
Operating Systems

“Inter-Process Communication (IPC)

and synchronization”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/operating1.html

Operating Systems

“IPC and synchronization”

1. Introduction

2. Synchronization for mutual exclusion

2.1. Principles of concurrency

2.2. Synchronization methods for mutual exclusion

3. Synchronization for coordination

3.1. Some problems of coordination

3.2. Solving the Producer/Consumer problem

3.3. Solving the multiple Producer/Consumer problem

2

Introduction (1)

3

Cooperating / independent process: a process is cooperating if it can affect (or be affected) by the other

processes. Clearly, any process than shares data is a cooperating process. Any process that does not share

data with any other process is independent.

Inter-process communication (IPC) refers to the set of techniques for the exchange of data among

different processes. There are several reasons for providing an environment allowing IPC.

 Information sharing: several processes could be interested in the same piece of information, we

must provide a framework to allow a concurrent access to this information.

Modularity: we may to construct the system in a modular fashion, dividing a function of the

system into separate blocks.

Convenience: even an individual user may work on many related tasks at the same time e.g.

editing, printing and compiling a program.

Speedup: with parallelism, if we are interested to run faster a particular task, we must break it

into sub-tasks.

Introduction (2)

4

Process synchronization: refers to the idea that multiple processes join up to reach an agreement or to commit a

sequence of action. Clearly, any cooperating process is concerned with synchronization. We can classify the

synchronization on the basis of the degree to which the processes are aware of each other.

Processes unaware of each other: are independent and not intended to work together. Although the

processes are not working together, the OS must deal with the concurrency and mutual exclusion problems.

Processes indirectly aware of each other: are not necessarily aware of each other by their respective ids,

but share access to objects such as an I/O buffer. Such processes exhibit coordination in sharing objects.

Processes directly aware of each other: cooperate and are able to communicate with each other by process

ids. These processes are designed to work jointly in some activity. Again, such processes exhibit coordination.

Degree of awareness Synchronization

Processes unaware of each other Mutual exclusion

Processes indirectly aware of each other Coordination by sharing

Processes directly aware of each other Coordination by communication

Process

synchronization

Mutual

exclusion
Coordination

Operating Systems

“IPC and synchronization”

1. Introduction

2. Synchronization for mutual exclusion

2.1. Principles of concurrency

2.2. Synchronization methods for mutual exclusion

3. Synchronization for coordination

3.1. Some problems of coordination

3.2. Solving the Producer/Consumer problem

3.3. Solving the multiple Producer/Consumer problem

5

Principles of concurrency (1)

6

Critical section is a piece of code that accesses a shared resource (a data

structure or a device) that must not be concurrently accessed by other

concurrent/cooperating processes.

Mutual exclusion: two events are mutually exclusive if they cannot

occur at the same time. Mutual exclusion algorithms are used to avoid the

simultaneous use of a resource by the piece of code of the critical section.

Process synchronization: refers to the idea that multiple processes join

up to reach an agreement or to commit a sequence of action.

Inter-process communication (IPC) is a set of techniques for the

exchange of data among multiple processes or threads.

Race conditions arise when separate processes of execution depend on

some shared states. Operations upon shared states could result in harmful

collisions between these processes.

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

Principles of concurrency (2)

7

slot file name

1 

2 

3 lesson.pptx

4 paperid256.rtf

5 

6 

7 

(S)pooling directory

(P)rocess

in = 4 out = 3

Printer

(D)aemon

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(P)rocess

Printer

(D)aemon

(P)rocess

Spooling

Race conditions arise when separate processes of execution depend on some shared states.

Operations upon shared states could result in harmful collisions between these processes.

S the spooling directory

in current writing index of S

out current reading index of S

P a process

D the printer daemon process

X.a A data a part of a process X

N
o
ta

ti
o
n

P

loop

(1) P.in=in

(2) S[P.in] = P.name

(3) in = P.in+1

D

loop

(4) D.out=out

(5) D.name=S[D.out]

(6) out = D.out+1

(7) print

(1) to (7) are atomic instructions

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

Principles of concurrency (3)

8

in A.in B.in S[7] out D.out D.name

7    7 6 X.name

A1 7 7   7 6 X.name

B1,2,3 8 7 7 B.name 7 6 X.name

A2,3 8 7 7 A.name 7 6 X.name

D4,5,6,7 8 7 7 A.name 8 7 A.name

Notation

initial states

A reads “in”

B reads “in”, writes in “S” and increments “in”

A writes in “S”, and increments “in”, the harmful collision is here

D prints the file of A, the B one will be never processed

Px,y process P executes the instructions x,y

S the spooling directory

in current writing index of S

out current reading index of S

P a process

D the printer daemon process

X.a A data a part of a process X

Race conditions arise when separate processes of execution depend on some shared states.

Operations upon shared states could result in harmful collisions between these processes.

e.g. spooling with 2 processes A, B and a Daemon D

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

P

loop

(1) P.in=in

(2) S[P.in] = P.name

(3) in = P.in+1

D

loop

(4) D.out=out

(5) D.name=S[D.out]

(6) out = D.out+1

(7) print

Principles of concurrency (4)

9

ProcessA

Process

B

t1 t2 t3 t4

A enters in the

critical section

B tries to access to the

critical section

A exits from

critical section

B accesses the

critical section

B exits from the

critical section

B is

blocked

Critical section is a piece of code that accesses a shared resource (a data structure or a device) that

must not be concurrently accessed by other concurrent/cooperating processes. A critical section will

usually terminate within a fixed time, a process will have to wait a fixed time to enter it.

