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The histogram of a digital image is a representation of its intensity distribution such as 

The image

I(i,j) = v is a discrete function

i,j the coordinates of a pixel 

i  [0, N[ and j  [0, M[

v is the pixel intensity value with

MN is the  size of the array (in pixels)

The histogram

h(k) = nk is a discrete function

k the intensity value

k[0, L] is the intensity level range

nk is the number of pixels in 

the image of  intensity k
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Fundamentals of histogram-based operators (1)



Fundamentals of histogram-based 

operators (2)
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The basic image histogram is The normalized image histogram is The accumulated image histogram is
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p(k) defines the probability to get the value k 

in the image I

c(k) defines the probability to get the value 

less or equal to k in the image I
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Fundamentals of histogram-based operators (3)
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Fundamentals of histogram-based operators (4)
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Histogram-based operations include any statistical 

processes of  intensity distribution. They could be based on 

single or multiple entries.

e.g.
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Fundamentals of histogram-based operators (5)
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Histogram-based operations include any statistical 

processes of  intensity distribution. They could be based on 

single or multiple entries.
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Typical results include

- an image

- some features

Typical results are distances
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Histogram-based operations are related to

 image characterization (or features extraction),

 automatic thresholding,

 image enhancement (histogram equalization),

 image matching (histogram-based distances),

 etc. 
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Type Methods Application

Image 

characterization

Mean, standard deviation

Feature 

extraction

Contrast

Moments

Entropy

Co-occurrence matrix

Uniformity, homogeneity

Correlation

Thresholding Otsu’s method
Enhancement, 

segmentation

Histogram 

equalization
Histogram equalization Enhancement

Histogram-based

distance

Minkowski, 2, 

Kulback-Leibler and Jeffrey

Comparison, 

retrieval, spotting
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Image characterization

“Mean and standard deviation”
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Type Methods Application

Image 

characterization

Mean, standard deviation

Feature 

extraction

Contrast

Moments

Entropy

Co-occurrence matrix

Uniformity, homogeneity

Correlation

Thresholding Otsu’s method
Enhancement, 

segmentation

Histogram 

equalization
Histogram equalization Enhancement

Histogram-based

distance

Minkowski, 2, 

Kulback-Leibler and Jeffrey

Comparison, 

retrieval, spotting
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Image characterization

“Contrast” (1)
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Image characterization

“Contrast” (2)
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one above is the variance-based.

Due to the large values meet for variance, a normalization of 

variance  with the number of square level intensity could improve 

the global curvature function.
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Type Methods Application

Image 

characterization

Mean, standard deviation

Feature 

extraction

Contrast

Moments

Entropy

Co-occurrence matrix

Uniformity, homogeneity

Correlation

Thresholding Otsu’s method
Enhancement, 

segmentation

Histogram 

equalization
Histogram equalization Enhancement

Histogram-based

distance

Minkowski, 2, 

Kulback-Leibler and Jeffrey

Comparison, 

retrieval, spotting

14



Image characterization 

“Statistical moments” (1)
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Image characterization 

“Statistical moments” (2)
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Characterization with statistical moments
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The 0th moment,

is still equal to one

1
The 1st moment,

is still equal to zero

2
The 2sd moment

is the variance

3
The 3rd moment

measure the skewness

4
The 4th moment

measures the flatness
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the image content, they are mainly applied to textures.
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Image characterization 

“Statistical moments” (3)
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Characterization with statistical moments
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Statistical moments are the simplest approach to describe 

the image content, they are mainly applied to textures.

e.g.



Image characterization 

“Statistical moments” (4)
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Characterization with statistical moments
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is the variance
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measures the flatness
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Statistical moments are the simplest approach to describe 

the image content, they are mainly applied to textures.

e.g.



