)=NxM
k=0
e.g.
Raster with Histogram with Numbers of pixels
N=3 I I ke[0, 7] .
M=4 2| 0343 — 7
NM=12 - [5]2 0[4] N 2 k=12 3
q=3 el 2
0<1(,j)<7 apixe
@) 1(1,2)=3 1 -

Int it
0123 45 6N Lemsty
levels

a pixel distribution,
h(k=3)=3
i.e. the number of “3”
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Fundamentals of histogram-based
operators (2)

The basic image histogram is The normalized image histogram is
Numbers of pixels h(k)=n, Numbers of pixels p(k)= h(k%vx M
4 1 4/12 1
3 3/12
2 2/12
1 1/12
» Intensity » Intensity

01234567 0 01234567

levels levels

p(k) defines the probability to get the value k
in the image I

Raster with

N=3 121114
M=4 21033
NxM=12 3121012
q=3

0<13i,j)<7

The accumulated image histogram is

Numbers of pixels

12/12
11/12
10/12
9/12
8/12
7/12
6/12
5/12
4/12
3/12
2/12
1/12

A

0

0123450607

c(k) = Z p(p)

Intensity
levels

c(k) defines the probability to get the value

less or equal to k in the image 1



Fundamentals of histogram-based operators (3)

Random pixel permutation
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n-colors images result in
n-bins histograms

7 histograms are global
1 representations excluding
| image topology



Fundamentals of histogram-based operators (4)

Histogram-based operations include any statistical
processes of intensity distribution. They could be based on

single or multiple entries.

Typical results include

Typical results are distances

1 h
. Histogram-
. .| Histogram | £t R
image [ . »  based » results
extraction .
operations
- an image
- some features
] 1 hl
image .| Histogram
& extraction
»| Histogram-
based »  results
"| operations
image .| Histogram
& extraction
1, h,

e.g.
Numbers of pixel
A
4
1] 2 4 3
2 (0 3|— 2
32 4 1
01234 Intensity
levels
To rank intensity
levels by shifting
one value k=2 to
k=4
Numbers of pixel
A
4
1]2 4 3
210 3| —— 9
3 4 < 4 1
01234 Intensity
shifted value levels



Fundamentals of histogram-based operators (5)

Histogram-based operations include any statistical
processes of intensity distribution. They could be based on
single or multiple entries.

1 h
. Histogram-
. Histogram
image [ gr »  based » results
extraction .
operations
Typical results include
- an image
- some features
] 1 hl
image .| Histogram
& extraction
»| Histogram-
based »  results
"| operations
image .| Histogram
extraction Typical results are distances

Histogram-based operations are related to

DN N NN

image characterization (or features extraction),
automatic thresholding,

image enhancement (histogram equalization),
image matching (histogram-based distances),
etc.
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting




Characterization with mean and standard deviation

Image characterization
“Mean and standard deviation”

From raster

From histogram

From normalized

histogram
L
N-1M-1 L
Mean 1. ) 2 kxhiky Sk p(h)
(m) i=0 j=0 _N—M k=0
NxM %
Standard S 1 L L
deviation \/ I(l N- m z X h(k) Z(k - m)2 X p(k)
i=0 j=0 k=0 =0
©) NxM NxM

Rq. Standard deviation is also defined as the squared root of the variance o = /v

Complexity comparison of raster vs. histogram-based operations

. . | Image-based
1mage > .
operation
. Histogram-
. .| Histogram | _ &
image [ . based
extraction .
operation

access / arithmetic operations
increment add/ ) o
operations subtract multiply [ square | divide
Mean raster NxM NxM 1 0 1
Mean histogram 2xNxM 24 24 0 1
STD raster NxM 2xNxM 1 NxM 1
STD histogram 2xNxM 2x24 24 24 1

with
and  O(access) << O(arithmetic)

NxM >>21

the histogram-based operations
are most efficient.
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting
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Image characterization
“Contrast” (1)

Characterization with contrast

From standard From standard
deviation deviation (normalized)
1 o1
Contrast r=1- 5 r=l=—_
1+o 1+
(r) + 2

Contrast is the difference in visual properties that makes objects
in an image distinguishable from other objects and the
background. There are many possible definitions of contrast, the
one above is the variance-based.

Due to the large values meet for variance, a normalization of
variance with the number of square level intensity could improve
the global curvature function.

08F
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not normalized
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Image characterization
“Contrast” (2)

Characterization with contrast 7
From standard From standard 10000y
deviation deviation (normalized) sooo}
1 _ 1 1 6000 -
Contrast r=1- 5 r=1-= 2 ]
l+o 1 i
(r) + L2 2000

Contrast is the difference in visual properties that makes objects
in an image distinguishable from other objects and the Standard deviation 2108
background. There are many possible definitions of contrast, the Contrast (r) 1

one above is the variance-based.

