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Fundamentals of linear filtering (1)

Spatial filtering is one of the principal tools for image processing. The term “filtering” is borrowed from frequency domain
processing, to accept (i.e. to pass) or to reject certain frequency components.

Spatial filter consists of (1) a neighborhood (typically a small rectangle) referred to as a filter mask (2) a predefined
operation that is performed on the image pixel encompassed by this neighborhood.

Origin (0,0)
(top-left) > j/x
Filter npask
Inpagd pixels
v
iy

Linear filtering is related to a special case of spatial filtering, where the operation performed on the image pixels is linear.
Otherwise, the filter is nonlinear.



Fundamentals of linear filtering (2)

Spatial filtering is one of the principal tools for image processing. The term “filtering” is borrowed from frequency domain
processing, to accept (i.e. to pass) or to reject certain frequency components.

It can be used for a broad spectrum of applications. The main is image enhancement, the other include edge and point of
interest detection.

Image enhancement Edge detection Image sharpening Interest point detection




Convolution and correlation: there are two closely related concepts that must be understood clearly when performing linear

Fundamentals of linear filtering (3)

spatial filtering. One is convolution and the other is correlation.

Equation

Comments

1D convolution

F(x)=g(x)e f(x)= [g(x)x f(x—u)du

uU=—00

Convolution F(x) of two functions f{x), g(x) is defined as integral.

2D discrete
convolution

F(x,y)=w(x,y)e f(x,y)

F(x,y)= .

u=—a v=—

w(u,v)x f(x—u,y—v)

When convolution is applied to digital image, the above formulation
changes in tow ways:

(i) adouble integral must be used.

(i) integration must be changed into discrete summation,

in this new form, w(x,y) is the spatial convolution mask.

2D discrete
correlation

F(x,y)=w(x,y)° f(x,y)

+a +b

F(x,y)= Z Zw(u,v)xf(x+u,y+v)

u=—a v=-b

The fact that the mask has to be inverted before it is applied is
inconvenient for visualizing the process of convolution. The usual
approach is to invert the mask, convolution can be then reformulated
in term of correlation.




Fundamentals of linear filtering (4)

spatial filtering. One is convolution and the other is correlation.

Convolution and correlation: there are two closely related concepts that must be understood clearly when performing linear

e.g.
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Fundamentals of linear filtering (5)

Convolution and correlation: there are two closely related concepts that must be understood clearly when performing linear
spatial filtering. One is convolution and the other is correlation.

Convolution equals correlation when

if werotate wof 7 [Wi | Wi [Wi3 if w is symmetric [c|a|c¢
Wy | Wy | Was alb]a
W31 | Wiy | Wa3 cla|cC
+7 +7  rotated w is then similar
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Fundamentals of linear filtering (6)

Convolution and correlation: there are two closely related concepts that must be understood clearly when performing linear

spatial filtering. One is convolution and the other is correlation.

The discrete unit impulse o(x,y) is a generalized function such
that it is zero for all values of the parameter except at one point.
In the context of mathematic and signal processing, it is often
referred to as the Dirac delta function.

Correlation of a mask w(u,v) with discrete unit impulse o(x,y)
yields a rotated version of the mask at the position of the
impulse.

Convolution of a mask w(u,v) with discrete unit impulse o(x,y)
yields a copy (i.e. not rotated) of the mask at the position of the
impulse.
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Fundamentals of linear filtering (7)

Preserving operations: the linear operators, convolution and correlation, preserve the operations of vector addition
and scalar multiplication i.e. woa, f,+woa,f, =wo (a1f1 +a,f,)

w
00

0

0

a,

N | =

/i a,

2
0131011
1111212
0141210

1x(2x1)+1x(2x0)=2

1x l><1 +1x l><2 =15
2 2

a, x f,+a,x f,

\ J

|
1) Wo(alfl +a2f2)
2 weaftwoa,f,

—

l><1+2><1=2.5
2

(1) 25+1=35
Q) 15+2=35



Fundamentals of linear filtering (8)

Generating spatial filter mask: convolution and correlation are ways to process input of pixel. The real challenge with
linear filtering is to generate spatial filter masks w and their coefficients. These coefficients are defined according to
mathematical methods, keeping in mind that all we can do with linear filtering is to implement sum of products.

