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Linear filtering

1. Fundamentals of linear filtering

2. Mean filtering

3. Derivative filters - 1st order

4. Derivative filters - 2sd order

5. Combining operators
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Fundamentals of linear filtering (1)
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Spatial filtering is one of the principal tools for image processing. The term “filtering” is borrowed from frequency domain 

processing, to accept (i.e. to pass) or to reject certain frequency components. 

Spatial filter consists of (1) a neighborhood (typically a small rectangle) referred to as a filter mask (2) a predefined 

operation that is performed on the image pixel encompassed by this neighborhood.

Linear filtering is related to a special case of spatial filtering, where the operation performed on the image pixels is linear. 

Otherwise, the filter is nonlinear.



Image enhancement Edge detection Interest point detection

Fundamentals of linear filtering (2)
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Spatial filtering is one of the principal tools for image processing. The term “filtering” is borrowed from frequency domain 

processing, to accept (i.e. to pass) or to reject certain frequency components. 

It can be used for a broad spectrum of applications. The main is image enhancement, the other include edge and point of 

interest detection. 

Image sharpening



Fundamentals of linear filtering (3)
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Convolution and correlation: there are two closely related concepts that must be understood clearly when performing linear 

spatial filtering. One is convolution and the other is correlation.
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Equation Comments

1D convolution Convolution F(x) of two functions f(x), g(x) is defined as integral.

2D discrete 

convolution

When convolution  is applied to digital image, the above formulation 

changes in tow ways: 

(i) a double integral must be used. 

(ii) integration must be changed into discrete summation,

in this new form, w(x,y) is the spatial convolution mask. 

2D discrete 

correlation

The fact that the mask has to be inverted before it is applied is 

inconvenient for visualizing the process of convolution. The usual 

approach is to invert the mask, convolution can be then reformulated 

in term of correlation.













b

bv

a

au

vyuxfvuwyxF

yxfyxwyxF

),(),(),(

),(),(),(













b

bv

a

au

vyuxfvuwyxF

yxfyxwyxF

),(),(),(

),(),(),( o



a=b=1, w is

w11 w12 w13

w21 w22 w23

w31 w32 w33

Fundamentals of linear filtering (4)

Convolution and correlation: there are two closely related concepts that must be understood clearly when performing linear 

spatial filtering. One is convolution and the other is correlation.
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we consider here f(x,y) with x,y=2
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Correlation is
w11 w12 w13

w21 w22 w23

w31 w32 w33

P11 P12 P13

P21 P22 P23

P31 P32 P33

w11 w12 w13

w21 w22 w23

w31 w32 w33

P11 P12 P13

P21 P22 P23

P31 P32 P33



7

Fundamentals of linear filtering (5)

if w is symmetric c a c

a b a

c a c

if we rotate w of 

Convolution equals correlation when 

w11 w12 w13

w21 w22 w23

w31 w32 w33

w33 w32 w31

w23 w22 w21

w13 w12 w11




c a c

a b a

c a c

rotated w is then similar

Convolution and correlation: there are two closely related concepts that must be understood clearly when performing linear 

spatial filtering. One is convolution and the other is correlation.



Fundamentals of linear filtering (6)
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Correlation of a mask w(u,v) with  discrete unit impulse (x,y)

yields a rotated version of the mask at the position of the 

impulse.

Convolution of a mask w(u,v) with  discrete unit impulse (x,y)

yields a copy (i.e. not rotated) of the mask at the position of the 

impulse.
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The discrete unit impulse (x,y) is a generalized function such 

that it is zero for all values of the parameter except at one point. 

In the context of mathematic and signal processing, it is often 

referred to as the Dirac delta function.
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Convolution and correlation: there are two closely related concepts that must be understood clearly when performing linear 

spatial filtering. One is convolution and the other is correlation.



