
Operating Systems

“Uniprocessor scheduling”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/operating1.html

1



Operating Systems

“Uniprocessor scheduling”

1. About short-term scheduling

2. Context switch, quantum and ready queue

3. Process and diagram models

4. Scheduling algorithms

4.1. FCFS scheduling

4.2. Priority based scheduling

4.3. Optimal scheduling

4.4. Time-sharing based scheduling

4.5. Priority/Time-sharing based scheduling

5. Modeling multiprogramming

6. Evaluation of algorithms

2



About short-term scheduling (1) 
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(Short-term) scheduler is a system process running an algorithm to decide which of the ready processes 

are to be executed (i.e. allocated to the CPU). Different performance criteria have to be considered:

Response time: total time between submission of a request and its completion

Predictability: to predict execution time of processes and avoid wide variations 

in response time

Waiting time: amount of time a process has been waiting in the ready queue

Throughput: number of processes that complete their execution per time unit

CPU utilization: to keep the CPU as busy as possible

Fairness : a process should not suffer of starvation i.e. never loaded to CPU

Enforcing priorities:  when processes are assigned with priorities, the scheduling policy should 

favor the high priority processes

Balancing resources: the scheduling policy should keep the resources of the system busy

Etc. P
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About short-term scheduling (2) 

algorithm’s 

features

on-line off-line

preemptive no preemptive

relative deadline strict deadline

static priority dynamic priority

optimal not optimal

Processus 

model

independants dependants

without resource with resource

aperiodic periodic

Type of

system

mono-core multi-core

centralized distributed

Scheduling

problems

on-line

both

relative deadline

both

both

both

both

aperiodic

mono-core

centralized

Standard parameters in 

a time-sharing system

4

Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded 

systems, etc.), different scheduling problems have to be considered:

Parameters



About short-term scheduling (3) 
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Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded 

systems, etc.), different scheduling problems have to be considered:

On-line/off-line: off-line scheduling builds complete planning sequences with all the parameters of the process. 

The schedule is known before the process execution and can be implemented efficiently. 

Preemptive/non-preemptive: in a preemptive scheduling, an elected process may be preempted and the 

processor allocated to a more urgent process with a higher priority.  

Relative/strict deadline: a process is said with no (or a relative) deadline if its response time doesn’t affect the 

performance of the system and jeopardize the correct behavior.

Dynamic/static priority: static algorithms are those in which the scheduling decisions are based on fixed 

parameters, assigned to processes before their activation. Dynamic scheduling employs parameters that may 

change during the system evolution. 

Optimal: an algorithm is said optimal if it minimizes a given cost function. 



About short-term scheduling (4) 
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Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded 

systems, etc.), different scheduling problems have to be considered:

Dependent /independent process: a process is dependent (or cooperating) if it can affect (or be affected by) the 

other processes. Clearly, any process than share data and uses IPC is a cooperating process. 

Resource sharing: from a process point of view, a resource is any software structure that can be used by the 

process to advance its execution.

Periodic/aperiodic process: a process is said periodic if, each time it is ready, it releases a periodic request.

Mono-core / Multi-core: when a computer system contains a set of processor that share a common main 

memory, we’re talking about a multiprocessor /multi-core scheduling.

Centralized/distributed: scheduling is centralized when it is implemented on a standalone architecture. 

Scheduling is distributed when each site defines a local scheduling, and the cooperation between sites leads to a 

global scheduling strategy. 



About short-term scheduling (5) 

The general algorithm of a short-term scheduler is

While

1.  A timer interrupt causes the scheduler to run once every time slice

2.  Data acquisition (i.e. to list processes in the ready queue and update their parameters)

3.  Selection of the process to run based on the scheduling criteria of the algorithm

4.  If the process to run is different of the current process, to order to the dispatcher to switch the context

5. System execution will go on …

The real problem with the scheduling is the definition of the scheduling criteria, algorithm is little discussed.
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Context switch, quantum and ready queue (1)

Process P0 Operating system

Dispatcher is in charge of passing the control of the CPU to the process selected by the short-term scheduler.

Context switch is the operation of storing and restoring state (context) of a CPU so that the execution can be resumed from the 

same point at a later time. It is based on two distinct sub-operations, state safe and state restore. Switching from one process to 

another requires a certain amount of time (saving and loading the registers, the memory maps, etc.).

Quantum (or time slice) is the period of time for which a process is allowed to run in a preemptive multitasking system. The 

scheduler is run once every time slice to choose the next process to run. 

Process P1

save state into PCB0

reload state from PCB1

save state into PCB1

reload state from PCB0

interrupt or system call

exit

P0 running, P1 waiting

Context switch

P0 / P1 waiting

P0 waiting, P1 running

Context switch

P0 / P1 waiting

P0 running, P1 waiting
exit

interrupt or 

system call

9
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Context switch, quantum and ready queue (2)
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Cycle Instructions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

5000

5001

5002

5003

5004

5005

100

101

102

103

104

105

8000

8001

8002

8003

100

101

102

103

104

105

12000

12001

12002

12003

12004

12005

Process A

Dispatcher

Process B

Dispatcher

Process C

A starts

A interrupted

B starts

B ends

C starts

C interrupted

e.g. We consider the case of 

i. Three processes A, B, C and a dispatcher which traces (i.e. 

instructions listing), given in the next table. 

ii. Processes are scheduled in a predefined order (A, B then C) 

iii. The OS here only allows a process to continue for a 

maximum of six instruction cycles (the quantum), after 

which it is interrupted.