Image
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Fundamentals of linear filtering (9)

Methods Type Application
Mean filter
Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter
High boost filter Sharpening
Basic operators
Improved operators Derivative filters :

: : : « Edge detection
Differential Gradient 1% order

Canny-edge operator

Laplacian detector Key-point detection

Sharpening filter Derivative filters Sharpening

d
Laplacian of Gaussian 2%¢ order

(LoG) Key-point detection
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Methods Type Application

Mean filter

Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter

High boost filter Sharpening

Basic operators

Improved operators

Differential Gradient

Canny-edge operator

Derivative filters
1t order

Edge detection

Laplacian detector

Sharpening filter

Laplacian of Gaussian
(LoG)

Derivative filters
2sd order

Key-point detection

Sharpening

Key-point detection
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Mean filtering (1)

Filters Mask Type Coefficient rules
a a a 1 n n
Mean filter alala Symmetric a=— Wun = 1
n u=l v=1
alalfa
alafa a n o
Parametric filter albla alb|a Symmetric a,b>0 W, =1 specification of
u=t v=l a,b is free
alalfa a
b
n n
Gaussian filter blc|b Symmetric a,b,c>0 w,, = 1 ab,care dgﬁned agcordmg
1bla p— to a gaussian function

14



Mean filtering (1)
“Mean (or averaging) filtering”

Mean filtering: considering a mask w, a mean
filtering is the standard average of the pixel 1111
under the mask.

O
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Mean filtering (2)

(14 < : 29
Parametric filtering
111f1
Parametric mean filtering: considering a 1, a1
mask w, a parametric mean filtering is a 12
weighted average of the pixel under the mask. !

o olololofo]o ololofo]o]fo
alala ZIZIW”’VZI 0]0]J]0]O0O]O0O]O ol11315141]0
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v

i><(0+0+0+0+4x1+2+0+0+2):£
12 12

Comparing to the mean filter, the
parametric filter is less restrictive.

More b is higher, less the filter will
have impact on salt and pepper noise.

image with salt and

mean filter 5x5 parametric low-pass
peppet filter 16



Mean filtering (3)
“Gaussian filtering”

Gaussian filtering: considering a mask w, a
Gaussian filtering is a parametric mean filtering
where weights are defined according to a
Gaussian function.

2D Gaussian function (with mean = 0) is
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Mean filtering (4)
“High boost filtering”

original
image
1(,)) >
operator
l A
A\ 4
Convolution with .
blur filter (mean, > Sl;gg::tz?g
Gaussian) 1, ) UG, j)=1@,j)—10,))
blurred unsharp mask
image
A
J original
image
A
f blurred
image
T unsharp
A R mask
V >
A
f High boost
filtering

v

original
image

High boost
k=2

High boost
k=10

K is the weight of
the high boost filter
k Filter
no filter
<1 weak unsharp masking
1 Unsharp masking
High Boost filtering
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Derivative filters - 15t order

“Introduction”

Filters Mask Type Coefficient rules
Basic operator s
p 11 asymmetric w,, =0
u=1 v=1
1 n n
Roberts operator asymmetric w,, =0
-1 u=l v=1
t 1{0]1 ' NAY =
Improved operator asymmetric w,, = 0
u=l v=1
1{o]1
Prewitt operator -1{0]1 asymmetric w =0
u,v
11ol1 u=l v=1
1{o]1
Sobel operator 21012 asymmetric w =0
u,v
11ol1 u=l v=1

20



Methods Type Application

Mean filter

Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter

High boost filter Sharpening

Basic operators

Improved operators

Differential Gradient

Canny-edge operator

Derivative filters
1t order

Edge detection

Laplacian detector

Sharpening filter

Laplacian of Gaussian
(LoG)

Derivative filters
2sd order

Key-point detection

Sharpening

Key-point detection
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Derivative filters - 15t order
“Basic operators” (1)

