
Operating Systems

“Process description and control”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/operating1.html

Process description and control (1)

2

A process(us) is an instance of a computer program that is being executed. It

contains the program code and the liked data.

PCB “Process Control Block” (i.e. Task Controlling Block or Task Structure) is a

data structure in the operating system kernel containing the information needed to

manage a particular process.

Processus Table is an area of memory protected from normal user access, to manage

the PCBs, as they contain critical information for processes.

A thread takes part of a process but it has its own program counter, stack and

registers. The threads belonging to a process share common code and data.

TCB “Thread Control Block” is a data structure in the operating system kernel

containing the information needed to manage a particular thread (PCB look-like).

PCB-A
PCB-B

Process table

Main

memory

R
ef

er
 t

o

R
ef

er
 t

o

K
er

n
el

 s
p

ac
e

W
o
rk

in
g
 s

p
ac

e

*PCB-A

*PCB-B

*PCB-X

Queue 1

*PCB-X

*PCB-A

*PCB-B

Queue 2

Data

Program

Data

Program

Process A

Process B

Process description and control (2)

re
la

te
d

 t
o

 p
ro

ce
ss

m
an

ag
em

en
t

re
la

te
d

 t
o

 d
at

a

m
an

ag
em

en
t

3

List of frequent data appearing in a PCB

Process identifier (pid) refers the process in the OS.

Group data, hierarchy information (e.g. parents and childs), type of

process and group memberships.

CPU-scheduling information e.g. process priority, pointers to

scheduling queues, etc.

Process state e.g. ready, running, waiting, terminated, etc.

Program counter (PC) refers the current execution state of the process.

CPU registers correspond to the current state of the CPU.

Security attributes refer the owner or set of permissions (allowable

operations) of the process.

Accounting information e.g. start time, end time, amount of CPU used,

real-time used, etc.

Etc.

Memory management information includes page and segment tables

on the executable code, call stack (to keep track of active subroutines

and/or other events), etc.

Operating system descriptors refer to the resources that are allocated

to the process, such as files, devices, other data sources.

Etc.

PCB-A
PCB-B

Process table

Main

memory

R
ef

er
 t

o

R
ef

er
 t

o

K
er

n
el

 s
p

ac
e

W
o
rk

in
g
 s

p
ac

e

*PCB-A

*PCB-B

*PCB-X

Queue 1

*PCB-X

*PCB-A

*PCB-B

Queue 2

Data

Program

Data

Program

Process A

Process B

Process description and control (3)

P1

CPU

allocation

t

P3

P2

t

t

scheduling diagram of processes

0

The process Pi is running

4

Multitasking (i.e. multiprogramming) is a method by which multiple

tasks share common processing resources such as a CPU. With a single

CPU, only one task can run at any time. Multitasking solves the problem

by scheduling the tasks i.e. which task must run on the CPU, and which

task must wait.

Process description and control (4)

5

Scheduling refers to the way processes are assigned to run on the CPU.

The aim of scheduling is to assign processes to be executed by the

processor over the time, in a way that meets objectives of the system,

such as the response time, throughput and processor efficiency.

In many systems, the scheduling activity is broken into three separate

functions: long, medium and short-term scheduling.

Scheduling affects the performance of the system because it determines

which processes will wait and which will progress. Scheduling is a

matter of managing queues to minimize queuing delay and to optimize

performance in a queuing environment.

…

2. long-term

scheduler

CPU

4. short-term

scheduler
5. dispatcher

…

…

3. ready

queue
1. job

queue

7. mid-term

scheduler

…

8. suspend

queue(s)

…

…

6. blocked

queue

Main memory

Process description and control (5)

6

1. Job queue stores processes to enter in the system, they are put into

the job queue. The job queue contains the list of processes to create.

2. Long term scheduler (admission scheduler) decides which

processes are to be admitted to the ready queue, they are then created

and loaded into the main memory.

3. Ready queue is a data structure to keep in the main memory the

processes that are in a ready state.

4. Short-term scheduler (i.e. CPU scheduler) decides which of the

ready, in-memory processes, are to be executed (allocated to the CPU)

following a clock interrupt, an I/O interrupt, an operating system call or

ayn other form of signal.

5. Dispatcher gives the control of the CPU to the process selected by

the short-term scheduler.

…

2. long-term

scheduler

CPU

4. short-term

scheduler
5. dispatcher

…

…

3. ready

queue
1. job

queue

7. mid-term

scheduler

…

8. suspend

queue(s)

…

…

6. blocked

queue

Main memory

Process description and control (6)

7

6. Waiting/Blocked queue is a data structure to keep in the main

memory the processes in a blocked state.