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

Principles of concurrency (5)

10

Mutual exclusion: two events are mutually exclusive if they cannot occur at the same

time. Mutual exclusion algorithms are used to avoid the simultaneous use of a resource by

the piece of code of the critical section.

Process synchronization: refers to the idea that multiple processes join up to reach an

agreement or to commit a sequence of action.

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

Operating Systems

“IPC and synchronization”

1. Introduction

2. Synchronization for mutual exclusion

2.1. Principles of concurrency

2.2. Synchronization methods for mutual exclusion

3. Synchronization for coordination

3.1. Some problems of coordination

3.2. Solving the Producer/Consumer problem

3.3. Solving the multiple Producer/Consumer problem

11

Synchronization methods for mutual exclusion

“Introduction” (1)

12

1. Scheduling while disabling the interrupts

A B A

disable interrupts

“can’t be B”

Process

t

B

disable interrupts

“can’t be A”

2. Busy-waiting

Process

A
Shared

memory

Process

B

1. check

2. allow

3. access

1. check

2. allow

4. exit

Correspond to the areas of critical sections

Process

A
Shared

memory

Process

B

1. check

2. allow

1. check

2. allow

5. access

3. sleep 3. sleep

4. wakeup

6. exit

3. Sleep and wakeup

A B A
Process

t

B A B

Synchronization methods for mutual exclusion

“Introduction” (2)

13

Methods Approach Type Process Ordering Starvation

disabling the interrupts disabling the interrupts
hardware 2

yes no

Swap, TSL, CAS
busy-waiting no possible

Perterson’s algorithm
software

2

binary semaphore / mutex sleep and wakeup 2 yes no

Synchronization methods for mutual exclusion

“Disabling the interrupts”

14

A B A
Process

t

B A

A B A

Disable the interrupts

can’t be B

Process

t

B

Disable the interrupts

can’t be A

Correspond to the areas of critical sections

Disabling the interrupts: within an uniprocessor system, processes cannot have an overlapped execution. To guarantee a mutual

exclusion, it is sufficient to prevent a process from being interrupted. This capability can be provided in the form of primitives

defined in the OS kernel, for disabling and enabling the interrupts when entering in a critical section. e.g.

Scheduling two processes A, B

accessing a critical section with

interruption

The price of this approach is high:

the scheduling performance could

be noticeably degraded,

this approach cannot work in a

multi-processor architecture.Access a critical section

disable the interrupts

Release a critical section

enable the interrupts

Scheduling two processes A, B

accessing a critical section while

disabling the interrupts

B

Synchronization methods for mutual exclusion

15

Methods Approach Type Process Ordering Starvation

disabling the interrupts disabling the interrupts
hardware 2

yes no

Swap, TSL, CAS
busy-waiting no possible

Perterson’s algorithm
software

2

binary semaphore / mutex sleep and wakeup 2 yes no

Synchronization methods for mutual exclusion

“Swap, TSL and CAS” (1)

16

Swap (or exchange) is an hardware instruction, exchanging in

one-shot the content of two locations, atomically.

(5) Release the critical section with P

(6) set LOCK at 0

R
eq

u
es

t
R

el
ea

se

Run in the critical section with P

do something ….

(1) Request the critical section with P

(2) set KEY at 1

(3) do Swap KEY, LOCK

(4) while KEY equals 1

SWAP KEY,LOCK LOCKKEY

(1) copy

atomic

instruction

(1) copy

KEY LOCK

$1 $0

SWAP KEY,LOCK $0 $1

KEY LOCK

$1 $1

SWAP KEY,LOCK $1 $1

Access to the section

LOCK at 0, KEY at 1

both shift their values

Busy-waiting

LOCK and KEY at 1

both keep their values

KEYA KEYB KEYC LOCK Section

   0 

B1,2,3  0  1 B

A1,2,3,4,3,4,3 1 0  1 B

B4,5,6 1 0  0 

A4,3 0 0  1 A

C1,2,3,4,3,4 0 0 1 1 A

A4,5,6 0 0 1 0 

C3,4 0 0 0 1 C

C5,6 0 0 0 0 

B accesses the section

A is blocked

B releases the section

A can access

C is blocked

A releases the section

C can access

C releases the section

e.g. three processes A, B and C considering the scheduling

Px,y process P executes the instructions x,y

Synchronization methods for mutual exclusion

“Swap, TSL and CAS” (2)

17

RX LOCK

Na $0

TSL RX, LOCK $0 $1

TSL RX,LOCK LOCKRX

(1) copy

(2) set to 1 if lock at 0

RX LOCK

Na $1

TSL RX, LOCK $1 $1

atomic

instruction

B accesses the section

A is blocked

B releases the section

A can access

C is blocked

A releases the section

C can access

C releases the section

TSL is an alternative instruction to Swap, achieving in one-shot

a if and a set instruction, atomically.