Normalized contrast (1) 0,98

4000

Due to the large values meet for variance, a normalization of
variance with the number of square level intensity could improve
the global curvature function.

3500 -

3000 -

2500

2000

1500

1000

500

0 L L L L L
0 50 100 150 200 250

Standard deviation ¢ 457
Contrast (1) 1
Normalized contrast () 0,76
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting

14



n Moments Description

29-1

Image characterization = 3 (k=m) (k)

0 k=0

“Statistical moments™ (1) =3 0=

The 0 moment,
is still equal to one

29-1

ty = (ke —=m)x p(k)

Characterization with statistical moments

k=0 s
From histogram From normalized 1 ”_r i;ﬁ%: Ir:l)lgéen;’ro
. u z
histogram o= Z 0x p(k)=0 1
k=0
201 1 271
Moment (k - m) x h(k) n
/Lln :Z /’ln ZZ(k_m) Xp(k) 21 sd
() 5N 2 | = TlemPptn |
=0
Statistical moments are the simplest approach to describe 3 1 = 2421 ( e m)3 % p(k) The 3% moment
the image content, they are mainly applied to textures. A measure the skewness
= The 4™ moment
4
& 4 Hy = ;(k B m) x p(k) measures the flatness
k 0 1 2 3 4 5 6 7
201 pixel
h(k) olo]o|8|of|o]o]o =k pl) =3 ber
p(k) ol ol o 1 olol ol o pary constant @mage
5 null variance
(k - m) 1 1 1 1 1 1 1 1 1 Ho null skewness
(k—m) 3l 2(-1(o0o 1 |2(3]4 0 | null flatness
(k—my| |9 4|1 ]o]|1]4]09]4 0 | w s
(k—m)| |27] 8| -1 0] 1] 8]27]64 0 | ps intensity
ceve
(k—m)4 81 |16 | 1 0 1 16 | 81 | 256 0 My
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Image characterization
“Statistical moments” (2)

Characterization with statistical moments

From histogram

From normalized
histogram

Moment

(1)

H,

X (k—m) xh(k)
_kzz(; NxM

291

t, = (k—m)' x p(k)

k=0

Statistical moments are the simplest approach to describe

the image content, they are mainly applied to textures.

m=Y"kxp(k)=3.5

e.g.

K 0|1 |2|3|4]|5]|6]|7
h(k) 10|l10f10f[10]10]10]10] 10 =
p(k) 8| 18| 18| U8 | 1/8| 1/8 | 1/8 | 1/8 P
(k=m)| | U1 |01 |1 |1]1]1 T T
(k—m)| |-3.5]-25|-1.5]-05]05[15]25]35 0 | m
(k—mY| |12.5]6.25|2.25[0.25]0.25[2.25|6.25[12.25 [5.25| u,
(k—m)| [42,8]-15-6-3.3|0.12[0.12] 3.3 [15.6]|42.8 0 | u
(k—m)'| [150| 39| 5 [0.06[0.06] 5 | 39 [150| |48.6| p,

n Moments Description
> (k-n)
o = 2 (k=m) x pk)
0 ’ kZ::; The 0t moment,
20 is still equal to one
= pk)=1
k=0
291
= (k=m)x p(k)
1 k=0 The 15 moment,
= is still equal to zero
=2 0xp(k)=0
k=0
291
d
_ k—mVx n(k The 259 moment
2 = kzz(‘;( ) p(k) is the variance
291
d
_ k—mY x n(k The 3" moment
3 Hs kzz(‘;( ) p(k) measure the skewness
4 3 3 ' 4 i The 4 moment
Hy = ;( —m ) x p(k) measures the flatness
pixel
number
gradient image
strong variance
null skewness
strong flatness
intensity
level
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Image characterization
“Statistical moments” (3)

Characterization with statistical moments

From histogram

From normalized
histogram

Moment 2‘121 (k - m)n x h(k)

(1) = k=0 NxM

291

t, = (k—m)' x p(k)

k=0

Statistical moments are the simplest approach to describe
the image content, they are mainly applied to textures.