Edge detection: many approaches to image interpretation are
based on edges, since tit is insensitive to contrast
modifications. The edge is at the position of the step change,

To detect edge we can use first-order differentiation. The basic
definition of the first-order of a one dimensional function f(x)
is the difference

o _ fGth)- ()
ox h

X

When computing the first-derivative, we subtract the value
of the function at that location from the next point. It is a
look ahead operation

Properties of 1% derivative are
A. Must be zero on areas of constant intensity
B.  Must be non zero at the onset of an intensity ramp
or end of a step
C. Must be non zero along ramps

22
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Derivative filters - 15t order
“Basic operators™ (2)

Implementing a first-order differentiation o _ Sx+h) =) with a convolution (1.e. correlation) operation, considering 4, = 1,
Ox h

X

is obtained with masks [I —1] for convolution (-1 1] for correlation).

signal

+V
derivate 0
-V

U

23



Derivative filters - 15t order
“Basic operators™ (3)

In practice, negative version of a first-order differentiation_ & _ S()=f(x+h) isalso commonly used, considering 4, = 1, masks
ox h,

are [-1 1] for convolution ([l —1] for correlation).

1D 2D 1D
\Y \Y
signal ‘/_L U
O I] 0

+V +V
derivate 0 jt .I 0 Il

2D

24



Derivative filters - 15t order
“Basic operators™ (4)

Horizontal edge detector: differencing horizontality adjacent points will detect
vertical changes and is called horizontal edge detector, it can be obtained with

I
Oox

_SGHhay) - ()
h

X

= f(x+1,y)— f(x,y) With 2 =1

correlation mask is | -1 1

Vertical edge detector: differencing vertically adjacent points will detect
horizontal changes and is called vertical edge detector, it can be obtained with

s h - 2
‘ng(xy"' y) f(x y)zf(x,y+1)—f(x,y) Wlth h},zl

oy hy

correlation mask is | -1
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Derivative filters - 15t order
“Basic operators™ (5)

Horizontal/Vertical edge detector: combining the two gives an
operator that can detect vertical and horizontal edge together, that is

4
ox

o
y

SO+, = f(ny) SOy +h) = f(x.y)
h hy

=f(x+1,y)—f(x,y)+f(x,y+l)—f(x,y) Wlthhx :hy =1
:f(x+lay)+f(x7y+1)_2f(xay)

+

convolution mask is | -2 | 1

1

Roberts cross operator (1965) was one of the earliest edge detection
operators. It implement a version of basic first-order detection and
used two masks that differentiate pixel values in a diagonal manner, as
opposed to along the axes directions.

The two masks are called M and M.

M M*

26



Methods Type Application

Mean filter

Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter

High boost filter Sharpening

Basic operators

Improved operators

Differential Gradient

Canny-edge operator

Derivative filters
1t order

Edge detection

Laplacian detector

Sharpening filter

Laplacian of Gaussian
(LoG)

Derivative filters
2sd order

Key-point detection

Sharpening

Key-point detection
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Derivative filters - 15t order
“Improved operators™ (1)

Analysis of the basic operators: Taylor series reveals that differencing adjacent points provides an estimation of the first-
order derivative at a point.

Equation Comments
We consider
= f(x) ., *  f{x), areal (or complex-valued) function that is
Taylor series Z_(; ! (X = x) infinitely differentiable
"= * x, areal (or complex) number where f(x) can
(general form) f (X) f ' (x) 2 be defined in the neighborhood
S+ I (Xo =)+ 2 (X =2)" 4. * X, a variable describing f

The Taylor series of f{x) in x is

Taylor series of

flx+h), fix-h)

Fr+h) = F)+ £ @l £ ()4 00

f(x—h)=f(X)—f'(X)h+f"(X)h7—0(h3)
with h=x,—x

and O(h’) the error term at n=>3

If the difference is taken between points separated
by A, then the Taylor expansion for f{x+/) and

f(x-h) are

Precision of first
derivative with
an error term
O(h)

jxﬂ:fu+m—fwkjﬂﬂh_0w5:f&+2<ﬂm_0w)

h 2
SQ =S ) ey LS G=h) o
2 h

()= P

By re- arrangement, the first-order derivative f(x)
can be defined as follow, with an error term O(%)

Precision of first
derivative with
an error term
O(h?)