Access to the section

RX set to 0

LOCK moves to 1

Busy-waiting

RX set to 1

Nothing happens on LOCK

(4) Release the critical section with P

(5) set LOCK at 0

R
eq

u
es

t
R

el
ea

se

Run in the critical section with P

do something ….

(1) Request the critical section with P

(2) do TSL RX, LOCK

(3) while RX equals 1

e.g. three processes A, B and C considering the scheduling

RXA RXB RXC LOCK Section

   0 

B1,2  0  1 B

A1,2,3,2,3,2 1 0  1 B

B3,4,5 1 0  0 

A3,2 0 0  1 A

C1,2,3,2,3 0 0 1 1 A

A3,4,5 0 0 1 0 

C2,3 0 0 0 1 C

C4,5 0 0 0 0 

Px,y process P executes the instructions x,y

Synchronization methods for mutual exclusion

“Swap, TSL and CAS” (3)

18

CAS LOCK,TEST,KEY

Access to the section

KEY at 1 and

TEST, LOCK at 0

LOCK is updated

Busy-waiting

LOCK and TEST

different

nothing happens

atomic

instruction

CAS is a tradeoff to the TSL instruction checking a memory

location LOCK against a test value TEST. If they are same, a

swap occurs between the LOCK and a KEY value. The old

LOCK value (before the swapping) is still returned.

B accesses the section

A is blocked

B releases the section

A can access

C is blocked

A releases the section

C can access

C releases the section

(1) Request the critical section with P

(2) do R equals CAS LOCK, 0, 1

(3) while key R equals 1R
eq

u
es

t
R

el
ea

se

Run in the critical section with P

do something ….

(4) Release the critical section with P

(5) set LOCK at 0

KEYLOCK

(1) copy

(2) set LOCK with KEY

if LOCK and TEST are equal

TESTR

R LOCK

Na $0

R  CAS LOCK,0,1 $0 $1

R LOCK

Na $1

R  CAS LOCK,0,1 $1 $1

e.g. three processes A, B and C considering the scheduling

RA RB RC LOCK Section

   0 

B1,2  0  1 B

A1,2,3,2,3,2 1 0  1 B

B3,4,5 1 0  0 

A3,2 0 0  1 A

C1,2,3,2,3 0 0 1 1 A

A3,4,5 0 0 1 0 

C2,3 0 0 0 1 C

C4,5 0 0 0 0 

Px,y process P executes the instructions x,y

Synchronization methods for mutual exclusion

19

Methods Approach Type Process Ordering Starvation

disabling the interrupts disabling the interrupts
hardware 2

yes no

Swap, TSL, CAS
busy-waiting no possible

Perterson’s algorithm
software

2

binary semaphore / mutex sleep and wakeup 2 yes no

Synchronization methods for mutual exclusion

“Peterson’s algorithm” (1)

20

Pi, Pj are two processes, i, j are two integers

turn is an integer, flag is a boolean table

Request the critical section with Pi

flag[i] = true

turn = j

while ((flag[j] == true) && (turn == j))

busy-waiting

Run in the critical section with Pi

do something ….

Release the critical section with Pi

flag[i] = false

R
eq

u
es

t
R

el
ea

se
g

lo
b

al

v
ar

ia
b

le
s

Pi accesses the critical section if

or
(1) Pj sets its flag at false

(2) Pj sets the turn for Pi

Pi waits if

and
(1) Pj sets its flag at true

(2) Pj doesn’t set the turn for Pi

The Peterson’s algorithm solves the mutual exclusion problem between two processes. Entrance in the critical section is

granted for a process P if the other process doesn’t want to enter, or if it has given previously the priority to P.

(1) (2)

(1) (2) (1) && (2) while

1 1 1 wait

0 0 0 access

0 1 0 access

1 0 0 access

Synchronization methods for mutual exclusion

“Peterson’s algorithm” (2)

21

(1) Request the critical section with Pi

(2) flag[i] = true

(3) turn = j

(4) while ((flag[j] == true) && (turn == j))

(5) busy-waiting

turn
flag

Section
A B

 false false 

B1,2  false true 

A1,2,3,4,5,4,5 B true true 

B3 A true true 

A4,6,7 A false true A-

B4,6,7 A false false B-

(6) Release the critical section with Pi

(7) flag[i] = false

A is blocked because the flag of B is true and turn is set with the B value

A accesses the section as the turn variable is set to A

B accesses the section as the flag of A is false

R
el

ea
se

R
eq

u
es

t

Pi accesses the critical section if

or
(1) Pj sets its flags at false

(2) Pj sets the turn for Pi

B sets its flag at true

B sets the turn variable to A

e.g. two processes A, B considering the scheduling

Px,y process P executes the instructions x,y

Synchronization methods for mutual exclusion

22

Methods Approach Type Process Ordering Starvation

disabling the interrupts disabling the interrupts
hardware 2

yes no

Swap, TSL, CAS
busy-waiting no possible

Perterson’s algorithm
software

2

binary semaphore / mutex sleep and wakeup 2 yes no

Synchronization methods for mutual exclusion

“binary semaphores / mutex” (1)

23

semaphore

value

Semaphore is a synchronization primitive composed of a blocking

queue and a variable controlled with two operations down / up.

A binary semaphore takes only the values 0 and 1. A mutex is a

binary semaphore for which a process that locks the semaphore

must be the process that unlocks it.