Image characterization 

“Statistical moments” (5)
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Type Methods Application

Image 

characterization

Mean, standard deviation

Feature 

extraction

Contrast

Moments

Entropy

Co-occurrence matrix
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Correlation

Thresholding Otsu’s method
Enhancement, 

segmentation

Histogram 

equalization
Histogram equalization Enhancement

Histogram-based

distance

Minkowski, 2, 

Kulback-Leibler and Jeffrey

Comparison, 

retrieval, spotting
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Image characterization

“Entropy” (1)
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Image characterization

“Entropy” (2)
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Entropy measures the randomness of the image.

e.g.

gradient image
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Image characterization

“Entropy” (3)
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Entropy measures the randomness of the image.

e.g.
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Type Methods Application
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Image characterization

“Co-occurrence matrix”

25

A co-occurrence matrix is a distribution that is defined over an image to 

be the distribution of co-occurring values at a given offset.
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The corresponding co-occurrence matrix g 

using a [1 1] structuring element

using a [1 1] structuring element, 5 is neighbor of 0, 

we increase the corresponding g(i,j) element in the co-

occurrence matrix
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The corresponding probability estimation p,

n equals 30
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Image characterization

“Uniformity, homogeneity” (1)
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Characterization with uniformity and homogeneity
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Uniformity (also called Energy) estimates image as a constant.

Homogeneity measures the spatial closeness of the element distribution in g.

e.g.
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Image characterization

“Uniformity, homogeneity” (2)
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Characterization with uniformity and homogeneity

Equation

Uniformity

Homogeneity
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Uniformity (also called Energy) estimates image as a constant.

Homogeneity measures the spatial closeness of the element distribution in g.

e.g.
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level
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number

in a gradient image,

uniformity is the inverse 

of the intensity level 

number, no impact is 

observed on 

homogeneity 



Image characterization

“Uniformity, homogeneity” (3)
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Characterization with uniformity and homogeneity

Equation
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Uniformity (also called Energy) estimates image as a constant.

Homogeneity measures the spatial closeness of the element distribution in g.

e.g.
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Image characterization

“Correlation” (1)
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Characterization with correlation

Equation
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Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1 

corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.  

e.g.



Image characterization

“Correlation” (2)
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Characterization with correlation
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Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1 

corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.  

e.g.



Image characterization

“Correlation” (3)
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Characterization with correlation
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Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1 

corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.  

e.g.



Image characterization

“Correlation” (4)
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Characterization with correlation
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Correlation measures how correlated a pixel is to its neighbor over the entire image. Range of values is -1 to +1 

corresponding to perfect correlation. This measure is not defined if the standard deviation is zero.  

e.g.

5,3
2

1
7

2

1
0, crm

222

, 5,3
2

1
)5,37(

2

1
)5,30( cr

 
 

 
  1

2

1

5,3

5,37

2

1

5,3

5,30
2

2

2

2
2

2







in a band image with pixels that don’t 

co-occur the correlation reaches the 

“maximum” 1

intensity 

level

pixel 

number



Histogram-based operators

1. Fundamentals of histogram-based operators

2. Some histogram-based operators

2.1. Image characterization

2.2. Optimum thresholding

2.3. Histogram equalization

2.4. Histogram-based distances

3. Further investigations

35



Type Methods Application

Image 

characterization

Mean, standard deviation

Feature 

extraction

Contrast

Moments

Entropy

Co-occurrence matrix

Uniformity, homogeneity

Correlation

Thresholding Otsu’s method
Enhancement, 

segmentation

Histogram 

equalization
Histogram equalization Enhancement

Histogram-based

distance

Minkowski, 2, 

Kulback-Leibler and Jeffrey

Comparison, 

retrieval, spotting

36



Optimum thresholding

“Otsu’s method” (1)

37

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the 

average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum 

in the sense that it maximizes the between-class variance.  
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Optimum thresholding

“Otsu’s method” (2)
Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the 

average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum 

in the sense that it maximizes the between-class variance.   
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Optimum thresholding

“Otsu’s method” (3)
Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the 

average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum 

in the sense that it maximizes the between-class variance.   
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Optimum thresholding

“Otsu’s method” (4)
Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the 

average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum 

in the sense that it maximizes the between-class variance.  