7. Mid-term scheduler removes processes from the main memory (if

full) and places them on a secondary memory (such as a disk drive) and

vice-versa.

8. Blocked suspend queue(s) contain lists of processes moved to the

disk (i.e. swapping). Two queues are usually managed, related to the

processes in a suspended-blocked or a suspended-ready state.

…

2. long-term

scheduler

CPU

4. short-term

scheduler
5. dispatcher

…

…

3. ready

queue
1. job

queue

7. mid-term

scheduler

…

8. suspend

queue(s)

…

…

6. blocked

queue

Main memory

Process description

and control (7)

8

TerminatedNew

Ready
Running

Waiting/

Blocked

I/O or event

completion

Scheduler

dispatch I/O or event

wait

Admitted
Interrupt

Exit

Suspended

ready

Suspended

blocked

Suspend

Activate

I/O or event

completion

Short-termLong-term

Mid-term

Disk memory Main memory

Long-term

Admitted

Activate

Suspend

As a process executes, it changes its state. The state of a process is defined in part by the current activity of the process.

New: in this state, the process awaits for an admission to the ready state. This admission will be approved or delayed

by a long-term, or admission, scheduler.

Ready: a ready process has been loaded into the main memory and the ready queue and is awaiting for an execution

on the CPU (to be loaded into the CPU by the dispatcher following the decision of the short-term scheduler).

Running: process is being executed by CPU.

Terminated: a process may be terminated, either from the running state by completing its execution or by explicitly

being killed. If a process is not removed from the memory, this state may also be called zombie.

Process description

and control (8)

9

TerminatedNew

Ready
Running

Waiting/

Blocked

I/O or event

completion

Scheduler

dispatch I/O or event

wait

Admitted
Interrupt

Exit

Suspended

ready

Suspended

blocked

Suspend

Activate

I/O or event

completion

Short-termLong-term

Mid-term

Disk memory Main memory

Long-term

Admitted

Activate

Suspend

As a process executes, it changes its state. The state of a process is defined in part by the current activity of the process.

Waiting/Blocked: a process that cannot execute until some events occurs, such as the completion of an I/O operation

or a signal. Every blocked process is moved to the blocked queue.

Suspended blocked: a process is put in the disk memory by the mid-term scheduler (i.e. swapping out).

Suspended ready: a process is ready to be loaded from the disk to the main memory (i.e. swapping in).

Process description and control (9)

10

job queue ready queue

CPU

ready-suspend

queue

blocked-suspend

queue

blocked queue

short-term

scheduling

mid-term

scheduling

long-term

scheduling

medium-term

scheduling

mid-term

scheduling

mid-term

scheduling

I/O or

event wait

I/O or event

completion

Exit

Queuing diagram for scheduling shows the queues involved in the state transitions of processes.

Rq. For simplicity, this diagram shows new processes going directly to the ready state without the option of either

the ready state or either the ready/suspend state.

Process description and control (10)

11

New  Ready: the OS will move a process from the new state to the ready state (i.e. from the job queue to the ready

queue) when it is prepared to take an additional process. Most of the systems set some limits based on the number of existing

processes in memory.

Ready  Running: when it is time to select a process to run, the OS chooses one of the processes in the ready state. This is

the job of the scheduler.

Running  Terminated: the currently running process is terminated by the OS if the process indicates that it has

completed, or if it aborts.

Running  Ready: the most common reasons for this transition are

(1) in the case of a preemptive scheduling, the OS assigns different levels of priority to different processes;

thus a process A can preempt a process B and B will go to the ready state and shift to the ready queue.

(2) the running process has reached the maximum allowable time for an uninterrupted execution (all the

multiprogramming OS impose this type of time discipline).

(3) a process may voluntarily release the control of the processor (e.g. a background process that performs some

accounting or maintenance functions periodically).

Process description and control (11)

12

Running  Blocked: a process is put in the blocked state (and moves to the blocked queue) if

(1) it requests something (i.e. a resource) for which it must wait such as a file, a shared section, etc. that is not

immediately available (e.g. a down operation on a Mutex).

(2) it requests a service to the OS that is not prepared to perform immediately. A request to the OS is usually in

the form of a system service call; that is; a call from the running program to a procedure that is part of the OS.

Blocked  Running: a process in the blocked state is moved to the ready state (and moved to the ready queue) when the

event for which it has been waiting occurs (e.g. up operation on a Mutex, system call return, etc.).

Ready  Terminated: this transition is not shown on the state and queuing diagrams, in some systems, a parent may

terminate a child process at any time. Also, if a parent terminates, all child processes associated wit that parent may terminate.

Terminated  Ready: this transition has nosense.