Process A Process B Process C Dispatcher

5000

5001

….

5011

8000

8001

8002

8003

12000

12001

…

12011

100

101

…

105



Context switch, quantum and ready queue (3)
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Cycle Instructions

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

100

101

102

103

104

105

5006

5007

5008

5009

5010

5011

100

101

102

103

104

105

12006

12007

12008

12009

12010

1211

Dispatcher

Process A

Dispatcher

A continues

A ends

Process C

C continues

C ends

e.g. We consider the case of 

i. Three processes A, B, C and a dispatcher which traces (i.e. 

instructions listing), given in the next table. 

ii. Processes are scheduled in a predefined order (A, B then C) 

iii. The OS here only allows a process to continue for a 

maximum of six instruction cycles (the quantum), after 

which it is interrupted.

Process A Process B Process C Dispatcher

5000

5001

….

5011

8000

8001

8002

8003

12000

12001

…

12011

100

101

…

105



Context switch, quantum and ready queue (4)
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5 quanta / 4 context switches (n-1 quanta)

28 process instruction (6+4+6+6+6)

64=24 dispatcher instructions

a maximum of two processes in the ready queue

Quantum < i i+1 i+2 i+3 i+4

Instruction cycle Na 6 4 6 6 6

Scheduled process 

by the CPU

Na A B C A C

Ready queue state A

B

C

B

C

C

A

A C

The length of the quantum can be critical to balance the 

system performance vs. process responsiveness. 

• If the quantum is too short then the scheduler will 

consume too much processing time. 

• If the quantum is too long, processes will take longer to 

respond to inputs.

e.g. We consider the case of 

i. Three processes A, B, C and a dispatcher which traces (i.e. 

instructions listing), given in the next table. 

ii. Processes are scheduled in a predefined order (A, B then C) 

iii. The OS here only allows a process to continue for a 

maximum of six instruction cycles (the quantum), after 

which it is interrupted.

Process A Process B Process C Dispatcher

5000

5001

….

5011

8000

8001

8002

8003

12000

12001

…

12011

100

101

…

105



Context switch, quantum and ready queue (5)

First

Last

Next

Data

PCB1

Next

Data

PCB2

Next

Data

PCB3

Next

Data

PCB4
First, last and next are PCB pointers in the list. 

If we delete a PCB (i), pointer of the previous 

PCB (i-1) jumps to next one (i+1)  i.e. it is not 

necessary to fill the empty space or to move 

(copy) the PCBs.

Linked list of PCBs
Head of the 

queue

Delete operation
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The  ready queue is a huge-data list generally composed of PCB pointers, it is stored 

as a linked list in the main memory, managing pointers from the first to the last PCB.
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Process and diagram models (1)

w0 s e

RT

WT WTC C

t

C(t)

t
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C(t)

t

C

0

Process model and context parameters

PID process number

rank rank in the ready queue

w0 wakeup time

C capacity

P priority

s start time (run as a first time)

e end time (termination)

RT = e- w0 response time

WT = RT-C waiting time

C(t) residual capacity  at t

C(w0) = C, C(e)=0

T(t)=C-C(t) CPU time consumed at t

T(w0)=0, T(e) = C, 

E(t)=t-w0 CPU time entitled

E(w0)=0, E(e)=RT

WT(t)=E(t)-T(t)   waiting time at t

WT(w0)=0, WT(e)=WT
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Process and diagram models (2)

w0 1 (if = s)

C 6

P Na

Process

1 4 6 7 10 12 t

16

s 1

e 12

RT 12-1 = 11

WT 11-6 = 5

Process model and context parameters

PID process number

rank rank in the ready queue

w0 wakeup time

C capacity

P priority

s start time (run as a first time)

e end time (termination)

RT = e- w0 response time

WT = RT-C waiting time

C(t) residual capacity  at t

C(w0) = C, C(e)=0

T(t)=C-C(t) CPU time consumed at t

T(w0)=0, T(e) = C, 

E(t)=t-w0 CPU time entitled

E(w0)=0, E(e)=RT

WT(t)=E(t)-T(t)   waiting time at t

WT(w0)=0, WT(e)=WT
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Process and diagram models (3)

Process

1 4 6 7 10 12 t

Process model and context parameters

co
n
te

x
t 
p

ar
am

et
er

s
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CPU burst time is an assumption of how long 

a process requires the CPU between I/O waits. 

It means the amount of time that a process uses 

the CPU without interruption. 

There is a direct and relationship between the 

durations of the burst tn to come and the 

residual capacity C(t) (i.e. any future burst is a 

fraction of the residual capacity):

Burst

id Position Duration t

t0 1, 4 4-1=3

t1 4, 12 (7-6)+(12-10)=3

next burst

within the 

same burst

ready queue

CPU

blocked queue

short-term 

scheduling

I/O wait

I/O completion

Exit

C(t) = �t�
∀�

I/O Interrupt S Interrupt I/O Interrupt

C t = 1 = 
� + 

 = 3 + 3
C t = 4 = 

 = 3



Process and diagram models (4)

18

Process behavior: some processes spend most of their 

time computing (time-bound), while others spend most of 

their time waiting for I/O (I/O bound).

The key factor is the length of the CPU burst, not the 

length of the I/O burst i.e. The I/O bound processes do not 

compute much between the I/O requests. 