The down operation decreases the value of the semaphore or sleeps

the current process and pushes it into the queue.

before after

value false true

queue  

before after

value true true

queue  P

regular down blocking down

Main

memory

CPU

short-term

scheduler

dispatcher

re
ad

y
 q

u
eu

e

running process

if the semaphore is true,

sleep and push Pj

in the queue

semaphore

value

Pj

Pj

down with Pj

is
 t

ru
e

value

sleep and push Pj

in the queue

if false

else

blocking

down

regular

down

Synchronization methods for mutual exclusion

“binary semaphores / mutex” (2)

24

The up operation increases the value of the semaphore or wakeups a

process in the queue.

Main

memory

CPU

short-term

scheduler

dispatcher

re
ad

y
 q

u
eu

e

running process

semaphore

value

Pk

Pj

if the queue is not empty, wakeup

and pop Pk from the queuebefore after

value true false

queue  

before after

value true true

queue P 

regular up unblocking up

Semaphore is a synchronization primitive composed of a blocking

queue and a variable controlled with two operations down / up.

A binary semaphore takes only the values 0 and 1. A mutex is a

binary semaphore for which a process that locks the semaphore

must be the process that unlocks it.

semaphore

value

Pk

up with Pj

is
 f

al
se

value

wakeup and pop

Pk from the queue

if stack empty

else

unblocking

up

regular

up

Synchronization methods for mutual exclusion

“binary semaphores / mutex” (3)

25

The algorithm for mutual exclusion using a binary semaphore is

A accesses the section, sem becomes true

while accessing the semaphore, B blocks

e.g. three processes A, B and C considering the scheduling,

the solution is presented with a table

while accessing the semaphore, C blocks

A exits and pops up B, B holds the section

B exits and pops up C, C holds the section

C exits and puts the semaphore to false

(1) before the request

do something ….

(2) down sem

(3) run in the critical section with P

do something ….

(4) before the release

do something ….

(5) up sem

sem is a semaphore, P is the

process, (1) to (5) the instructions

before after

value false true

queue  

before after

value true true

queue  P

regular down blocking down

before after

value true false

queue  

before after

value true true

queue P 

regular up unblocking up

sem
Section A state B state C state

value Q

false   ready ready ready

A1,2,3 true  A ready ready ready

B1,2 true B A ready blocked ready

C1,2 true C,B A ready blocked blocked

A4,5 true C A-B ready ready blocked

B3,4,5 true  B-C ready ready ready

C3,4,5 false  C- ready ready ready

Px,y process P executes the instructions x,y

Synchronization methods for mutual exclusion

“binary semaphores / mutex” (4)

26

The algorithm for mutual exclusion using a binary semaphore is

e.g. three processes A, B and C considering the scheduling,

the solution is diagram

A

B

R

R

Resource request

Resource release

Pi

Process running

R held by Pi

R

R

C

A

R

RR

R R

B C

Operating Systems

“IPC and synchronization”

1. Introduction

2. Synchronization for mutual exclusion

2.1. Principles of concurrency

2.2. Synchronization methods for mutual exclusion

3. Synchronization for coordination

3.1. Some problems of coordination

3.2. Solving the Producer/Consumer problem

3.3. Solving the multiple Producer/Consumer problem

27

Some problems of coordination (1)

28

The dinning-philosophers problem is summarized as:

(1) five philosophers sitting at a table are doing one of the two things: eating or thinking.

(2) a fork is placed in between each pair of adjacent philosophers.

(3) while eating, they are not thinking, and while thinking, they are not eating.

(4) a philosopher must eat with two forks (i.e. if thinking, none fork are used).

(5) each philosopher can only use the forks on his immediate left and immediate right.

The readers-writer problem concerns synchronization of processes when accessing

the same database in a R/W mode. It is summarized as:

(1) several processes can read the database at the same time.

(2) when at least a process reads, no one can write.

(3) only a single process can write at the same time.

(4) when a process writes, no one can read.

Some problems of coordination (2)

29

Producer

Consumer

Producer

Consumer

The producer-consumer (i.e. bounded buffer) describes how processes share a

common buffer. The problem is to make sure that a process will not try to add data

into the buffer if it's full, or to remove data if empty.

The problem is summarized as:

(1) the producer and the consumer share a common, fixed-size, buffer,

(2) the producer puts information into the buffer, and the consumer takes it out,

(3) processes are blocked when the size limit is reached, empty for the consumer

or full for the producer,

(4) processes are unblocked when the buffer recovers a regular size,

(5) we can generalize the problem to m producers and n consumers, but this

extends the synchronization with a mutual exclusion while accessing the buffer.

Producer

Consumer
Producer

Consumer

Operating Systems

“IPC and synchronization”

1. Introduction

2. Synchronization for mutual exclusion

2.1. Principles of concurrency

2.2. Synchronization methods for mutual exclusion

3. Synchronization for coordination

3.1. Some problems of coordination

3.2. Solving the Producer/Consumer problem

3.3. Solving the multiple Producer/Consumer problem

30

Solving the Producer/Consumer problem

“Introduction”

31

Methods Approach Type Application problem
Coordination

type

sleep and wakeup

sleep and

wakeup
software

Producer / Consumer

coordination by

communication

semaphore
coordination by

sharing
semaphore / mutex Multiple

Producers / Consumersmonitor

Solving the Producer/Consumer problem

“sleep wakeup” (1)

32

Process

A

Process

B

sleep sleep

wakeup

wakeup

Sleep and wakeup are atomic actions to change the states of

processes for synchronization.