SOEM =[G ooy

()= P

By differencing f(x+h), f(x-h), we obtain the first-
order derivative as follow, with an error term

O(h?), With h<1, this error is clearly smaller than

an error term O(h)




Derivative filters - 15t order
“Improved operators™ (2)

Horizontal edge detector: differencing horizontality adjacent points will detect
vertical changes and is called horizontal edge detector, it can be obtained with

s
Oox

_ St y) - fx=h,y)
h

X

=f(x+lay)_f(x_lay) with hx =1

convolution maskis|-1| 0| 1

Vertical edge detector: differencing vertically adjacent points will detect
horizontal changes and is called vertical edge detector, it can be obtained with

3 h - > _h
ACS: y)hyf(xy y):f(x,y+1)—f(x,y—1)with h,=1

9
oy

convolution mask is | -1
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Derivative filters - 15t order
“Improved operators™ (3)

Prewitt operator: it is prudent to incorporate averaging within the edge detection process, we can then extend the horizontal
and vertical edge detectors as follow. These give the Prewitt edge detection operator.

[
ox

o

Oy

-1

-1]-1

0

0fo

1

1|1

The digital approximation to the first-order derivatives using the Prewitt masks with correlation is then given by

(2 BE—T T IR ]

(2 BE—T T IR ]

of

a:(z3+26+29)—(21+z4+z7)

of

——=(z,+z3+2y)—(2,+2,+2;)
oy
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Derivative filters - 15t order
“Improved operators™ (4)

Soblel operator: a full discussion of edge detection problem involves consideration of the accuracy with which edge
magnitude and orientation can be estimated. Prewitt operator was found to lead to an angular error varying from 0° to 7,38°
[Pratt79]. To reduce the error (to 1,36°), the weight at the central pixel can be doubled. This gives the Sobel operator that was
the most popular edge detector until the development of edge detection techniques.

af
ox

of
oy

-11-

-1

0

0

1

1

The digital approximation to the first-order derivatives using the Sobel masks with correlation is then given by

21|

Z3

Z; | zg

Zg

=2 T R R
N
B
N
W

=2 T R R

g:(%+2><z6+29)—(21+2><z4+z7)
%z(@+2ng+z9)—(zl+2xzz+z3)
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Methods Type Application

Mean filter

Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter

High boost filter Sharpening

Basic operators

Improved operators

Differential Gradient

Canny-edge operator

Derivative filters
1t order

Edge detection

Laplacian detector

Sharpening filter

Laplacian of Gaussian
(LoG)

Derivative filters
2sd order

Key-point detection

Sharpening

Key-point detection
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Derivative filters - 15t order
“Difterential Gradient”

Differential Gradient (DG): the aim of edge detection is to find where the operator response is sufficiently large to be taken as a
reliable indicator of the edge of an object. In the Differential Gradient (DG) approach, we are using gradients and their magnitudes
to detect the maximum response. For a function f(x,y), the gradient, its magnitude and direction from partial derivative are:

o _ Sy~ f(xy)
ox h

X

I

partial derivative of fin x and y

o _SGoy+h)—f(xy)

oy h, :
o
Vf(x,y)= (Z: , ZJ;J = 2; — gradient vector (row and column)
o

direction of

contours to detect ”Vf(x,ym _ \/(gjz J{gjz
ox

o

ox

of
oy

magnitude of the gradient

T

+ ‘

or [V/(x.y)=

direction of

the gradient oflof
VIix, y) = max| |—|,|-—
o (ot -ma{{ZJ2]]
o -
0 =arctg % of — direction of the gradient
ox _
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Methods Type Application

Mean filter

Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter

High boost filter Sharpening

Basic operators

Improved operators

Differential Gradient

Canny-edge operator

Derivative filters
1t order

Edge detection

Laplacian detector

Sharpening filter

Laplacian of Gaussian
(LoG)

Derivative filters
2sd order

Key-point detection

Sharpening

Key-point detection
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Derivative filters - 15t order
“Canny edge detector” (1)

Canny edge detector is interested with optimal edge detection, involving
v'a good detection — the algorithm should mark as many real edges in the image as possible.
v'a good localization — edges marked should be as closed as possible to the edges in the real image.
v'a minimal response — a given edge in the image should only be marked once.