It is worth nothing that as a CPU gets faster, processes 

tend to be bounded with I/O. As a consequence, resource 

scheduling become an important issue.

I/O bound process

I/O 

interrupt

I/O 

interrupt

I/O 

interrupt

I/O 

interrupt

Time bound process

CPU 

switch

CPU 

switch

CPU 

switch

fr
eq

u
en

cy

Burst duration (s)

Time measurement is related to the analysis of the duration of CPU 

bursts. The CPU bursts tend to have a frequency characterized as an 

exponential. This law varies from process to process and from 

computer to computer.



Process and diagram models (5)
• Gantt diagram

P1 P2 P3

t1 t2 t3t0

• Table

time or quantum 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

P1
C(t) 7-6 6-5 5-4 4-3 3-2 2-2 2-2 2-1 1-0

(t) 14-13 13-12 12-11 11-10 10-9 9-9 9-9 9-8 8-7

P2 C(t) 2-2 2-1 1-0

(t) 10-10 10-9 9-8

• Process diagram

id
 p

ro
ce

ss
u
s

variation of C(t) 

with an other criterion  (t)
x-x

x-x running process

waiting process

Process

t

P1

P2

P3

P1

Process

t

P3

P2

t

t

time or quantum 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

P1 C(t) 7 - 6 6 - 5 5 - 4 4 - 3 3 - 2 2 - 2 2 - 2 2 - 1 1 - 0

P2 C(t) 2 - 2 2 - 1 1 - 0

id
 p

ro
ce

ss
u
s

x-x

x-x running process

waiting process
variation of C(t) only

P1

Process

t

P1P2

P1

value when the 

quantum starts

C(t=2) = 5

value when the 

quantum stops

C(t=3) = 4

Scheduling diagrams vary from book to book 

and from lecture to lecture.

• The diagram is a text ….
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Algorithm Preemptive
Scheduling 

criterion
Priority

Predictable 

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority 

Scheduling
yes

process priority 

with aging
dynamic no

Respecting the priority and 

avoiding the fairness

Highest Response Ratio 

Next
no response ratio dynamic yes

Optimal 

response time

OptimizationShortest Job First yes/no
shortest remaining 

time

static/

dynamic
yes

Optimal 

waiting time

Time prediction no/yes
shortest predicted 

time
dynamic no

Achieving the 

predictability with the SJF

Guaranteed Scheduling yes CPU use ratio dynamic no
Enforcing the 

response time
Time sharing

Round-Robin yes
rank in the queue 

and round
dynamic no

Fair-Share Scheduling yes process priority dynamic no Respecting the priority and 

enforcing the response 

time

Priority & 

time sharingMultilevel feedback 

queue scheduling
yes

process priority 

and queue position

static/

dynamic
no



Processes Wakeup (w0) Capacity (C)

P1 0 24

P2 5 3

P3 9 3

P4 9 3
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Scheduling algorithms 

“First Come, First Served (FCFS)”

First Come First Serve (FCS): processes are 

scheduled regarding their positions in the ready 

queue (1, 2, 3, …). With equal arrival date 

(wakeup time) w0, the process id could be used

P1>P2>P3 etc. 

P1 P2 P3

24 27 300

P1 arrives at t=0, the 

single process in the 

ready queue

P2, P3, P4 arrive at t=5 and t=9 while 

P1 is scheduled, in a non-preemptive 

policy P1 will terminate first

When P1 ends, P2, P3, P4 

are scheduled regarding their 

arrival dates w0 in the ready 

queue, then P2 starts

P4

33

With a similar wakeup time w0

for P3, P4, we use the process id 

P3>P4 for scheduling



Algorithm Preemptive
Scheduling 

criterion
Priority

Predictable 

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority 

Scheduling
yes

process priority 

with aging
dynamic no

Respecting the priority and 

avoiding the fairness

Highest Response Ratio 

Next
no response ratio dynamic yes

Optimal 

response time

OptimizationShortest Job First yes/no
shortest remaining 

time

static/

dynamic
yes

Optimal 

waiting time

Time prediction no/yes
shortest predicted 

time
dynamic no

Achieving the 

predictability with the SJF

Guaranteed Scheduling yes CPU use ratio dynamic no
Enforcing the 

response time
Time sharing

Round-Robin yes
rank in the queue 

and round
dynamic no

Fair-Share Scheduling yes process priority dynamic no Respecting the priority and 

enforcing the response 

time

Priority & 

time sharingMultilevel feedback 

queue scheduling
yes

process priority 

and queue position

static/

dynamic
no



Priority Scheduling (PS): when a process is 

finished, we shift to the process with the highest 

priority (i.e. the lowest P value).

Processes Wakeup (w0) Capacity (C) Priority (P)

P1 0 6 3

P2 1 1 1

P3 2 2 4

P4 3 1 5

P5 4 6 2

24

Scheduling algorithms 

“Priority Scheduling (PS)” (1)

P1 P2 P5 P3 P4

0

P1 alone in the ready 

queue arrives at t=0

6 7

At t=6, P2, P3, P4, P5 are in the ready 

queue, the scheduling will go on with the 

priority order P2>P5>P3>P4 

13 15 16



Scheduling algorithms 

“Priority Scheduling (PS)” (2)

Priority Scheduling (PS): the preemptive case, at 

any time, we look for the process of the highest 

priority (i.e. the lowest P value).