e.g.
K o1 |[2]3|4|5]|6]7
h(k) 70 | 60 | 50 | 40|30 |20 |10 |00]| zzl kx p(k) =2
pk) | |7/28|6/28|5/28|4/28|3/28|2/28(1/28 0 P
(k=m)| | U1 |01 |1 |1]1]1 T T
(k—m)| | 2101 ]2]3]4]¢4 0 | m
(k—my| | 4] 1|01 ]4]9]16]2s 3w
(k-mP| | -8 -1]0 ]| 1|8]27]64]125 3|
(k—m)' 6 1|0 1 [16]81 [256]625 21 | py

n Moments Description
29 71( )O
Ho =D \k—m) x p(k)
0 ’ kZ::; The 0t moment,
20 is still equal to one
o =Y p(k)=1
=0
291
=2 (k—m)x p(k)
k=0 The 15 moment,
1 = is still equal to zero
=2 0xp(k)=0
k=0
29-1
_ k—mV x p(k The 25 moment
2 = kzz(‘;( ) p(k) is the variance
29-1
_ k—mV x ok The 34 moment
3 Hs ;( ) p(k) measure the skewness
4 3 3 ' 4 i The 4 moment
Hy = ;( —m ) x p(k) measures the flatness
pixel
number

weighted gradient image
medium variance
strong skewness
medium flatness

intensity
level
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Image characterization
“Statistical moments” (4)

Characterization with statistical moments

From histogram

From normalized

histogram

Moment

(1)

H,

29-1

-3

k=0

(e —=m)" x h(k)

NxM

291

k=0

t, = (k—m)' x p(k)

Statistical moments are the simplest approach to describe

the image content, they are mainly applied to textures.

m=>Ykxp(k)=4

e.g.
k 0|1 |23 [4]|5]6]|7

h(k) 0l 0] 0 |[40]30]|20]10][00 =

p(k) 0| 0| o [410[3/10]{2/10|1/10| © =0
(k=m)| | 01|01 |1 |1]1]1 T T
(k-m)| | 4| 3|2]-1]0]|1]2]3 0 | m
(k—my| |16 9|4 |1 [0]1]4]09 1|
(k—m)| |-64| 27| -8 |-1]0 ]| 1]38][27 0.6 | s
(k—m)'| [256]|81 16| 1 |0 | 1 [16]S8l 22 |

n Moments Description
> (k-n)
Hy = Q \k—m) x p(k)
0 ’ kZ::; The 0t moment,
20 is still equal to one
=, p(k)=1
=0
291
=2 (k—m)x p(k)
k=0 The 15 moment,
1 = is still equal to zero
#=2,0x p(k)=0
k=0
291
sd
_ k—m)V x n(k The 2%¢ moment
2 = kzz(‘;( ) p(k) is the variance
291
rd
_ k—mY x p(k The 3™ moment
3 #s kzz(‘;( ) p(k) measure the skewness
4 3 3 ' 4 i The 4 moment
Hy = ;( —m ) x p(k) measures the flatness
pixel
number

band weighted gradient image
weak variance
weak skewness
weak flatness

[
>

intensity
level
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Image characterization

“Statistical moments” (5)

2500

600

2000+

1500 -

1000 -

500 -

300

500 -

400 -

300+

200+

100+

I
100

I
150

I
200

L
250

300

n value scale
[TH 1 100
V8 0 10°
[V 5.86 10
3 -32.07 103
W | 6720.60 10
n value scale
TN 1 100
[N 0 10°
K 0,96 103
VRS 23,05 103
Wy | 2764.90 103
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting
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Image characterization
“Entropy” (1)

Characterization with Entropy

From histogram From normalized
histogram

h(k 291
Entropy quh(k)xlogb( <%4><N) =2 p(k)xlog, (p(k))
@ |- =0
o MxN

b is the base of the logarithm, common value is 2

Entropy measures the randomness of the image.

Entropy of two variables (x,y) with b=2 (log,) Max Entropy values (equiprobability) of n variables with b=2 (log,)
and x=p0) y=pl)=1-x

Entropy The maximum is obtained for Entropy(I)
1 4 the equiprobability case. q“ o
| e==) p(k)xlog,(p(k))
k=0
e=-log, (y q)
e=—log,(1)+log,(27)
_ e=gxlog,(2)=¢
of \ 1
0 1 "~ x=Probability
0 » The quantification
e=—(xxlog, (x)+(1-x)xlog,(1-x)) 1 q parameter q

21



Image characterization

“Entropy” (2)

Characterization with Entropy

Entropy(I)

4

q

From histogram From normalized
histogram
h(k) 201
En:r;)py quh(k)xlogb( %MXN) - Zp(k)XIOgb(P(k))
e - =
pn MxN =0 )

b is the base of the logarithm, common value is 2

Max Entropy values (equiprobability)

» The quantification

Entropy measures the randomness of the image.