The producer/consumer algorithm is

consumer, producer are processes

consumer

loop

(1) if buffer is empty

(2) sleep

(3) pop item from buffer

(4) if buffer was full (i.e. actual size = n-1)

(5) wakeup producer

producer

loop

(1) if buffer is full

(2) sleep

(3) push a new item in buffer

(4) if buffer was empty (i.e. actual size =1)

(5) wakeup consumer

buffer P state C state

0 awake sleepy

P1,3,4,5 1 awake awake

C3,4 0 awake awake

P1,3,4,5 1 awake awake

C1,3,4,1,2 0 awake sleepy

P wakeups C

C restarts at Program Counter

when empty, C will sleep

here is a lost wakeup

e.g. two processes P, C with a successful synchronization

Px,y process P executes the instructions x,y

Solving the Producer/Consumer problem

“sleep wakeup” (2)

33

Process

A

Process

B

sleep sleep

wakeup

wakeup

Sleep and wakeup are atomic actions to change the states of

processes for synchronization.

The producer/consumer algorithm is

consumer, producer are processes

consumer

loop

(1) if buffer is empty

(2) sleep

(3) pop item from buffer

(4) if buffer was full (i.e. actual size = n-1)

(5) wakeup producer

producer

loop

(1) if buffer is full

(2) sleep

(3) push a new item in buffer

(4) if buffer was empty (i.e. actual size =1)

(5) wakeup consumer

here is a lost wakeup

C blocked on sleep

fill in buffer

P, C will sleep

for always

e.g. two processes P, C with a synchronization and failure

buffer P state C state

0 awake awake

C1 0 awake awake

P1,3,4,5 1 awake awake

C2 1 awake sleepy

P1,3,4 2 awake sleepy

P1,3,4 3 awake sleepy

…. … … …

P1,2 n sleepy sleepy

Px,y process P executes the instructions x,y

Solving the Producer/Consumer problem

“sleep wakeup” (3)

34

0 1

sleep sleep put to 0

wakeup waiting bitprocess state

ready waiting

wakeup put to 1 wakeup

co
m

m
a

n
d

co
m

m
a
n

d

Sleep and wakeup with a wakeup waiting bit is an

extension of the method to support the lost wakeups.

The producer/consumer algorithm is

e.g. two processes P, C with a successful synchronizationconsumer, producer are processes

consumer

loop

(1) if buffer is empty

(2) sleep

(3) pop item from buffer

(4) if buffer was full (i.e. actual size = n-1)

(5) wakeup producer

producer

loop

(1) if buffer is full

(2) sleep

(3) push a new item in buffer

(4) if buffer was empty (i.e. actual size =1)

(5) wakeup consumer

buffer
ww bits

P state C state
P C

0 0 0 awake awake

C1 0 0 0 awake awake

P1,3,4,5 1 0 1 awake awake

C2 1 0 0 awake awake

P1,3,4 2 0 0 awake awake

C3,4 1 0 0 awake awake

…. … … …

C gets a bit

C uses the bit

the synchronization

will go on

Px,y process P executes the instructions x,y

Solving the Producer/Consumer problem

35

Methods Approach Type Application problem
Coordination

type

sleep and wakeup

sleep and

wakeup
software

Producer / Consumer

coordination by

communication

semaphore
coordination by

sharing
semaphore / mutex Multiple

Producers / Consumersmonitor

Solving the Producer/Consumer problem

“semaphores” (1)

36

semaphore

value

Semaphore is a synchronization primitive composed of a blocking

queue and a variable controlled with two operations down / up.

A counting (or a general) semaphore is not a binary semaphore, it

embeds a variable covering the range [0,+ [.

before after

value 2 1

queue  

before after

value 0 0

queue  P

regular down blocking down

The down

operation

before after

value 2 3

queue  

before after

value 0 0

queue P 

regular up unblocking up

The up

operation

down with Pj

-1

value

sleep and push Pj

in the queue

if > 0

else

blocking

down

regular

down

up with Pj

+
1

value

wakeup and pop

Pk from the queue

if queue empty

else

unblocking

up

regular

up

Solving the Producer/Consumer problem

“semaphores” (2)

37

access to

fill

size > 0
C

access to

empty

size < max
P

buffer

1. request

2. granted

3. pop

3. push

1. request

2. granted

4. update

The algorithm for solving the producer/consumer problem

with semaphores is

fill = 0, empty = n are semaphores

buffer is the data structure

consumer

loop

(1) down fill

(2) pop item from buffer

(3) up empty

producer

loop

(1) down empty

(2) push a new item in buffer

(3) up fill

buffer

0 n

fill empty

block C

at fill=0

block P

at empty=0

Solving the Producer/Consumer problem

“semaphores” (3)