Processes Wakeup (w0) Capacity (C) Priority (P)

P1 0 6 3

P2 1 1 1

P3 2 2 4

P4 3 1 5

P5 4 6 2

t or q 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16

P1 C(t) 6-5 5-5 5-4 4-3 3-3 3-3 3-3 3-3 3-3 3-3 3-2 2-1 1-0

P2 C(t) 1-0

P3 C(t) 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-1 1-0

P4 C(t) 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-0

P5 C(t) 6-5 5-4 4-3 3-2 2-1 1-0

P2 of highest priority

takes the CPU
P5 of highest priority 

preempts P1

25

When a process ends, the 

process with the lowest 

priority is scheduled
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Dynamic Priority Scheduling (DPS): works with 

a dynamic priority P(t) and is a preemptive algorithm

1. a process starts with a P(t=w0) = P, its initial priority value

2. when a process is running, P(t) is constant

3. when a process is waiting P(t+1) = P(t)+1

4. at any time, the process of highest P(t) takes the CPU

5. if Pi(t) = Pj(t) for two processes i,j, thus we look for Pi (w0), Pj (w0)

6. when a process recovers the CPU at tn, we reset P(tn) = P(w0) = P

t or q 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16

P1 P(t) 1-2 2-3 3-4 4-5 5-6 1-1 1-2 2-3 3-4 4-5 5-6 6-7 1-1 1-2 2-3 3-4

P2 P(t) 3-4 4-5 5-6 3-3 3-4 4-5 5-6 3-3 3-4 4-5 5-6 3-3 3-4 4-5 5-6 3-3

P3 P(t) 5-5 5-5 5-5 5-6 5-5 5-6 5-5 5-6 5-5 5-5 5-5 5-6 6-7 5-5 5-5 5-6

Processes Wakeup (w0) Capacity (C) Priority (P)

P1 0  1

P2 0  3

P3 0  5

Equivalence case, 

we look for P (w0)

A context switch

we reset P(t)
Equivalence case, 

we look for P (w0)

P3 is running, 

P(t) is constant

Scheduling algorithms 

“Dynamic Priority Scheduling (DPS)”



Algorithm Preemptive
Scheduling 

criterion
Priority

Predictable 

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority 

Scheduling
yes

process priority 

with aging
dynamic no

Respecting the priority and 

avoiding the fairness

Highest Response Ratio 

Next
no response ratio dynamic yes

Optimal 

response time

OptimizationShortest Job First yes/no
shortest remaining 

time

static/

dynamic
yes

Optimal 

waiting time

Time prediction no/yes
shortest predicted 

time
dynamic no

Achieving the 

predictability with the SJF

Guaranteed Scheduling yes CPU use ratio dynamic no
Enforcing the 

response time
Time sharing

Round-Robin yes
rank in the queue 

and round
dynamic no

Fair-Share Scheduling yes process priority dynamic no Respecting the priority and 

enforcing the response 

time

Priority & 

time sharingMultilevel feedback 

queue scheduling
yes

process priority 

and queue position

static/

dynamic
no



Scheduling algorithms

“Highest Response Ratio Next (HRRN)” (1)

28

For each process, we would like to minimize a normalized turnaround time defined as 

with WTi(t) the waiting time of process i at t and Ci the capacity. Let’s note that 1  Ri(t)  

Considering a non-preemptive scheduling we have T(t) = 0 at t<s,  

then WT(t) = E(t) – (T(t)=0) = E(t) = t – w0, R(t) is then

The scheduling is non-preemptive and looks for the highest R(t) value at any context switch.

The idea behind this method is to get the mean response ratio low,  

so if a job has a high response ratio, it should be run at once to reduce the mean.

�� 
 = ��� 
 + ��
�� = ��� 


�� + 1

�� 
 = (
 − ��) + ��
�� = (
 − ��)

�� + 1

D
is

tr
ib

u
ti

o
n

RT

HRRN

Misc

scheduling 
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P1

0 3

P1 arrives at t=0, it is 

the single process in 

the ready queue and 

then scheduled

P2

P2 arrives at w0=2, the single 

waiting process in the ready 

queue, it is scheduled next

9

P3, P4 and P5 are here, we 

compute the Ri(t), we have 

R3(t) > R4(t) > R5(t), 

P3 is scheduled next

�� 
 = (9 − 4) + 4
4 = 9

4 = 2,25

�� 
 = (9 − 6) + 5
5 = 8

5 = 1,6

�� 
 = (9 − 8) + 2
2 = 3

2 = 1,5

P3

13

P4 and P5 are still waiting, with 

R5(t) > R4(t)  P5 is the next process. 