The optimal function in Canny’s detector is described by the sum of four exponential terms, but it can be approximated by
the first derivative of a Gaussian. Summarizing, the Canny edge detection algorithm consists of the following basic steps

Noise reduction smoothes the input image with a Gaussian filter.

Finding intensity gradient returns the values of 1% derivative filters, compute the gradient magnitude and angles.
Non-maximum suppression applies non-maxima suppression to the gradient magnitude image.

Hysteresis thresholding uses double thresholding and connectivity analysis to detect and link edges.

b=

35



Derivative filters - 15t order
“Canny edge detector” (2)

Noise reduction: Smooth the input image with a Gaussian filter.
e.g. mask 3x3 witha o? =1

36



2.

Derivative filters - 15t order
“Canny edge detector” (3)

Finding intensity gradient: return the values of 1% derivative filters, compute the gradient magnitude and angles.
e.g. we compute | 9 9 |with Sobel based operators, and then the magnitude and angle image

ox’ Oy
-1 0 1 -1 -2 -1
of oI
. -2 0 2 o 0O 0 O
-1 0 1 I 2 1
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Derivative filters - 15t order
“Canny edge detector” (4)

2. Finding intensity gradient: return the values of 15 derivative filters, compute the gradient magnitude and angles.
e.g. we compute | & 9 | with Sobel based operators, and then the magnitude and angle image

ox’ Oy
2 : a
M(x,y)= [%j +[%J a(x,y)zarctg ay af
ox

[+7/2,- +1/2] £ /8
0+ /8
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3.

Derivative filters - 15t order
“Canny edge detector” (5)

Non-maximum suppression: Apply non-maxima suppression to the gradient magnitude image.
a. to discretize a(x,y) in four main directions: horizontal, vertical and the two diagonals
a. considering the direction d, = (x,y), if the value M(x,y) is less than at least one of its two neighbors along d,
let gN(x,y) = 0, otherwise let gN(x,y) = M(x,y)

o

2 3 2
M(x,y)= \/ (5] + (éj gN(x,y) M(x,y)—gN(x,y)
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Derivative filters - 15t order
“Canny edge detector” (6)

4. Hysteresis thresholding uses double thresholding and connectivity analysis to detect and link edges.
a. to compute the gVH and gNL images, corresponding to low and high thresholds 7;,7}, of gN
e.g. with 7; =5 and 7;,=70

5 gN(x,y) ~

) g gNL(x,y)=gN(x,y) 2T,

gANLff’ ») gNH (x.)) . gNH (x,y) = gN(x,y) 2T} gNL(x,y) = gN(x,y)—gNH (x, y)
0 w 0 o0 1000 or gNL(x,y)=gN(x,y) €[1},T]
T, T,
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Derivative filters - 15t order
“Canny edge detector” (7)

4. Hysteresis thresholding uses double thresholding and connectivity analysis to detect and link edges.
b. for each pixel p in gNH, to mark as valid edges in gVH all the weak pixels N8(p) in gNL (i.e. 8 connected to p)
let say this new image gNHC(x,y)

gNHC(x, ) gNHC(x,y)—gNH (x,y)
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Derivative filters - 15t order
“Canny edge detector” (8)

42
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Derivative filters - 25¢ order

“Introduction” (1) LS LR

Scan line 6| 6 6 |65 4]3 2 1 1 1 1

2sd derivative |Na| 0 ] O | -1 ] 0] O] O] O 1 ojJo]o

The basic definition of the second-order of a one dimensional ; A B
function f(x) is the difference
o _fx+h)-f(x) aramp
ox h, 4
¢ a ste
O f _f+h)-f @) ’
0°x h,
2
Of _ [(x+2h)=2[(x+h)+[(x) B A
azx = I’l 2 Scqinline
' 0
This expansion is about point x+1, our interest is on the second
derivative about point x, so we subtract A, 6
O’f _ fx+h)-2f(x)+f(x—h) !
62)6 hxz 2
N\
O’f _Sx+h)+f(x=h)-2f(x) AN v