e.g. k 0 1 2 3 4 5 6 7

h(k) 40 30 20 10 20 30 40 50

p(k) 4/24 3/24 2/24 1/24 2/24 3/24 4/24 5/24
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Optimum thresholding

“Otsu’s method” (5)

41

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the 

average error incurred in assigning pixels to two or more groups i.e. classes. The Otsu’s method is optimum 

in the sense that it maximizes the between-class variance.  

e.g. Implementation in Matlab of the Otsu algorithm

% probability density

k = [0 1 2 3 4 5 6 7];

h = [40 30 20 10 20 30 40 50];

p = h / sum(h); sum(p);

% probability

p1 = zeros(1,7); p2 = zeros(1,7);

for t=1:7

p1(t) = sum(p(1:t));

p2(t) = sum(p(t+1:8));

end

p1 + p2;

% global mean

m = sum(k.*p);

% mean

m1 = zeros(1,7); m2 = zeros(1,7);

for t=1:7

m1(t) = sum(k(1:t).*p(1:t)) / p1(t);

m2(t) = sum(k(t+1:8).*p(t+1:8)) / p2(t);

end

(p1.*m1 + p2.*m2)-m;

% global variance

v = sum( ((k-m).^2) .*p  );

% variance

v1 = zeros(1,7); v2 = zeros(1,7);

for t=1:7

v1(t) =  sum ( ((k(1:t)-m1(t)).^2).*p(1:t) ) / p1(t);

v2(t) =  sum ( ((k(t+1:8)-m2(t)).^2).*p(t+1:8) ) / p2(t);

end

% i and b variances

vb = zeros(1,7); vi = zeros(1,7);

for t=1:7

vb(t) = p1(t)*(m1(t)-m)^2 + p2(t)*(m2(t)-m)^2;

vi(t) = p1(t)*v1(t) + p2(t)*v2(t);

end

(vi+vb)-v;

% goodness

g = zeros(1,7); g = vb / v; [Y,I] = max(g);
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Type Methods Application

Image 

characterization

Mean, standard deviation

Feature 

extraction

Contrast

Moments

Entropy

Co-occurrence matrix

Uniformity, homogeneity

Correlation

Thresholding Otsu’s method
Enhancement, 

segmentation

Histogram 

equalization
Histogram equalization Enhancement

Histogram-based

distance

Minkowski, 2, 

Kulback-Leibler and Jeffrey

Comparison, 

retrieval, spotting
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Histogram equalization (1)
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Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness. 



Histogram equalization (2)
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Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.  
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Histogram equalization (3)
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Equation

The input 

histogram r

Mapping function 

The output 

(equalized) 

histogram s
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Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.



Histogram equalization (4)
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k r(k) pr(k)

0 790 0,19

1 1023 0,25

2 850 0,21

3 656 0,16

4 329 0,08

5 245 0,06

6 122 0,03

7 81 0,02

2
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e.g. to achieve the histogram equalization on the following r histogram

(1) we compute pr first

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.
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Histogram equalization (5)
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k pr(k)

0 0,19

1 0,25

2 0,21

3 0,16

4 0,08

5 0,06

6 0,03

7 0,02

u T(u)

0 1,33

1 3,08

2 4,55
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7 7
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Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.  

Equation

The input 

histogram r

Mapping function 

The output 

(equalized) 

histogram s
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e.g. to achieve the histogram equalization on the following r histogram

(2) when pr known, we compute T(u)



Histogram equalization (6)
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k pr(k)

0 0,19

1 0,25

2 0,21

3 0,16

4 0,08

5 0,06

6 0,03

7 0,02

u T(u) T’(u)

0 1,33 1

1 3,08 3

2 4,55 5

3 5,67 6

4 6,23 6

5 6,65 7

6 6,86 7

7 7 7

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.  