We observe a priority inversion between  P4, 

P5 at t=9 and t=13 due to the dynamic R(t)

�� 
 = (13 − 6) + 5
5 = 12

5 = 2,4

�� 
 = (13 − 8) + 2
2 = 7

2 = 3,5

P5

15

P4

20

P4 the last process is 

scheduled next

Scheduling algorithms

“Highest Response Ratio Next (HRRN)” (2)

For each process, we would like to minimize a normalized 

turnaround time defined as 

�� 
 = ��� 
 + ��
�� = (
 − ��) + ��

��

Processes Wakeup (w0) Capacity (C)

P1 0 3

P2 2 6

P3 4 4

P4 6 5

P5 8 2



Scheduling algorithms 

“Shortest Job First (SJF)”

Processes Wakeup (w0) Capacity (C)

P1 0 7

P2 2 4

P3 4 1

P4 5 4

t or q 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16

P1 C(t) 7-6 6-5 5-5 5-5 5-5 5-5 5-5 5-5 5-5 5-5 5-5 5-4 4-3 3-2 2-1 1-0

P2 C(t) 4-3 3-2 2-2 2-1 1-0

P3 C(t) 1-0

P4 C(t) 4-4 4-4 4-3 3-2 2-1 1-0

A shortest process arises,

we shift the context

When a process ends,

we shift to the process of shortest remaining C(t)

30

Shorted Job First (SJF): in the preemptive case, at 

any time, it looks for the process of the shortest 

residual capacity C(t) in the ready queue. It is also 

called Shortest Remaining Time (SRT). The non 

preemptive version is called the Shortest Process Next 

(SPN). When a process ends, it looks for the process of 

the shortest capacity C in the ready queue. 
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“Time prediction” (1)
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because   [0-1], each term has 

less weight than its predecessor

One difficulty with the SJF algorithm is the need to know 

the required residual capacity. When the system cannot 

guaranty a predictability, we can use the time prediction.

For the I/O bound processes, the OS may keep a CPU 

burst average Tn for each of the processes. This criterion T 

interpolates a fraction 1/n of the CPU time consumed (and 

then the residual capacity C(t)). 

The simplest calculation for Tn would be the following

To avoid recalculating the entire summation each time, 

we can rewrite the previous equation as 

A common technique for predicting a future value on the 

basis of a time series is exponential averaging

with,

Tn+1 is the prediction of the next CPU burst “n+1”

Tn time prediction of the current CPU burst “n”

tn time value of the current CPU burst “n”

 controls the relative weight (0-1) between the      

next (Tn+1)  and the previous (Tn) prediction



Scheduling algorithms 

“Time prediction” (2)
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  nnn TtT   11
A common technique for predicting a future value on the 

basis of a time series is exponential averaging
with,

Tn+1 is the prediction of the next CPU burst “n+1”

Tn time prediction of the current CPU burst “n”

tn time value of the current CPU burst “n”

 controls the relative weight (0-1) between the      

next (Tn+1)  and the previous (Tn) prediction

 = 0 recent history has no effect

 = 1 only the most recent CPU burst matters

nn TT 1

nn tT 1

If first execution 

(i.e. w0), T0 is a chosen 

as a constant (e.g. the 

overall system average)

ti

Ti

alpha

0,1 0,5 0,9

6,00 10,00 10,00 10,00

4,00 9,60 8,00 6,40

6,00 9,04 6,00 4,24

4,00 8,74 6,00 5,82

13,00 8,26 5,00 4,18

13,00 8,74 9,00 12,12

13,00 9,16 11,00 12,91

13,00 9,55 12,00 12,99

109,061,06,9  101,069,04,6 



Scheduling algorithms 

“Time prediction” (3)
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e.g. Time prediction with the SRT algorithm (SJF preemptive) 

i. We consider the case of two processes A, B with the 

following observed CPU bursts and I/O completion events at 

a time interval [t0, t0+T] At t0, A, B are in the blocking queue.

ii. We have T0 = 5 and  = 0.4 as parameters. 

iii. We assume that at any I/O completion event A, B are 

concurrent for the CPU access (i.e. when B released A is 

scheduled and vice-versa).

ti

Ti

alpha

0,4

3,00 5,00

6,00 4,20

4,00 4,92

ti

Ti

alpha

0,4

4,00 5,00

5,00 4,60

3,00 4,76

Process A Process B

ready queue

CPU

blocked queue

short-term 

scheduling

I/O wait

I/O completion

Exit

I/O completion 

events

1 A

2 B

3 A

4 A,B

5 B
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“Time prediction” (4)
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events <1 1 2 3 4 5

blocked queue A,B B A A A,B B A A,B

ready queue B(5) B(5) A(4.7) B(4.9)

CPU A(5) A(5) B(5) A(4.6) B(5) B(4.2) A(4.7) A(4.7) B(4.9)

A is released and alone in the 

ready queue, then scheduled

B is released while A is 

scheduled (iii), with TB=TA then 

B waits in the ready queue

e.g. Time prediction with the SRT algorithm (SJF preemptive) 

i. We consider the case of two processes A, B with the 

following observed CPU bursts and I/O completion events at 

a time interval [t0, t0+T] At t0, A, B are in the blocking queue.

ii. We have T0 = 5 and  = 0.4 as parameters. 

iii. We assume that at any I/O completion event A, B are 

concurrent for the CPU access (i.e. when B released A is 

scheduled and vice-versa).