38

buffer
fill empty

P state C state
value Q value Q

0 0  2  ready ready

C1 0 0 C 2  ready blocked

P1,2,3 1 0  1  ready ready

C2,3 0 0  2  ready ready

P1,2,3 1 1  1  ready ready

P1,2,3 2 2  0  ready ready

P1 2 2  0 P blocked ready

C sleeps at down on fill

P wakeups C at up on fill

next scheduling, C restarts on pop

P stopped at down on empty

fill in buffer

fill = 0, empty = n are semaphores

buffer is the data structure

consumer

loop

(1) down fill

(2) pop item from buffer

(3) up empty

producer

loop

(1) down empty

(2) push a new item in buffer

(3) up fill

buffer

0 n

fill empty

block C

at fill=0

block P

at empty=0

before after

value 2 1

queue  

before after

value 0 0

queue  P

regular down blocking down

before after

value 2 3

queue  

before after

value 0 0

queue P 

regular up unblocking up

e.g. two processes P, C with n=2

The algorithm for solving the producer/consumer problem

with semaphores is

Px,y process P executes the instructions x,y

Operating Systems

“IPC and synchronization”

1. Introduction

2. Synchronization for mutual exclusion

2.1. Principles of concurrency

2.2. Synchronization methods for mutual exclusion

3. Synchronization for coordination

3.1. Some problems of coordination

3.2. Solving the Producer/Consumer problem

3.3. Solving the multiple Producer/Consumer problem

39

Solving the multiple Producer/Consumer problem

“Introduction”

40

Methods Approach Type Application problem
Coordination

type

sleep and wakeup

sleep and

wakeup
software

Producer / Consumer

coordination by

communication

semaphore
coordination by

sharing
semaphore / mutex Multiple

Producers / Consumersmonitor

Solving the multiple Producer/Consumer problem

“semaphores - mutex” (1)

41

buffer

0 n

fill empty

pop

(1) w = b[out]

(2) out = (out+1)%(n+1)

fill and empty work from a buffer having a size bounded between 0 to n.

The buffer is treated as a circular storage, and pointer values must be

expressed modulo the size of the buffer. Therefore, we can have In >

Out or In < Out depending the access case.

In addition, the buffer slots are data-dependent (e.g. byte,

double, data structure, etc.), the read/write operations b[] could

be instruction sets.

fill = 0, empty = n are semaphores

buffer is the data structure

consumer

loop

(1) down fill

(2) w= b[out]

(3) out = (out+1)%(n+1)

(4) up empty

producer

loop

(1) down empty

(2) b[in] = v

(3) in = (in+1)%(n+1)

(4) up fill

The one-to-one solution to the Producer/Consumer

problem with a bounded-buffer.

The pop and push operations are then not atomic.

push

(1) b[in] = v

(2) in = (in+1)%(n+1)

b[0] b[1] b[2] b[3] b[4]

Out In

b[n]….. b[0] b[1] b[2] b[3] b[4]

In Out

b[n]…..

free slotsfree slots

Solving the multiple Producer/Consumer problem

“semaphores - mutex” (2)

42

buffer In Out
fill empty

value Q value Q

1 0 5 1  5 

C1,2 0 0 5 0  5 

P11,2 1 0 5 0  4 

P21,2 1 0 5 0  3 

C3,4 1 0 0 0  4 

P13,4 1 1 0 1  4 

P23,4 1 2 0 2  4 

C1,2,3,4 0 2 1 1  5 

C1,2 0 2 2 0  5 

fill = 0, empty = n are semaphores

buffer is the data structure

consumer

loop

(1) down fill

(2) w= b[out]

(3) out = (out+1)%(n+1)

(4) up empty

producer

loop

(1) down empty

(2) b[in] = v

(3) in = (in+1)%(n+1)

(4) up fill

Applying the one-to-one solution to the bounded-buffer

problem with multiple producers and/or consumers.

e.g. two producers P1, P2, one consumer C with n=5

    

OutIn



    

OutIn



    

Out In



    

Out In



initial state

after a while, P2 overwrites the

P1’s data

P1, P2 update the In value, a null

slot b[1] remains

C consumes the slot b[0]

C accesses a null slot b[1] and

crashes the system (i.e. exception)

Px,y process P executes the instructions x,y

Solving the multiple Producer/Consumer problem

“semaphores - mutex” (3)

43

fill = 0, empty = n are semaphores

mutex is a mutex

buffer is the data structure

consumer

loop

(1) down fill

(2) down mutex

(3) pop item from buffer

(4) up mutex

(5) up empty

producer

loop

(1) down empty

(2) down mutex

(3) push a new item in buffer

(4) up mutex

(5) up fill

The solution is then to protect access to buffer with a mutex. The

general algorithm for solving the multiple producer/consumer

problem with semaphore becomes

Access to

fill

size > 0
C1

Access to

empty

size < max
P1

buffer

1. request

2. granted

3. pop

3. push

1. request

2. granted

Access to

buffer

5. granted

C2

P2

1. request

2. granted

1. request

2. granted

6. update 6. update

4. request

Solving the multiple Producer/Consumer problem

“semaphores - mutex” (4)