0’x h’

X

(8]

4

-6




Derivative filters - 25¢ order

“Introduction” (2)

The basic definition of the second-order of a one dimensional
function f(x) is the difference

O’f _ fx+h)+ f(x=h)-2f(x)
0’ x h’

X

When computing the second-derivative, we use the
previous and the next point sin the computation. We avoid
the outside range by limiting the computation from the
second to the penultimate points.

Properties of 25¢ derivative are
A. Must be zero on areas of constant intensity
B.  Must be non zero at the onset and end of an
intensity ramp or step
C. Must be zero along ramps of constant slope

-6
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C B A
Scan line 6 6 3 2 1 1 1 1 1 6
254 derivative | Na 0 01010 1 ojoJo]o Na
B BB
6
a ramp
a4
C
a step
2
B A
Scgnline
0
‘ J
y
4
0 \ 4 / \ A
v
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Derivative filters - 25¢ order
“Introduction” (3)

Filters Mask Type Coefficient rules
0l1a]o alala cla]c b n o on
xa<0 _
Laplacian filter |a|b|a a|lbla a[b|a| Symmetric Z Z w,, =0
u=l v=1
0la]o alala clalc bxc>0
0Ofalo alala clal|c b>0 LI i
. Wu v =
Unsharp filter alb]a albla a|b|a| Symmetric a<0 el el
0Ofalo alala clalc c<0
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Methods Type Application

Mean filter

Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter

High boost filter Sharpening

Basic operators

Improved operators

Differential Gradient

Canny-edge operator

Derivative filters
1t order

Edge detection

Laplacian detector

Sharpening filter

Laplacian of Gaussian
(LoG)

Derivative filters
2sd order

Key-point detection

Sharpening

Key-point detection
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Derivative filters - 259 order
“Laplacian detector” (1)

Laplacian operator: in image processing, second-order derivative are implemented using Laplacian.
For a function f(x,y) the Laplacian is defined as :

o Sy~ f(xy)
ox h

X

— partial derivative of fin x and y
of _SGuyth)-[(xy)
Oy hy .
Of _ [t )+ f(x=h,»)=2f(x,y)
0x h’

X

L The partial second
o f ~ fCLy+h)+ f(x,y—h)=2f(x,y) derivative of f'in x and y
aZy - h 2

y

o’'f o°f
o’x 0y

vif (x,y): ~ The Laplacian




Derivative filters - 259 order
“Laplacian detector” (2)

Laplacian operator: in image processing, second-order derivative are implemented using Laplacian.
How to convert Laplacian to structuring element ?

m LS fthoy) f(x—h, 1) =2f(x,y) 010
hx =1 \% f(x,y)— azx - hxz 1 2
h=0 1 _,
: V2 f(x,y)= f(x+1y)+ f(x—1y) -2/ (x.9) 0109
- O f  Soy+h)+ f(xy—h)=2f(x,y) 01
\ V)= T 2
h-o | flx,y) 7 " 5
= (y)= Syt Dt fry—D =2 (x,y) 0|1
- _Of S
\ f(x,y)— o +82y
- — ,y+h L v—h)=2f(x, 011
h=t | sz(x,y):f(X+hx,y)+f(22hx,y) 2/(ry) Syt y)+f(;2y ) =2/ (%)) —
y:1 ’ g
V2 ()= £+ Ly + f(x=1y) =21 (6, 3)+ £,y + 1)+ £(r, 1) = 2£(x, ) 011
| V(. y)= S+ L)+ f=Ly) + f(y+ D)+ f(x, y =D =41 (x, )

These are basic Laplacian operators, other operators (diagonal Laplacian, line filter, etc.)
can been obtained using similar computations.