e.g.
k 0 1 2 3 4 5 6 7 res
h(k) 010wl w0] [0 pixelnumber
p(K) g | s g s |us|us|us]is 1| sum of probability
log,(p®)| [3 ]33] a3]3]3]3]=3 3 Entropy (c)

pixel
number

q parameter q

gradient image

max entropy

[

intensity
level

22



Image CharaCterlzatlon Max Entropy values (equiprobability)
“Entropy” (3) Entopy(l)

A

Characterization with Entropy q

From histogram From normalized
histogram

Entropy w-1h(k)xlog, [h(k% X N) - Zqz_lp(k) xlog, (p(k))
@ |-
o MxN 1

b is the base of the logarithm, common value is 2 0 > The quantification

1 q parameter q

Entropy measures the randomness of the image.

e.g.
pixel
number
k 0 1 2 3 4 5 6 7 res
h(k) 80 80 pixel number constant image
p(k) olofo|l1]lo]|o]o]o 1 | sum of probability null entropy
log, (P(k )) -0 | -0 | -0| 0 | -0]-0]-0|-0 0 Entropy (e) >

intensity
level
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting
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equation description
1 1 32 | Co-occurrence
Image characterization =S S g | Cooceune
i=0 j=0
(44 ‘<,
Co-occurrence matrix N
p(, j)=5"7
n Probability
A co-occurrence matrix is a distribution that is defined over an image to 22 1 estimation of g
be the distribution of co-occurring values at a given offset. ; ]Z(;p (/)=
an image I The corresponding co-occurrence matrix g The corresponding probability estimation p,
NxM = 6 x6 using a [1 1] structuring element n equals 30
q=3 (i.e. k € [0-7]
k (intensity levels) - j k (intensity levels) - j
ololelala]1 0 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7
4//0_( s | o D1 [ 4 0] 112 111 0 |1/30]2/30 1/30]1/30
/7 2 1sT7101l1 - 1 1]1 - 1 1/30]1/30
312(31alalo0 Tz 2 1 1 ;; 2 1/30 1/30
7167651 §3 ! ! Z3 1730 {1/30
6l 71511151 '% 412 1 1 '% 4 12/30 1/30 1/30
g2 51 )3 1 2 5 (1/30[3/30 1/30
6 1|1 2 ~ 6 1/30]1/30 2/30
711 21211 7 11/30 2/30}/302(1/30

using a [1 1] structuring element, 5 is neighbor of 0,
we increase the corresponding g(i,j) element in the co-
occurrence matrix
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting
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Image characterization
“Uniformity, homogeneity™ (1)

Characterization with uniformity and homogeneity

Equation

29-129-1

Uniformity z z p,j )2

i=0 j=0

29-129-1

Homogeneity M
1 Z(; jz;' 1+i—

k (intensity levels) - i

Uniformity (also called Energy) estimates image as a constant.
Homogeneity measures the spatial closeness of the element distribution in g.

c.g. pixel
k (intensity levels) - j number
01 2 3 4 5 6 7

0

1 values

2 in a constant image, —>

3 : Uniformity =12 =1 the uniformity equals intensity
the homogeneity and level

4 1 reaches the maximum 1

5 Homogeneity 1+ |1 _ 1| =1

6

7




k (intensity levels) - i

Image characterization

“Uniformity, homogeneity™ (2)

Characterization with uniformity and homogeneity

Equation

Uniformity

29-129-1

> p, )

i=0 j=0

Homogeneity

29-129-1

=0 j:01+|i_j|

e.g.

k (intensity levels) - j
0 1 2 3 4 5 6 7

Uniformity (also called Energy) estimates image as a constant.
Homogeneity measures the spatial closeness of the element distribution in g.

values
. . 24 1 ’ — 1
Uniformity X ? = ?
. 2@ 1 — 1
Homogeneity X ? =

N QN N AW N = o

pixel
number

in a gradient image,
uniformity is the inverse
of the intensity level
number, no impact is
observed on
homogeneity

A

A

»

|

intensity
level
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Equation

Uniformity

=129

ZZP(Z ok

i=0 j=0

Homogeneity

29-129-1

=0 j:01+|i_j|

k (intensity levels) - i

Image characterization
“Uniformity, homogeneity” (3)

Characterization with uniformity and homogeneity

Uniformity (also called Energy) estimates image as a constant.