Fundamentals of linear filtering (7)
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Preserving operations: the linear operators, convolution and correlation, preserve the operations of vector addition 

and scalar multiplication i.e.
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Mathematical 

methods
masks

Linear filtering 

(i.e. convolution, 

correlation)

Result

design of

Image

apply for

respect 

properties of

Mathematical tools are

- statistic-based functions 

- probability-based functions 

- derivative-based operations

Fundamentals of linear filtering (8)

Generating spatial filter mask: convolution and correlation are ways to process input of pixel. The real challenge with 

linear filtering is to generate spatial filter masks w and their coefficients. These coefficients are defined according to 

mathematical methods, keeping in mind that all we can do with linear filtering is to implement sum of products. 



Methods Type Application

Mean filter

Mean filtering
EnhancementParametric low-pass filter

Gaussian filter

High boost filter Sharpening

Basic operators

Derivative filters

1st order
Edge detection

Improved operators

Differential Gradient

Canny-edge operator

Laplacian detector

Derivative filters

2sd order

Key-point detection

Sharpening filter Sharpening

Laplacian of Gaussian 

(LoG)
Key-point detection
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Fundamentals of linear filtering (9)



Linear filtering

1. Fundamentals of linear filtering

2. Mean filtering

3. Derivative filters - 1st order

4. Derivative filters - 2sd order

5. Combining operators
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Methods Type Application

Mean filter

Mean filtering
EnhancementParametric low-pass filter

Gaussian filter

High boost filter Sharpening

Basic operators

Derivative filters

1st order
Edge detection

Improved operators

Differential Gradient

Canny-edge operator

Laplacian detector

Derivative filters

2sd order

Key-point detection

Sharpening filter Sharpening

Laplacian of Gaussian 

(LoG)
Key-point detection
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Mean filtering (1)
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Mean filtering (1)

“Mean (or averaging) filtering”

Mean filtering: considering a mask w, a mean 

filtering is the standard average of the pixel 

under the mask.
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Mean filtering (2)

“Parametric filtering”
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Comparing to the mean filter, the 

parametric filter is less restrictive. 

More b is higher, less the filter will 

have impact on salt and pepper noise.
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specification 

of a, b is free

Parametric mean filtering: considering a 

mask w, a parametric mean filtering is a 

weighted average of the pixel under the mask.
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Mean filtering (3)

“Gaussian  filtering”
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We can catch the values within a w mask 

initial image gaussian filtering 

with a se of size = 55, and  = 5

The size of w must depend of the  value, 97% of the Gaussian 

sum is covered in the range 3, then the mask should be 

designed such as n  6, with n the size of the mask.
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Gaussian filtering: considering a mask w, a 

Gaussian filtering is a parametric mean filtering 

where weights are defined according to a 

Gaussian function.



Mean filtering (4)

“High boost filtering”

blurred 

image

Convolution with 

blur filter (mean, 

Gaussian)

Subtracting 

operator

Adding 

operator
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original 
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unsharp mask
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blurred 

image

unsharp 

mask

High boost 

filtering

original 
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High boost 

k=2

High boost 

k=10

K is the weight of  

the high boost filter

k Filter

0 no filter

<1 weak unsharp masking

1 Unsharp masking

>1 High Boost filtering
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Linear filtering

1. Fundamentals of linear filtering

2. Mean filtering

3. Derivative filters - 1st order

4. Derivative filters - 2sd order

5. Combining operators
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Derivative filters - 1st order

“Introduction”
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Methods Type Application

Mean filter

Mean filtering
EnhancementParametric low-pass filter

Gaussian filter

High boost filter Sharpening

Basic operators

Derivative filters

1st order
Edge detection

Improved operators

Differential Gradient

Canny-edge operator

Laplacian detector

Derivative filters

2sd order

Key-point detection

Sharpening filter Sharpening

Laplacian of Gaussian 

(LoG)
Key-point detection
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A B C A B

Scan line 6 6 6 6 5 4 3 2 1 1 1 1 1 1 6 6 6 6 6

1st derivative 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 5 0 0 0 0 Na