Derivative filters - 259 order
“Laplacian detector” (3)

f is a convolution operator 1111
and the structuring elements w is HIFIE
0laloO alala clalc 11111
bl|a alb]la alb|a oToToloTloToTo NI
0la]oO alala cla|c
0(5]9]19]|9|5(0 0 |-17]|-27]-11]-19] -9 | 0
non 0519171171510 > 0|-3]|41]-40]-521131 0 . . )
w,, =0 . Laplacian filtering
et Lt 0 o[s[of7]17]s]0 0|-3|4|40|-52[13]0
0 [-17]-27]-11]-19]1 -9 | 0
bxa<0 hxc>0 05191919510
0(0]O0O]J]O0]O0O]O]O 0j]0]0fO0O]JO0]O]|O
1 1] ]1]4]1 1 1,
11411 11-8]1 4 1-20( 4 l
and more .... 0 |113] 81 [132]107[139[ 0 0135(25]41|33(43]0
0 [158|181|39| 0 [210f 0 [ «—— | O [49[56[12] 0|65 0 Scaling
0 [158[181[39] 0 [210] 0 01491561121 0 |65 0
0 |113]81 [132]107]139] 0 0135(25]41|33(43]0
ololololololo 0j0jJ0f[0O]O]O]O
[, 1, =1, -min(l,)
I, = K( max(/,, )) —
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Derivative filters - 259 order
“Laplacian detector” (4)

Laplacian scaled Laplacian

51



Derivative filters - 259 order
“Laplacian detector” (5)

Zero-crossings

. —» Result
detection

Image ¥ Laplacian filter

white if 1, j)xI(i—1,j)<0

1) =
6. J) black otherwise

Zeros-crossing without thresholding
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Derivative filters - 259 order
“Laplacian detector” (6)

Zero-crossings
detection with [ Result
thresholding

A 4

Image ¥ Laplacian filter

white if  I1(i,j)x1(i-1,j)<0 and |I(i,j)+1(i-1,))|>th

I (i,))=
.7 black otherwise

Zeros-crossing without thresholding Zeros-crossing with thresholding 2° Zeros-crossing with thresholding 23
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Methods Type Application

Mean filter

Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter

High boost filter Sharpening

Basic operators

Improved operators

Differential Gradient

Canny-edge operator

Derivative filters
1t order

Edge detection

Laplacian detector

Sharpening filter

Laplacian of Gaussian
(LoG)

Derivative filters
2sd order

Key-point detection

Sharpening

Key-point detection
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Derivative filters - 259 order
“Sharpening filter”

Two steps sharpening filter

original
image
X, Addin, 2
TV ) AE | g(x.) = [(x.0) +exV [ (x,7)
A c is a constant
Convolution with c=-1 b>a 2 :
a Laplacian mask i o a|bfa
i.e. unsharp sz(x,y) i a alala
One step sharpening filter
Convolution with
f(x,y) —> asharpening |—> g(x,))
mask

g(x,»)= f(x,3)+exV f(x,y)

V2 y)= fe+Lp)+ fe=Ly)+ £,y + D+ f(x,y =) =41 (x, )
g(ny)=f )~ (f(x+1,y) = F(x=1Ly) = f(x, y+1) = f(x,y =D =4 £ (x,)))

g0, y)=5f( )~ fx+L,y)= f(x=1y) = f(x,y+D) = f(x,y=1) [0 |-1] 0




Methods Type Application

Mean filter

Parametric low-pass filter ' Enhancement
: Mean filtering

Gaussian filter

High boost filter Sharpening

Basic operators

Improved operators

Differential Gradient

Canny-edge operator

Derivative filters
1t order

Edge detection

Laplacian detector

Sharpening filter

Laplacian of Gaussian
(LoG)

Derivative filters
2sd order

Key-point detection

Sharpening

Key-point detection
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Derivative filters - 25¢ order

“Laplacian of Gaussian (LoG)” (1)