Homogeneity measures the spatial closeness of the element distribution in g.

values
1Y
. . q\2 —
Uniformity [(27) X((I’)Z] _(2q)2
129 —129—
Homogeneity ;):]Z(;l+|l_]| ;}:]Z(;(y 1+|l ]| -0

e.g.
k (intensity levels) - j

0 1 2 3 4 5 6 7
of1 )1 (1)1 j11741
1111|111 ]1]1
2(1 (1 frfrpry]t
31111 f1ryp11ry1
4(1 (11t frfrpr]t1
S|t f1rptr]1
6 (1)1 (111 |1]1]1
7101|111 ]1]1

in a random image,
the uniformity equals
the homogeneity and

reaches the minimum 0

pixel
number
A

[
|

intensity
level
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting
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Characterization with correlation

k (intensity levels) - i

Image characterization
“Correlation” (1)

Equation Equation
24—124—1(i_m )(j—m ) 24_1 294 29-1 291
. - Row- d . .. 2 _ ; 2 P
Iy || et |y 2SS ) 0= 2 im) S pl )
i=0 j=0 rec i=0 =0 i=0 Jj=0

Column-mean and
standard deviation c

3
Il

N

9.1 291

i), pl,j) o’
0

j=0 =

291 291
=Y (j-m)* Y. p(i,))
/=0 i=0

Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1
corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.

e.g.
k (intensity levels) - j
01 2 3 4 5 6 7

N QN N AW N = o

values
mean m,, =3x1=3
sontert o, == x1=0
Correlation Not applicable

pixel
number

in a constant image,
the correlation can’t
be defined if the
standard deviation is
Zero

»
»

intensity
level




Characterization with correlation

Image characterization
“Correlation” (2)

Equation Equation
2q_12q_1(l_m )(j—m ) 201 29|
. : ;s Row-mean and . .

Correlation ; > <~ p(i, J) standard deviation | " = 2.1 p(, ) Z(l m ) Zp(l J)

i=0 j=0 rc i=0  j=0

Column-mean and B ==
standard deviation | ¢ = _ oj : Op(l »J) O- Z(] m ) Zp(l J)

j=0__i=

Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1
corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.

pixel
number

y

\

e.g.
k (intensity levels) - j
0 1 2 3 4 5 6 7

Oj1 (1 (111 )1f{1]|1 values
o A RRNRRRNRNEN AR 2 _1
1NN ERER R mean Mre ™75
2
o 3111|1111y 1]1 tandard
> standar o -0
g 4111|1111 ])1]1 deviation ne
O
ES|1|{1|r]rf{1f1]1]1
~ e6l1l1l1lilal1l11]1 Correlation —>0

7111 (1111 f{1]f1

[

intensity
level

in a random image,
the correlation reaches
the minimum 0




Characterization with correlation

Image characterization
“Correlation” (3)

Equation Equation
29-127-1 (i—m )(]—m ) 24_1 294 29-1 291
. ) o Row- d : - 2 N 2 .
L) iy | | Rovmensns |, S =30 S p
i=0 j=0 O 20 j=0 i=0 j=0
Column-mean and _ B S ) <, . =
standard deviation | e = 2./ p(.J) o, = Z(] —m,) Zp(l,])
j=0 =0 j=0 i=0

Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1
corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.

e.g.
k (intensity levels) - j
01 2 3 4 5 6 7
0 1 values in a band image with pixels that co-
occur the correlation reaches the

-1 1 1 “maximum” -1
_ mean m =O><—+7><—=3,5 .
=2 e 2 2 pixel
o number
i; 3 standard 21 2 1 2
£y L 0,.=(0-35)"x=+(7-3,5"x==35
2 deviation ’ 2 2
O
= 5
< (0-35)x(7-35) 1 (71-35)x(0=35) 1

6 Correlation ( /3 52)z 2 ( /3 52)Z 2 >

711 intensity

=-1 level
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Characterization with correlation

k (intensity levels) - i

Image characterization
“Correlation” (4)

Equation Equation
29-129-1(» P 291 291 29-1 29-1
, i-m \j-m) . . Row- d . - 2 : 2 .
Corvtnion| 353 M) gy || rowmanand SOyt S
i=0 j=0

i=0 =0

9.1 291

c J

j=0 =0

(3]

Column-mean and
standard deviation

m

291 291
pG,j) o>=> (j—-m)* Y p,))
j=0 i=0

Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1
corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.

e.g.
k (intensity levels) - j
0 1 2 3 4 5 6 7
in a band image with pixels that don’t
01 values .
co-occur the correlation reaches the
1 1 1 “maximum” 1
mean m, . =0x—+7x—=35 .
2 , 2 2 pixel
number
3 standard 2 1 » 1 2
4 R o..=(0-35)"x=+(7-3,5"x==35
deviation ’ 2 2
5
(0-3,5) L (7-3,5) .
6 Correlation A P
35t 2 (357 2 >
7 1 intensity

level 34



Histogram-based operators

1. Fundamentals of histogram-based operators
2.  Some histogram-based operators

2.1. Image characterization

2.2. Optimum thresholding

2.3. Histogram equalization

2.4. Histogram-based distances
3. Further investigations
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting
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Optimum thresholding
“Otsu’s method™ (1)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the
average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum
in the sense that it maximizes the between-class variance.