Derivative filters - 1st order 

“Basic operators” (1)
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Edge detection: many approaches to image interpretation are 

based on edges, since tit is insensitive to contrast 

modifications. The edge is at the position of the step change, 

To detect edge we can use first-order differentiation. The basic 

definition of the first-order of a one dimensional function f(x) 

is the difference

a ramp

a step

A

A

B

When computing the first-derivative, we subtract the value 

of the function at that location from the next point. It is a 

look ahead operation

Properties of 1st derivative are

A. Must be zero on areas of constant intensity

B. Must be non zero at the onset of an intensity ramp 

or end of a step

C. Must be non zero along ramps

B

C



Derivative filters - 1st order 

“Basic operators” (2)
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Implementing a first-order differentiation                                   with a convolution (i.e. correlation) operation, considering hx = 1, 

is obtained with masks            for convolution (           for correlation).   
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Derivative filters - 1st order 

“Basic operators” (3)
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In practice, negative version of a first-order differentiation                                     is also commonly used, considering hx = 1, masks 

are            for convolution (           for correlation).   
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Derivative filters - 1st order 

“Basic operators” (4)

Vertical edge detector: differencing vertically adjacent points will detect 

horizontal changes and is called vertical edge detector, it can be obtained with  

with

-1

1

1yhwith

-1 1correlation mask is

Horizontal edge detector: differencing horizontality adjacent points will detect 

vertical changes and is called horizontal edge detector, it can be obtained with  

correlation mask is
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Derivative filters - 1st order 

“Basic operators” (5)

with

-2 1

1

convolution mask is

Horizontal/Vertical edge detector: combining the two gives an 

operator that can detect vertical and horizontal edge together, that is 
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Roberts cross operator (1965) was one of the earliest edge detection 

operators. It implement a version of basic first-order detection and 

used two masks that differentiate pixel values in a diagonal manner, as 

opposed to along the axes directions. 

The two masks are called M+ and M-. 

1
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1
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M- M+



Methods Type Application

Mean filter

Mean filtering
EnhancementParametric low-pass filter

Gaussian filter

High boost filter Sharpening

Basic operators

Derivative filters

1st order
Edge detection

Improved operators

Differential Gradient

Canny-edge operator

Laplacian detector

Derivative filters

2sd order

Key-point detection

Sharpening filter Sharpening

Laplacian of Gaussian 

(LoG)
Key-point detection
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Derivative filters - 1st order 

“Improved operators” (1)

Analysis of the basic operators: Taylor series reveals that differencing adjacent points provides  an estimation of the first-

order derivative at a point. 

Equation Comments

Taylor series 

(general form)

We consider

• f(x), a real (or complex-valued) function that is 

infinitely differentiable   

• x, a real (or complex) number where f(x) can 

be defined in the neighborhood

• x0, a variable describing f

The Taylor series of f(x) in x is

Taylor series of 

f(x+h), f(x-h)

If the difference is taken between points separated 

by h, then the Taylor expansion for f(x+h) and

f(x-h) are

Precision of first 

derivative with 

an error term 
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By re- arrangement, the first-order derivative f’(x) 

can be defined as follow, with an error term O(h)

Precision of first 

derivative with 

an error term 

O(h2)

By differencing f(x+h), f(x-h), we obtain the first-

order derivative as follow, with an error term 

O(h2), With h<1, this error is clearly smaller than 

an error term O(h)
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Derivative filters - 1st order 

“Improved operators” (2)

Vertical edge detector: differencing vertically adjacent points will detect 

horizontal changes and is called vertical edge detector, it can be obtained with  

with

-1

0

1

1yhwith

-1 0 1convolution mask is

Horizontal edge detector: differencing horizontality adjacent points will detect 

vertical changes and is called horizontal edge detector, it can be obtained with  

convolution mask is
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Derivative filters - 1st order 

“Improved operators” (3)

Prewitt operator: it is prudent to incorporate averaging within the edge detection process,  we can then  extend the horizontal 

and vertical edge detectors as follow. These give the Prewitt edge detection operator.
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Derivative filters - 1st order 