I/O completion 

events

1 A

2 B

3 A

4 A,B

5 B

ti

Ti

alpha

0,4

3,00 5,00

6,00 4,20

4,00 4,92

ti

Ti

alpha

0,4

4,00 5,00

5,00 4,60

3,00 4,76

Process A Process B

When A ends, B shifts from the ready queue to the 

CPU then ends and returns to the blocked queue

When A ends, 

B is scheduled

A is released while B is scheduled (iii), with 

TA  TB then B is preempted

Two releases occur at the same time, 

TBTA then A waits in the queue

B is released while A is scheduled (iii), 

with TBTA B waits in the ready queue
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“Time prediction” (5)
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A

(4)

B

(6)

A

(3)

t1 t1+6 t1+9t0 t0+4

B,A, B

(3,5)

t0+12

B

(4)

t1+13

e.g. Time prediction with the SRT algorithm (SJF preemptive) 

i. We consider the case of two processes A, B with the 

following observed CPU bursts and I/O completion events at 

a time interval [t0, t0+T] At t0, A, B are in the blocking queue.

ii. We have T0 = 5 and  = 0.4 as parameters. 

iii. We assume that at any I/O completion event A, B are 

concurrent for the CPU access (i.e. when B released A is 

scheduled and vice-versa).

ti

Ti

alpha

0,4

3,00 5,00

6,00 4,20

4,00 4,92

ti

Ti

alpha

0,4

4,00 5,00

5,00 4,60

3,00 4,76

Process A Process B

I/O completion 

events

1 A

2 B

3 A

4 A,B

5 B



Algorithm Preemptive
Scheduling 

criterion
Priority

Predictable 

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority 

Scheduling
yes

process priority 

with aging
dynamic no

Respecting the priority and 

avoiding the fairness

Highest Response Ratio 

Next
no response ratio dynamic yes

Optimal 

response time

OptimizationShortest Job First yes/no
shortest remaining 

time

static/

dynamic
yes

Optimal 

waiting time

Time prediction no/yes
shortest predicted 

time
dynamic no

Achieving the 

predictability with the SJF

Guaranteed Scheduling yes CPU use ratio dynamic no
Enforcing the 

response time
Time sharing

Round-Robin yes
rank in the queue 

and round
dynamic no

Fair-Share Scheduling yes process priority dynamic no Respecting the priority and 

enforcing the response 

time

Priority & 

time sharingMultilevel feedback 

queue scheduling
yes

process priority 

and queue position

static/

dynamic
no



Scheduling algorithms

“Guaranteed Scheduling (GS)” (1)

37

With n processes running, all things being equal, each one should get 1/n of 

the CPU utilization. For a process i, the scheduling algorithm:

1. keeps a track of the actual CPU time consumed, 

2. it then computes the CPU time entitled ratio,

3. the CPU time consumed is normalized 

with the CPU time entitled ratio, 

the lowest value has the higher priority. 
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)()()(1 tCCtTtF iii 



Scheduling algorithms

“Guaranteed Scheduling (GS)” (2)

With n processes running, all things being equal, each one should get 1/n of 

the CPU utilization. 

the CPU time consumed is normalized 

with the CPU time entitled ratio, 

the lowest value has the higher priority 

t or q 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8

n 1 1 2 2 3 3 3 3

P1

T(t) 0-1 1-2 2 2-3 3 3 3-4 4

t-w0 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8

R(t) 0=(0/01) 1=(1/11) 2=(2/22) 1.3=(2/32) 2.2=(3/43) 1.8=(3/53) 1.5=(3/63) 1.7=(4/73)

P2

T(t) 0-1 1 1 1-2 2 2

t-w0 0-1 1-2 2-3 3-4 4-5 5-6

R(t) 0=(0/02) 2=(1/12) 1.5=(1/23) 1=(1/33) 1.5=(2/43) 1.2=(2/53)

P3

T(t) 0-1 1 1 1-2

t-w0 0-1 1-2 2-3 3-4

R(t) 0=(0/03) 3=(1/13) 1.5=(1/23) 1=(1/33)

Processes Wakeup (w0) Capacity (C)

P1 0 ∞

P2 2 ∞

P3 4 ∞

When n increases, R(t) increases,

we shift to the lowest R(t)
R1(t)=R2(t)=R3(t), we apply a 

selection on id P1>P2>P3

While a process is scheduled, R(t) increases as T(t) increases

While a process is waiting, R(t) decreases as T(t) is constant

n
wt

tT
tR

i

i
i 




)(
)(

After a while, the algorithm looks for a 

convergence R1(t)  R2(t)  R3(t)  1
38



Scheduling algorithms 

“Round Robin (RR)”

We assign a quantum set m to each process in equal 

portions and in a circular order (A look-like FCFS), 

handling all the processes without priority.

i. Every m quantum, we shift to the following 

process in the ready queue.

ii. When a process is ended and a rest of quantum 

appears, we shift to the next process. 

Processes Wakeup (w0) Capacity (C)

P1 0 53

P2 0 17

P3 0 68

P4 0 24

t or q 0-20 20-37 37-57 57-77 77-97 97-117 117-121 121-134 134-154 154-162

P1 C(t) 53-33 33-33 33-33 33-33 33-13 13-13 13-13 13-0

P2 C(t) 17-17 17-0

P3 C(t) 68-68 68-68 68-48 48-48 48-48 48-28 28-28 28-28 28-8 8-0

P4 C(t) 24-24 24-24 24-24 24-4 4-4 4-4 4-0

A process is ended before m

we shift to the next process

Processes are scheduled regarding 

their positions in the ready queue The last process is 

terminated in some 

successive steps

We will use here m = 20

39



Algorithm Preemptive
Scheduling 

criterion
Priority

Predictable 

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority 

Scheduling
yes

process priority 

with aging
dynamic no

Respecting the priority and 

avoiding the fairness

Highest Response Ratio 

Next
no response ratio dynamic yes

Optimal 

response time

OptimizationShortest Job First yes/no
shortest remaining 

time

static/

dynamic
yes

Optimal 

waiting time

Time prediction no/yes
shortest predicted 

time
dynamic no

Achieving the 

predictability with the SJF

Guaranteed Scheduling yes CPU use ratio dynamic no
Enforcing the 

response time
Time sharing

Round-Robin yes
rank in the queue 

and round
dynamic no

Fair-Share Scheduling yes process priority dynamic no Respecting the priority and 