.
A
v
&
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Optimum thresholding
“Otsu’s method” (2)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the
average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum
in the sense that it maximizes the between-class variance.

Equation Equation
Probability density | ,i_; Probability P, of a ; 201
function (i.e. Zp(k) =1 class C; to have a pixel B = zp(k) P, = zp(k) P+P =1

normalized histogram)| =0 assigned to it k=0 k=t+1

29-1 1 < 1 2
m= kap(k) Mean intensity value m =;zkxp(k) nm, :F kap(k)
Mean k=0 of the pixel assigned to 1A= 2 k=t
class C;
i Pxm +P xm,=m
hig)

c2

1




Optimum thresholding
“Otsu’s method” (3)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the
average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum
in the sense that it maximizes the between-class variance.

Equation Equation
27-1 q_
Variance ol = Z(k - m)2 X p(k) The C; variance 0-12 — %Zt:(k —m, )2 % p(k) 022 _ i ZZ:I(k —m, )2 y p(k)
=0 1 k=0 P =
The between-class and oy = B(m —m)’ + P,(m, —m) o] =Ro} +Po;

intra-class variances 5 5 )
0" =0,+0;

Goodness of the Op
threshold o

hig)

c2

1
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Optimum thresholding
“Otsu’s method” (4)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the
average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum
in the sense that it maximizes the between-class variance.

e.g. k 0 1 2 3 4 5 6 7
h(k) 40 | 30 [ 20 | 10 | 20 [ 30 | 40 | 50
p(k) 4/24 | 3/24 [ 2/24 | 1/24 | 2/24 | 3/24 | 4/24 | 5/24
P,(k) 4/24 | 7/24 | 9/24 110/24(12/24|15/24(19/24| Na
P, (k) 20/24(17/24(15/24|14/24|12/24| 9/24 | 5/24 | Na
m, (k) 0 [042(077] 1 |15 (22| 3 | Na
m, (k) 4.60]523]5.66[585[6.1616.55| 7 | Na
o, (k) 0 [024(061| 1 ]2.08]3.62(526| Na
o, (k) 4.64127611.55[1.12(0.63(024| 0 | Na
o’y (k) 2931477 5.6 |5.73(5.44(4.44]2.63| Na
o2, (k) 3.86(2.03]1.20]|1.07|1.36|235|4.16| Na
nk) 0.43(0.70]0.8210.84 [ 0.80 | 0.65 | 0.38 | Na

29-1

mzzqz_lkXp(k)=4 o= (k-m) xp(k)=6.38

P =Y p(k)

k=0

291
P=% pk) A+P=1
k=t+1
zk (k) 1 27-1
=— xp m,=— ) kxp(k
P& 2T p Z p(k)

1 <
?z k ml Xp(k) 0'22 = —
k=0

2 k=t+1

1 29-1

Pz k=t+1

2 2 _ 2 2
—m) o, =Fo; + Po,

P xm +P,xm,=m

(k—m, ) = p(k)

2_ 2 2
o =0,+0,
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Optimum thresholding
“Otsu’s method” (5)

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the
average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum
in the sense that it maximizes the between-class variance.

e.g. Implementation in Matlab of the Otsu algorithm

% probability density % global variance
k [001 23456 7]; v = sum( ((k-m).”2) .*p );
h [40 30 20 10 20 30 40 5017,
p = h / sum(h); sum(p); % variance
vl = zeros(1l,7); v2 = zeros(1l,7);
% probability for t=1:7
pl = zeros(1l,7); p2 = zeros(l,7); vli(t) = sum ( ((k(l:t)-ml(t)).”2).*p(l:t) ) / pl(t);
for t=1:7 v2(t) = sum ( ((k(t+1:8)-m2(t))."2).*p(t+1:8) ) / p2(t
pl(t) = sum(p(l:t)); end
p2(t) = sum(p(t+1:8));
end % 1 and b variances
rl + p2; vb = zeros(l,7); vi = zeros(1l,7);
for t=1:7
% global mean vb(t) = pl(t)*(ml(t)-m)"*2 + p2(t)*(m2(t)-m)"2;
m = sum(k.*p); vi(t) = pl(t)*vli(t) + p2(t)*v2(t);
end
% mean (vi+vb) -v;
ml = zeros(l,7); m2 = zeros(l,7);
for t=1:7 % goodness
ml(t) = sum(k(l:t).*p(l:t)) / pl(t); g = zeros(1,7); g =vb / v; [Y,I] = max(qg);
m2(t) = sum(k(t+1:8).*p(t+1:8)) / p2(t);

end
(pl.*ml + p2.*m2)-m;
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Histogram-based operators