“Improved operators” (4)
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Soblel operator: a full discussion of edge detection problem involves consideration of the accuracy with which edge 

magnitude and orientation can be estimated.  Prewitt operator was found to lead to an angular error varying from 0° to 7,38°

[Pratt79].  To reduce the error (to 1,36°), the weight at the central pixel can be doubled. This gives the Sobel operator that was 

the most popular edge detector until the development of edge detection techniques.   
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The digital approximation to the first-order derivatives using the Sobel masks with correlation is then given by
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Derivative filters - 1st order 

“Differential Gradient”

Differential Gradient (DG): the aim of edge detection is to find where the operator response is sufficiently large to be taken as a 

reliable indicator of the edge of an object. In the Differential Gradient (DG) approach, we are using gradients and their magnitudes 

to detect the maximum response. For a function f(x,y), the gradient, its magnitude and direction from partial derivative are: 
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Derivative filters - 1st order 

“Canny edge detector” (1)

35

Canny edge detector is interested with optimal edge detection, involving 

a good detection – the algorithm should mark as many real edges in the image as possible.

a good localization – edges marked should be as closed as possible to the edges in the real image.

a minimal response – a given edge in the image should only be marked once.

The optimal function in Canny’s detector is described by the sum of four exponential terms, but it can be approximated by 

the first derivative of a Gaussian. Summarizing, the Canny edge detection algorithm consists of the following basic steps

1. Noise reduction smoothes the input image with a Gaussian filter.

2. Finding intensity gradient returns the values of 1st derivative filters, compute the gradient magnitude and angles. 

3. Non-maximum suppression applies non-maxima suppression to the gradient magnitude image.

4. Hysteresis thresholding uses double thresholding and connectivity analysis to detect and link edges.



Derivative filters - 1st order 

“Canny edge detector” (2)
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1. Noise reduction: Smooth the input image with a Gaussian filter.

e.g. mask 33 with a 2 = 1



Derivative filters - 1st order 

“Canny edge detector” (3)
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2. Finding intensity gradient: return the values of 1st derivative filters, compute the gradient magnitude and angles. 

e.g. we compute               with Sobel based operators, and then the magnitude and angle image
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Derivative filters - 1st order 

“Canny edge detector” (4)
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Derivative filters - 1st order 

“Canny edge detector” (5)
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3. Non-maximum suppression: Apply non-maxima suppression to the gradient magnitude image.

a. to discretize (x,y) in four main directions: horizontal, vertical and the two diagonals 

a. considering the direction dk = (x,y), if the value M(x,y) is less than at least one of its two neighbors along dk

let gN(x,y) = 0, otherwise let gN(x,y) = M(x,y)
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Derivative filters - 1st order 

“Canny edge detector” (6)
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4. Hysteresis thresholding uses double thresholding and connectivity analysis to detect and link edges.

a. to compute the gNH and gNL images, corresponding to low and high thresholds TL,TH, of gN

e.g. with TL =5 and TH =70
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Derivative filters - 1st order 

“Canny edge detector” (7)
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4. Hysteresis thresholding uses double thresholding and connectivity analysis to detect and link edges.

b. for each pixel p in gNH, to mark as valid edges in gNH all the weak pixels N8(p) in gNL (i.e. 8 connected to p) 

let say this new image gNHC(x,y)

),( yxgNH ),( yxgNHC ),(),( yxgNHyxgNHC 



Derivative filters - 1st order 

“Canny edge detector” (8)
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Linear filtering

1. Fundamentals of linear filtering

2. Mean filtering

3. Derivative filters - 1st order

4. Derivative filters - 2sd order

5. Combining operators
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Derivative filters - 2sd order

“Introduction” (1)

44

The basic definition of the second-order of a one dimensional 

function f(x) is the difference
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Derivative filters - 2sd order

“Introduction” (2)
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The basic definition of the second-order of a one dimensional 

function f(x) is the difference

When computing the second-derivative, we use the 

previous and the next point sin the computation. We avoid 

the outside range by limiting the computation from the 

second to the penultimate points.