44

buffer
fill empty mutex

value Q value Q value Q Section

0 0  4  false  

P11,2 0 0  3  true  P1

P21,2 0 0  2  true P2 P1

P13,4,5 1 1  2  true  P2

P23 2 1  2  true  P2

C1,2 2 0  2  true C P2

P24,5 2 1  2  true  C

C3,4,5 1 1  3  false  

e.g. two producers P1, P2, one consumer C with n = 4

fill = 0, empty = n are semaphores

mutex is a mutex

buffer is the data structure

consumer

loop

(1) down fill

(2) down mutex

(3) pop item from buffer

(4) up mutex

(5) up empty

producer

loop

(1) down empty

(2) down mutex

(3) push a new item in buffer

(4) up mutex

(5) up fill

C is blocked on mutex while P2 accesses

the buffer, here there is no mutual exclusion

P2 is blocked on mutex while P1 accesses

the buffer, here mutual exclusion applies

The solution is then to protect access to buffer with a mutex. The

general algorithm for solving the multiple producer/consumer

problem with semaphore becomes

Px,y process P executes the instructions x,y

Solving the multiple Producer/Consumer problem

“semaphores - mutex” (5)

45

Inverting the code for solving the multiple producer/consumer

problem will result in a deadlock.

fill = 0, empty = n are semaphores

mutex is a mutex

buffer is the data structure

consumer

loop

(1) down mutex

(2) down fill

(3) pop item from buffer

(4) up empty

(5) up mutex

producer

loop

(1) down mutex

(2) down empty

(3) push a new item in buffer

(4) up fill

(5) up mutex

we shift

we shift

we shift

we shift

P

C

mutex

empty

empty mutex
P state C state

value Q value Q Section

0  false   ready ready

P1,2 0 P true  P blocked ready

C1 0 P true C P waiting blocked

Pi Pi waits

for Ri
Ri

Pi Pi holds

Ri
Ri

P,C will sleep

for always

e.g. one producers P, one consumer C

Px,y process P executes the instructions x,y

Solving the multiple Producer/Consumer problem

46

Methods Approach Type Application problem
Coordination

type

sleep and wakeup

sleep and

wakeup
software

Producer / Consumer

coordination by

communication

semaphore
coordination by

sharing
semaphore / mutex Multiple

Producers / Consumersmonitor

Solving the multiple Producer/Consumer

problem “monitor” (1)

47

standard

code

monitor

standard

code

critical sectio
n

program

standard

code

Main

memoryre
ad

y
 p

ro
ce

ss
es

CPU

short-term

scheduler

dispatcher

running process
process

downloaded with

a monitor section

when a program enters in a

monitor, special rules are applied

to the scheduler and memory

monitor

space

A monitor is a special piece of code, associated to condition variables, that are providing mutual

exclusion within the monitor. Special rules are applied to the scheduler and memory:

1. only one process at a time can access the monitor,

2. irregular in/out of monitor by processes are controlled with two operations, wait and signal, to be

applied on the condition variables that are close to semaphore mechanisms,

3. monitors are given in two implementations, Mesa and Hoare.

Solving the multiple Producer/Consumer

problem “monitor” (2)

48

standard

code

monitor

standard

code

critical sectio
n

program

standard

code

executable

monitor

compilation invocation

program

Monitor

scheduler +

access queue(s) normal

exit
Process

wait/signal

if condition true

something could happen

if condition

false

request to access

the monitor

a condition

variable

A monitor is a special piece of code, associated to condition variables, that are providing mutual

exclusion within the monitor. Special rules are applied to the scheduler and memory:

1. only one process at a time can access the monitor,

2. irregular in/out of monitor by processes are controlled with two operations, wait and signal, to be

applied on the condition variables that are close to semaphore mechanisms,

3. monitors are given in two implementations, Mesa and Hoare.

Solving the multiple Producer/Consumer

problem “monitor” (3)

49

standard

code

monitor

standard

code

critical sectio
n

program

standard

code

Mesa Hoare

wait common implementation

signal
specific to Mesa,

also called notify
specific to Hoare

A monitor is a special piece of code, associated to condition variables, that are providing mutual

exclusion within the monitor. Special rules are applied to the scheduler and memory:

1. only one process at a time can access the monitor,

2. irregular in/out of monitor by processes are controlled with two operations, wait and signal, to be

applied on the condition variables that are close to semaphore mechanisms,

3. monitors are given in two implementations, Mesa and Hoare.

Solving the multiple Producer/Consumer

problem “monitor” (4)

50

standard

code

monitor

standard

code

critical sectio
n

program

standard

code

Pk

Monitor

scheduler +

access queue(s) Process

waitPk

request to access

the monitor

a condition

variable

After a wait operation, a process moves

to the queue of the condition variable.

The wait operation

in all the cases

before the wait Pk in the monitor

after the wait Pk in the condition queue

A monitor is a special piece of code, associated to condition variables, that are providing mutual

exclusion within the monitor. Special rules are applied to the scheduler and memory:

1. only one process at a time can access the monitor,

2. irregular in/out of monitor by processes are controlled with two operations, wait and signal, to be

applied on the condition variables that are close to semaphore mechanisms,

3. monitors are given in two implementations, Mesa and Hoare.

Solving the multiple Producer/Consumer

problem “monitor” (5)

51

standard

code

monitor

standard

code

critical sectio
n

program

standard

code

if queue empty otherwise

before the signal
Pk in the

monitor,

normal exit

Pk in the monitor,

Pj in the condition queue

after the signal Pk in the monitor,

Pj in the entry queue

Monitor

scheduler +

access queue(s) Process

signal/notify

request to access

the monitor

a condition

variable
Pj

Pk

Pj

If at least one process is in the condition queue, it is

notified but the signaling process continues. The

signaled process will be resumed at some convenient

future time, when the monitor will be available.