enforcing the response 

time

Priority & 

time sharingMultilevel feedback 

queue scheduling
yes

process priority 

and queue position

static/

dynamic
no



Scheduling algorithms 

“Fair-Share Scheduling (FSS)” (1)
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iGCPU
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Applications may be organized with multiple processes. The FSS scheduling algorithm allocates a fraction of the 

processor resources to each group. An hybrid scheduling, mixing the round robin & priority scheduling (using a base 

priority, a exponential iterative reduction rule, a group weighting), assures a fair share of the CPU for each process.  

Pj (i) is the priority of process j at beginning of interval i,

lower values equal higher priorities

Basej is the base “or root” priority of process j

CPUj(i) is the measure of processor utilization by process j 

through the interval i

GCPUk (i) is the measure of processor utilization by group k 

through the interval i

wk is the weight assigned to group k, with the constraint 

0 wk 1 and 

The scheduler applies a round robin and looks for minimization of the criterion Pj (i) at each round.

If the Pj(i) are equal j, 

we apply a selection based on the round robin e.g. P1 > P2 > P3.

Priority 

scheduling

Round Robin

(1)(2)

(1) If for j , two or more min Pj(i) appear

(2) Whenever for j, a standalone min Pj(i) is here
41



Scheduling algorithms 

“Fair-Share Scheduling (FSS)” (2)

42

The scheduler applies a round robin and looks 

for minimization of the criterion Pj (i) at each round.

k

kj

jj
w

iGCPUiCPU
BaseiP



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)1(
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iCPU
iCPUwith

j

j

t or q 00-60 60-120 120-180 180-240 240-300 300-360

P1

CPU(t) 0-60 30 15-75 37 18-78 39

GCPU(t) 0-60 30 15-75 37 18-78 39

P(t) 60 (60+0+0) 90 (60+15+15) 74 (60+7+7) 96(60+18+18) 78 (60+9+9) 98(60+19+19)

P2

CPU(t) 0 0-60 30 15 7 3-63

GCPU(t) 0 0-60 30 15-75 37 18-78

P(t) 60 (60+0+0) 60 (60+0+0) 90 (60+15+15) 74 (60+7+7) 81(60+3+18) 70(60+1+9)

P3

CPU(t) 0 0 0 0-60 30 15

GCPU(t) 0 0-60 30 15-75 37 18-78

P(t) 60 (60+0+0) 60 (60+0+0) 75 (60+0+15) 67 (60+0+7) 93(60+15+18) 76(60+7+9)

2

)1(
)(




iGCPU
iGCPUand k

k

Processes Wakeup 

(w0)

Priority Capacity 

(C)

Group

P1 0 60 ∞ 1

P2 0 60 ∞ 2

P3 0 60 ∞ 2

e.g. w1 = w2 = 0.5 and m = 60

P1(t) = P2(t) = P3(t), we apply a 

selection based on the round robin 

P1 > P2 > P3 When P1 is scheduled, P1(t) 

increases and P2(t) = P3(t) remains 

constant, the RR policy applies here 

P2(t) ≠ P3(t) with a same 

GCPU2(t) and CPU2(t) ≠ CPU3(t)
Scheduling will go on, P1 will have more 

chance to get the CPU as it constitutes a 

single group
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“Multilevel feedback queue scheduling (MLFQ)” (1)
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The multilevel  feedback queue scheduling algorithm allows processes to 

move between queues. The idea is to separate the processes according to their 

CPU bursts.

1. The queues are organized according to priority levels, 

2. When a process first enters in the system, it is placed in RQ0.

3. In general, a process scheduled from RQi is allowed to execute a maximum 

of m = 2k+i time units (i.e. quantum) before a preemption.

4. After a preemption at level i, a process shifts to the level i+1.

5. Within each queue, a simple FCFS mechanism is used.

6. A process at a priority level i can preempt any process at a priority level > i.

RQ0

RQ1

RQ2

RQn

…

dispatcher

Priority 

scheduling

feedback 

control 

with Round 

Robin

ready 

queue

U
n

i

iRQ
0



Scheduling algorithms 

“Multilevel feedback queue scheduling (MLFQ)” (2)

44

t or q 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

RQ0 P1 P2 P3 P4 P5

RQ1

P1 P1 P1,

P2

P2 P2,

P3

P2,

P3

P2,

P3,

P4

P3,

P4

P3,

P4,

P5

RQ2 P2 P2

P1
C(t) 3-2 2-1 1 1-0

P(t) 0-1 1 1 1

P2
C(t) 6-5 5 5 5-4 4 4-3 3 3

P(t) 0-1 1 1 1 1 1-2 2 2

P3
C(t) 4-3 3 3 3 3 3-2

P(t) 0-1 1 1 1 1 1

P4
C(t) 5-4 4 4 4

P(t) 0-1 1 1 1

P5
C(t) 2-1 1

P(t) 0-1 1

P1 starts in the queue RQ0

After a quantum 20=1,

P1 shifts to RQ1

Processes Wakeup (w0) Capacity (C)