Properties of 2sd derivative are

A. Must be zero on areas of constant intensity

B. Must be non zero at the onset and end of an 

intensity ramp or step

C. Must be zero along ramps of constant slope
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Derivative filters - 2sd order

“Introduction” (3)
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Derivative filters - 2sd order

“Laplacian detector” (1)
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Laplacian operator: in image processing, second-order derivative are implemented using Laplacian. 

For a function f(x,y) the Laplacian is defined as : 
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Derivative filters - 2sd order

“Laplacian detector” (2)
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Laplacian operator: in image processing, second-order derivative are implemented using Laplacian. 

How to convert Laplacian to structuring element ?
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Derivative filters - 2sd order

“Laplacian detector” (3)
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Derivative filters - 2sd order

“Laplacian detector” (4)
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Laplacian scaled Laplacian



Derivative filters - 2sd order

“Laplacian detector” (5)
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Derivative filters - 2sd order

“Laplacian detector” (6)
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Derivative filters - 2sd order

“Sharpening filter”
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Derivative filters - 2sd order

“Laplacian of Gaussian (LoG)” (2)
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Derivative filters - 2sd order

“Laplacian of Gaussian (LoG)” (3)
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LoG filtering
Zero-crossings 

detection
Image Result

Zero-crossings detection

with Laplacian

Zero-crossings detection

with LoG

The Marr-Hildreth detector



Derivative filters - 2sd order

“Laplacian of Gaussian (LoG)” (4)
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It is possible to approximate the LoG filter by a difference of 

Gaussians (DoG) in the following equation, with 1> 2

To make meaningful comparison between the LoG and DoG, the 

value of for the LoG must be selected in the following equation so 

that the LoG and DoG have the same zero crossings.














2

2

22

22

2

2

1

21

21

ln









DoG (1=1.199, 2=0.75)

LoG (=0.86)

Mean square error 7.510-5

  ),(, yxLoGyxDoG 

Although the zeros crossings of the LoG and Dog will be the same, their amplitude scales will be different. 

We can make them compatible by scaling both functions.

DoG (1=1.005, 2=0.995)

LoG (=1.0)

Mean square error 3.810-8



Linear filtering

1. Fundamentals of linear filtering

2. Mean filtering

3. Derivative filters - 1st order

4. Derivative filters - 2sd order

5. Combining operators
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Combining operators (1)

62

(a)

Sharpening 

filter

Image

Sobel

detector

Mean 

filtering

Product 

operator

Adding 

operator
Power low

(a)

(d)

(b) (c)

(e)

(f) (g)

Nuclear whole body: Our objective is to enhance this 

image by sharpening it and by bringing out more of the 

skeletal details 



Combining operators (2)
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(a)

Sharpening 

filter

Image

Sobel

detector

Mean 

filtering

Product 

operator

Adding 

operator
Power low

(a)

(d)

(b) (c)

(e)

(f) (g)

(d)

Nuclear whole body: Our objective is to enhance this 

image by sharpening it and by bringing out more of the 

skeletal details 



Combining operators (3)
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(a) (b) (c)

Sharpening 

filter

Image

Sobel

detector

Mean 

filtering

Product 

operator

Adding 

operator
Power low

(a)

(d)

(b) (c)

(e)

(f) (g)

Nuclear whole body: Our objective is to enhance this 

image by sharpening it and by bringing out more of the 

skeletal details 



Combining operators (4)
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(c) (d)(a) (e)

Sharpening 

filter

Image

Sobel

detector

Mean 

filtering

Product 

operator

Adding 

operator
Power low

(a)

(d)

(b) (c)

(e)

(f) (g)

Nuclear whole body: Our objective is to enhance this 

image by sharpening it and by bringing out more of the 

skeletal details 



Combining operators (5)
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(a) (e) (f) (g)

Sharpening 

filter

Image

Sobel

detector

Mean 

filtering

Product 

operator

Adding 

operator
Power low

(a)

(d)

(b) (c)

(e)

(f) (g)

Nuclear whole body: Our objective is to enhance this 

image by sharpening it and by bringing out more of the 

skeletal details 