Two steps LoG Gaussian .
P Image » Laplacian » Result
filter
Image
One step LoG
y
Equation »| Sampling » Scaling » Mask > LOC.} » Result
filtering
0.2
2+ 2 0.15 2 16 26 16
G( )_ 1 _xzcs{ Z o i 1
X,y e 5 e — ——X|26|41[26
271G 008 i 209
0 NN 16 | 26 | 16
Y -4 -4 -2 X
0 Of-1]0 0
2h
Ay of-1[-2]-1]0
2,2 1 -2116) 2| -1
+y
1 x2+ 2 = 2
L0G=V2G'(x,y)=—2 —2y—2e 20 <> of-1f{-2]-1]0
o o xS DS lo o1 oo
LoG is also called

“Mexican hat”
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One step LoG

o*f o°f
Vif(x,y)=
fx,y) 7x oy

Derivative filters - 25¢ order

“Laplacian of Gaussian (LoG)” (2)

—

0*°G(x, 0°G(x,
LoG =VG'(x,y)= 8(2 ), 8§ Y)
x y

BT e NV - 2,y 2yt
L0G=V2G'(x,y)= —e ¥ +——e ¥ |+|—e ¥ +——e 7
o
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Derivative filters - 259 order
“Laplacian of Gaussian (LoG)

29

The Marr-Hildreth detector

Zero-crossings

Image LoG filtering > detection » Result
Zero-crossings detection Zero-crossings detection
with Laplacian with LoG
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Derivative filters - 259 order
“Laplacian of Gaussian (LoG)” (4)

_x2+y2 _x2+y2
1 20'12 1 20%
e

It is possible to approximate the LoG filter by a difference of
Gaussians (DoG) in the following equation, with ¢,> c, DOG(x, Yy ) =

;€ - 2
270, 2705

To make meaningful comparison between the LoG and DoG, the olo? o’

: - : 2o 1 g = DoG(x,y)~ LoG
value of for the LoG must be selected in the following equation so o =" N oGlx,y)= LoG(x,y)
that the LoG and DoG have the same zero crossings. O —0: o

Although the zeros crossings of the LoG and Dog will be the same, their amplitude scales will be different.
We can make them compatible by scaling both functions.

DoG (6,=1.005, 5,=0.995)
LoG (c=1.0)
Mean square error 3.810-8

DoG (5,=1.199, 5,=0.75)
LoG (6=0.86)
Mean square error 7.5107

06
061
05F
05F
04}
04r
03F
03r
02F
0.2r

01F
01f




A

Linear filtering

Fundamentals of linear filtering
Mean filtering

Derivative filters - 15t order
Derivative filters - 259 order

Combining operators
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Combining operators (1)

Image

A 4

A 4

(a)

Sharpening
filter )
Sobel R Mean
detector | filtering
(b)

Product
operator

Adding
operator

[

(e)

i

(c)

)

A 4

Power low

(2

Nuclear whole body: Our objective is to enhance this
image by sharpening it and by bringing out more of the

skeletal details
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Combining operators (2)

Image

A 4

(a)

Sharpening
filter )
Sobel Mean
detector filtering
(b)
(d)

(c)

A 4

Product
operator

Adding
operator

A 4

Power low

[

(e)

(H (2

Nuclear whole body: Our objective is to enhance this
image by sharpening it and by bringing out more of the
skeletal details

63



Combining operators (3)

Image

A 4

A 4

(a)

Product
operator

Adding
operator

A 4

Power low

(e)

i

Sharpening
filter )
Sobel Mean
detector filtering
(b)
(b)

(c)

(H (2

Nuclear whole body: Our objective is to enhance this
image by sharpening it and by bringing out more of the
skeletal details
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Combining operators (4)

Image

A 4

A 4

(a)

Sharpening
filter )
Sobel R Mean
detector | filtering
(b)

Product
operator

Adding
operator

A 4

Power low

[

(e)

i

(c)

(d)

(H (2

Nuclear whole body: Our objective is to enhance this
image by sharpening it and by bringing out more of the
skeletal details

(e)
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Combining operators (35)

Image

A 4

A 4

(a)

Sharpening
filter )
Sobel R Mean
detector | filtering
(b)

Product
operator

Adding
operator

A 4

Power low

[

(e)

i

(c)

(H (2

Nuclear whole body: Our objective is to enhance this
image by sharpening it and by bringing out more of the
skeletal details
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