1. Fundamentals of histogram-based operators
2.  Some histogram-based operators

2.1. Image characterization

2.2. Optimum thresholding

2.3. Histogram equalization

2.4. Histogram-based distances
3. Further investigations
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting
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Histogram equalization (1)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

original

5000F
4000t
3000¢
2000¢

1000}

0

3000t

2000t

1000}

histogram

0 0.5 1

equalized histogram
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Histogram equalization (2)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

Equation Equation Comments
241 271 271 . . . .
The input Z r(k) Size equalit z r(k)= z s(k)= NM Since the size is preserved in the
histogram r = 1 y k=0 k=0 input and output images, we have
The output 20 . . The cumulative input histogram r
Mapping rule for cumulative| v
(equalized) Z s(k) hi strt))gr a%n s r(ke [0,u]) riy = s(k) up to level u should be transformed
histogram s k=0 stke [0.v]) T — py to cover up to level v in the output
’ cumulative histogram s
Uniform output discrete (k) = NM Vi Since the output histogram s is
function s(k) 71 uniformly flat, we have

Uniform cumulative
histograms r(k € [0,u]),
stke [0,v])

Zils(k):vx 2]?_41 :ir(k)

The cumulative histograms 7,s of
output and input images are then
equal to

Mapping function

_@'-Dy PVEIEN §
V= =@ DY )

r(k)

ith k)y=—=
with  p, (k) ==

v=Tw) =2 -1 p,(k)

The mapping function, for a pixel
at level v, from the input pixel at
level u, is then
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Histogram equalization (3)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an
uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

Equation
The input <
r(k
histogram r ; )
r(k)

p.(k)= N
Mapping function

T(u)=(Q2" -1 p,(k)

k=0

The output 201
(equalized) z s(k)
histogram s k=0
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Histogram equalization (4)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an
uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

Equation e.g. to achieve the histogram equalization on the following  histogram
" (1) we compute p, first
The input "k
histogram r ; )
" (k) k rk) | pH)
p.(k)=
Mapping function NM 0 o0 0.19
N 1 1023 0,25
T(u)=Q2' =Y p,(k)
k=0 2 850 0,21
The output 291 3 656 0,16
lized s(k
(cqualized) 2,5) 4 | 329 | o008
histogram s k=0
5 245 0,06
6 122 0,03
7 81 0,02

291
D" r(k) = 4096 = 64°

k=0



Histogram equalization (5)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an
uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

Equation
The input S
k
histogram r ; rk)
r(k

p =0
Mapping function

T(u)=(Q2" -1 p,(k)

k=0

The output 201
(equalized) z s(k)

histogram s

k=0

e.g. to achieve the histogram equalization on the following » histogram
(2) when p, known, we compute T(u)

k| p(K) u T(u)
0 0,19 0 1,33
1 0,25 1 3,08
2 0,21 2 4,55
3 0,16 3 5,67
4 0,08 4 6,23
5 0,06 5 6,65
6 0,03 6 6,86
7 0,02 7 7

2
=T(2)=7>. p,(k)=7x(0,19+0,25+0,21)

k=0

5
=T(5)=7)_p,(k)
k=0
=7x(0,19+0,25+0,21+0,16+0,08+0,06)
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Histogram equalization (6)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an
uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

Equation e.g. to achieve the histogram equalization on the following » histogram
o (3) T(u) have fractions because they are generated by summing probabilities,
The input Z r(k) so T’(u) round them to the nearest integers
histogram r =
7 Z03) k p(k) u T(w) T’(u)
p. (k)=
Mapping function NM 0 0,19 0 1,33 !
c 1 0,25 1 3,08 3
T(u)=(Q2" -1 p,(k)
par 2 0,21 2 4,55 5
The output 29-] 3 0,16 3 5,67 6
lized s(k
(equalized) Z *) 4 | 008 4 | 623 6
histogram s k=0
5 0,06 5 6,65 7
6 0,03 6 6,86 7
7 0,02 7 7 7




Histogram equalization (7)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an
uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

Equation
The input S
r(k
histogram r ; *)
r(k)

p.(k)= N
Mapping function

T(u)=(Q2" -1 p,(k)

k=0

The output 201
(equalized) z s(k)
histogram s k=0

e.g. to achieve the histogram equalization on the following » histogram
(4) when T’(u) known, we can obtain s

k r(k) u T’(u) k s(k)