Equation

The input 

histogram r

Mapping function 

The output 

(equalized) 

histogram s





12

0

)(

q

k

ks






12

0

)(

q

k

kr








u

k

r

q

r

kpuT

NM

kr
kp

0

)()12()(

)(
)(

e.g. to achieve the histogram equalization on the following r histogram

(3) T(u) have fractions because they are generated by summing probabilities, 

so T’(u) round them to the nearest integers



Histogram equalization (7)
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k r(k)

0 790

1 1023

2 850

3 656

4 329

5 245

6 122

7 81

u T’(u)

0 1

1 3

2 5

3 6

4 6

5 7

6 7

7 7

k s(k)

0 0

1 790

2 0

3 1023

4 0

5 850

6 985

7 448
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Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.  

Equation

The input 

histogram r

Mapping function 

The output 

(equalized) 

histogram s





12

0

)(

q

k

ks






12

0

)(

q

k

kr








u

k

r

q

r

kpuT

NM

kr
kp

0

)()12()(

)(
)(

e.g. to achieve the histogram equalization on the following r histogram

(4) when T’(u) known, we can obtain s



Histogram equalization (8)
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u T’(u)

0 1

1 3

2 5

3 6

4 6

5 7

6 7

7 7

k r(k) pr(k)

0 790 0,19

1 1023 0,25

2 850 0,21

3 656 0,16

4 329 0,08

5 245 0,06

6 122 0,03

7 81 0,02

k s(k) ps(k)

0 0 0

1 790 0,19

2 0 0

3 1023 0,25

4 0 0

5 850 0,21

6 985 0,24

7 448 0,11

Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.  

Equation

The input 

histogram r

Mapping function 
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e.g. to achieve the histogram equalization on the following r histogram

(5) and then ps



Histogram equalization (9)

52

k

p
r(

k)

u

v=
T

(u
)

k
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s(
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Histogram equalization automatically determines a transformation function that seeks to produce an output image that has an 

uniform histogram. It aims to produce a picture with a flatter histogram to highlight image brightness.  

e.g. the final plot
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Type Methods Application

Image 

characterization

Mean, standard deviation

Feature 

extraction

Contrast

Moments

Entropy

Co-occurrence matrix

Uniformity, homogeneity

Correlation

Thresholding Otsu’s method
Enhancement, 

segmentation

Histogram 

equalization
Histogram equalization Enhancement

Histogram-based

distance

Minkowski, 2, 

Kulback-Leibler and Jeffrey

Comparison, 

retrieval, spotting
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Histogram-based distances (1)
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Example Usage:

Tracking

Image retrieval

Registration

Detection

Many more ...

Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are hA and hB, we define an 

histogram-based distance as D(hA, hB) between the histograms hA and hB.



Histogram-based distances (2)
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Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are hA and hB, we define an 

histogram-based distance as D(hA, hB) between the histograms hA and hB.

e.g. within bin-by-bin distances, only pairs of bins in the two histograms that have the same index are matched.

p D(A,B)

- min distance

1 Manhattan distance

2 Euclidean distance

+ max distance

Minkowski distance: is a metric on Euclidean 

space which can be considered as a generalization 

of both the Euclidean distance and the Manhattan 

distance.

2 statistics: measures how unlikely it is that one 

distribution was drawn from the population 

represented by the other.
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Histogram-based distances (3)
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Histogram-based distances: given two (sub)images A and B whose (normalized) histograms are hA and hB, we define an 

histogram-based distance as D(hA, hB) between the histograms hA and hB.

e.g. within bin-by-bin distances, only pairs of bins in the two histograms that have the same index are matched.

Jeffrey distance: is a modification of the K-L 

divergence that is numerically stable, symmetric 

(then a distance) and robust with respect to noise and 

the size of histogram bins
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Kullback-Leibler (KL) divergence measures the 

amount of added information needed to encode 

image A based on the histogram of image B. The KL 

divergence is not symmetric DKL(A,B)DKL(B,A), 

and then not a distance
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Further investigations

• Other characterization methods / features (e.g. the Intensity Variation Number)

• Multiple thresholding (extension of the Otsu method)

• Histogram specification

• Comparison of histograms (cross-bin measures)

• Etc. 
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