P1 0 3

P2 2 6

P3 4 4

P4 6 5

P5 8 2

P2 starts and 

preempts P1 as 

i=0 < i=1

When P2 shifts to 

RQ1, within the 

FCFS policy P1 

is scheduled first

Same case with 

P2, P3

Same case with 

P2, P3 and P4
P1 ends 

before to 

shift to RQ2

P5 arrives as P2 

shifts to RQ2 after 

20+21=3 times 

units

m with

k=0

RQ0 20+0=1

RQ1 20+1=2

RQ2 20+2=4
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“Multilevel feedback queue scheduling (MLFQ)” (3)
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t or q 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20

RQ0

RQ1

P3,

P4,

P5

P4,

P5

P4,

P5

P5

RQ2

P2, P2,

P3

P2,

P3

P2,

P3,

P4

P2,

P3,

P4

P2,

P3,

P4

P2,

P3,

P4

P3,

P4

P4 P4

P1
C(t)

P(t)

P2
C(t) 3 3 3 3 3-2 2-1 1-0

P(t) 2 2 2 2 2 2 2

P3
C(t) 2-1 1 1 1 1 1 1 1-0

P(t) 1-2 2 2 2 2 2 2 2

P4
C(t) 4 4-3 3-2 2 2 2 2 2 2-1 1-0

P(t) 1 1 1-2 2 2 2 2 2 2 2

P5
C(t) 1 1 1 1-0

P(t) 1 1 1 1

After a quantum 21=2,

P3 shifts to RQ2

Same case with 

P4

P5 ends before 

to shift to RQ2
Within RQ2, P2 can 

execute on 3 < 22 time 

units before completion

Scheduling will go on

Processes Wakeup (w0) Capacity (C)

P1 0 3

P2 2 6

P3 4 4

P4 6 5

P5 8 2

m with

k=1

RQ0 21×0=1

RQ1 21×1=2

RQ2 21×2=4



Algorithm Preemptive
Scheduling 

criterion
Priority

Predictable 

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority 

Scheduling
yes

process priority 

with aging
dynamic no

Respecting the priority and 

avoiding the fairness

Highest Response Ratio 

Next
no response ratio dynamic yes

Optimal 

response time

OptimizationShortest Job First yes/no
shortest remaining 

time

static/

dynamic
yes

Optimal 

waiting time

Time prediction no/yes
shortest predicted 

time
dynamic no

Achieving the 

predictability with the SJF

Guaranteed Scheduling yes CPU use ratio dynamic no
Enforcing the 

response time
Time sharing

Round-Robin yes
rank in the queue 

and round
dynamic no

Fair-Share Scheduling yes process priority dynamic no Respecting the priority and 

enforcing the response 

time

Priority & 

time sharingMultilevel feedback 

queue scheduling
yes

process priority 

and queue position

static/

dynamic
no



Operating Systems

“Uniprocessor scheduling”

1. About short-term scheduling

2. Context switch, quantum and ready queue

3. Process and diagram models

4. Scheduling algorithms

4.1. FCFS scheduling

4.2. Priority based scheduling

4.3. Optimal scheduling

4.4. Time-sharing based scheduling

4.5. Priority/Time-sharing based scheduling

5. Modeling multiprogramming

6. Evaluation of algorithms
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Modeling multiprogramming

48

npnutilizatioCPU 1 n is the number of processes

p    is their (common) I/O rate

Modeling multiprogramming: from a probabilistic point of view, 

suppose that a process spends a fraction p of its time waiting for 

I/O to complete. 

With n processes in memory, the probability that these processes 

are waiting for I/O (the case where the CPU will be idle) is pn.  The 

CPU utilization is then given by the formula





n

i

ipnutilizatioCPU
1

1

When the I/O rates are different, formula can be expressed as

e.g. 80% I/O rate, 4 processes 5904,08,01 4 nutilizatioCPU

n is the number of processes

pi is the I/O rate of process i

e.g. P1 (80%), P2(60%), P3(40%) P4(60%)   8704,06,04,0068,01 nutilizatioCPU



Operating Systems

“Uniprocessor scheduling”

1. About short-term scheduling

2. Context switch, quantum and ready queue

3. Process and diagram models

4. Scheduling algorithms

4.1. FCFS scheduling

4.2. Priority based scheduling

4.3. Optimal scheduling

4.4. Time-sharing based scheduling

4.5. Priority/Time-sharing based scheduling

5. Modeling multiprogramming

6. Evaluation of algorithms
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Evaluation of algorithms

P r0 C

P1 0 10

P2 5 20

P3 3 3

P4 7 7

P5 9 12

process workload

Statistics
FCFS 28

SJF 13

RR 23

WT
Random number 

generator

Recording a real 

system

P r0 Bursts

P1 0 {7,3}

P2 5 {1,8,7,4}

P3 3 {2,1}

P4 7 {2,1,2,2}

P5 9 {8,1,3}

trace tapes

As the simulation reflects a real system, statistics about the algorithm 

performances could be computed. However, simulation requires hours of 

computation and a huge amount of data. In addition, design, coding and 

debugging of a simulator can be a major task.
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Simulation aims to handle a model of the OS for evaluation (scheduling algorithm, processes, etc.). The simulator has a variable 

representing a clock, when increasing the simulator modifies the state of the system. 

The data to drive simulation can be generated in two main ways:

- to use synthetic data with a random number generator.

- to record trace tapes by monitoring a real system.