0 790 0 1 0 0

1 1023 1 3 1 790 | =r(0)

2 850 2 5 2 0

3 656 3 6 3 1023 | =rd)

4 329 4 6 4 0

5 245 5 7 5 850 =r(2)

6 122 6 7 6 985 | =r(3)+r(4)=656+329

7 81 7 7 7 448 =r(5)+r(6)+r(7)
=245+122+81
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Histogram equalization (8)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an
uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

Equation e.g. to achieve the histogram equalization on the following  histogram
" (5) and then pq
The input "k
histogram r ; )
" (k) k rk) | p(k) u | T'(w) k st | (k)
p,\K)=
Mapping function NM 0 790 0.1 0 ! 0 0 0
C 1 1023 0,25 1 3 1 790
T(u)=Q2' =Y p,(k) 0,19
k=0 2 850 0,21 2 5 2 0 0
The output . 3 | 65 | 0,16 3 6 3| 1023 | 025
lized s
(equalized) 250 4 | 320 | o008 4 6 4 0 0
histogram s k=0
5 245 0,06 5 7 5 850 021
6 122 | 0,03 6 7 6 | 985 | 024
7 81 0,02 7 7 7 | 448 | on
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Histogram equalization (9)

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an
uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.

e.g. the final plot

O__3 7 QJJJ 0_3
0.25 o 6 — 0.25 - ° o
5
0.2 & ° 0.2 °
= S|4 =
< 0.15 e = = | 015
SY |3 < ]|
0.1 = 0.1
s ° 2 )
0.05 e 3 0.05
° [+
0 T T T T T 1 0 T T T T 1 0<> < < T
0 1 2 3 4 5 6 7 o0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
k u k
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Histogram-based operators

1. Fundamentals of histogram-based operators
2.  Some histogram-based operators
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2.2. Optimum thresholding

2.3. Histogram equalization

2.4. Histogram-based distances
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Type Methods Application
Mean, standard deviation
Contrast
Moments
Image Feature
... |Ent .
characterization Hropy extraction
Co-occurrence matrix
Uniformity, homogeneity
Correlation
: Enhancement
Thresholding |Otsu’s method .
segmentation
Histogram . .
L Histogram equalization Enhancement
equalization
Histogram-based | Minkowski, 2, Comparison,

distance

Kulback-Leibler and Jeffrey

retrieval, spotting
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Histogram-based distances (1)

Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are h, and hg, we define an
histogram-based distance as D(h,, hy) between the histograms h, and h.

Example Usage:
Tracking
Image retrieval
Registration
Detection
Many more ...

similariy
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Histogram-based distances (2)

Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are h, and hg, we define an
histogram-based distance as D(h,, hy) between the histograms h, and hy.

e.g. within bin-by-bin distances, only pairs of bins in the two histograms that have the same index are matched.

Minkowski distance: is a metric on Euclidean 20 p p [D(A,B)

space which can be considered as a generalization D ( A, B) — Z‘ hA (k) - hB ( k)‘p - —

of both the Euclidean distance and the Manhattan g k=0 o_|min distance
distance. 1 |Manhattan distance

2 |Euclidean distance

+oc |max distance

x? statistics: measures how unlikely it is that one 210 () = m(k))>
distribution was drawn from the population DZ2 (A, B ) = Z (B, (k) = m(k))
represented by the other. k=0 m(k)
h,(k)+h,(k
NORAGITAG
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Histogram-based distances (3)

Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are h, and hg, we define an

histogram-based distance as D(h,, hg) between the histograms h, and h.

e.g. within bin-by-bin distances, only pairs of bins in the two histograms that have the same index are matched.

Kullback-Leibler (KL) divergence measures the h ( k)
amount of added information needed to encode Dy, Z h,(k)log h I
image A based on the histogram of image B. The KL 5 (k)

divergence is not symmetric Dy, (A,B)#Dg, (B,A),
and then not a distance

Jeffrey distance: is a modification of the K-L 29 _ h (k) h, (k)
divergence that is numerically stable, symmetric D, (A, B ) = Z h,(k)log———=+ h,(k)log—2-—=
(then a distance) and robust with respect to noise and k=0 m(k) m(k)
the size of histogram bins

h, (k) + hy (k)
2

m(k) =
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Further investigations

Other characterization methods / features (e.g. the Intensity Variation Number)
Multiple thresholding (extension of the Otsu method)

Histogram specification

Comparison of histograms (cross-bin measures)

Etc.
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