The signal operation with a Mesa implementation, also called notify

A monitor is a special piece of code, associated to condition variables, that are providing mutual

exclusion within the monitor. Special rules are applied to the scheduler and memory:

1. only one process at a time can access the monitor,

2. irregular in/out of monitor by processes are controlled with two operations, wait and signal, to be

applied on the condition variables that are close to semaphore mechanisms,

3. monitors are given in two implementations, Mesa and Hoare.

Solving the multiple Producer/Consumer

problem “monitor” (6)

52

standard

code

monitor

standard

code

critical sectio
n

program

standard

code

a.q, b.q are the queues of the condition variables a, b

e.q queue of processes that want to enter

m the monitor with one process at a time

enter when a process requests the monitor

access when a process gets the monitor

exit when a process exits the monitor

wait when a process moves after a wait operation

notified
when a process leaves the queue of a condition

variable following a notify operation

Notation
enter

wait

wait

exit

access

notified

a.qb.q

e.q

m

The Buhr’s representation of the Mesa monitor

A monitor is a special piece of code, associated to condition variables, that are providing mutual

exclusion within the monitor. Special rules are applied to the scheduler and memory:

1. only one process at a time can access the monitor,

2. irregular in/out of monitor by processes are controlled with two operations, wait and signal, to be

applied on the condition variables that are close to semaphore mechanisms,

3. monitors are given in two implementations, Mesa and Hoare.

Solving the multiple Producer/Consumer problem

“monitor” (7)

53

monitor ProducerConsumer

full = 0, empty = n are conditions

count is a numerical value

add item

(1) while count equals N

(2) wait on full

(3) push new item in buffer

(4) increment count

(5) notify on empty

remove item

(1) while count equals 0,

(2) wait on empty

(3) pop item from buffer

(4) decrement count

(5) notify on full

producer

loop

(0) call add new item

consumer

loop

(0) call remove item

The bounded-buffer algorithm with multiple consumers and producers,

using a Mesa monitor.

M
o

n
it

o
r

M
ai

n
 m

et
h

o
d

s

Solving the multiple Producer/Consumer

problem “monitor” (8)

54

producer

loop

(0) call add new item

consumer

loop

(0) call remove item

monitor ProducerConsumer

full = 0, empty = n are conditions

count is a numerical value

add item

(1) while count equals N

(2) wait on full

(3) push new item in buffer

(4) increment count

(5) notify on empty

remove item

(1) while count equals 0,

(2) wait on empty

(3) pop item from buffer

(4) decrement count

(5) notify on full

buffer count
Conditions

Section
entry queue

full empty

0 0  C1  

P10,1,3,4 1 1  C1 P1 P1-

C20 1 1  C1 P1 C2

P15,0 1 1   P1- P1,C1,C2

P30 1 1    P3,P1,C1,C2

P20 1 1    P2,P3,P1,C1,C2

C21,3,4,5,0 0 0   C2- C2,P2,P3,P1,C1

C11,2 0 0  C1 C1- C2,P2,P3,P1

P11,3,4,5,0 1 1   P1- P1,C1,C2,P2,P3

P31,3,4,5,0 2 2   P3- P3,P1,C1,C2,P2

P21,2 2 2 P2  P2- P3,P1,C1,C2

C21,3,4,5,0 1 1   C2- C2,P2,P3,P1,C1

Solve the following problem:

- 3 producers (P1,P2,P3) and 2 consumers (C1,C2).

- max size N of the buffer is 2.

- at t=0, buffer is empty and C1 is in the empty queue.

- scheduling of the entry queue is FCFS.

- schedule considering the following sequence with

a Mesa monitor.

enter

wait

wait

exit

access

notified

a.qb.q

e.q

m

P1 enters and accesses

C2 enters

C1 pushed in e.q, P1 enters

P3 enters

P2 enters

C1 restarts and blocks on (2)

C2 accesses and enters

C1 pushed in e.q, P1 enters

P3 accesses and enters

P2 blocked on (2)

P2 pushed in e.q, C2 enters

Px,y process P executes the instructions x,y

Solving the multiple Producer/Consumer

problem “monitor” (9)

55

standard

code

monitor

standard

code

critical sectio
n

program

standard

code

Monitor

scheduler +

access queue(s) Process

signal/notify

request to access

the monitor

a condition

variable
Pj

Pk

then

Pj

Pk

If at least one process is in the condition queue, it runs

immediately after the signal operation. The signaling

process will be pushed in a specific access queue.

The signal operation with a Hoare implementation

if queue empty otherwise

before the signal

Pk in the

monitor,

normal exit

Pk in the monitor,

Pj in the condition queue

after the signal Pj in the monitor,

Pk moves to a specific

access queue called signal

A monitor is a special piece of code, associated to condition variables, that are providing mutual

exclusion within the monitor. Special rules are applied to the scheduler and memory:

1. only one process at a time can access the monitor,

2. irregular in/out of monitor by processes are controlled with two operations, wait and signal, to be

applied on the condition variables that are close to semaphore mechanisms,

3. monitors are given in two implementations, Mesa and Hoare.

Solving the multiple Producer/Consumer

problem “monitor” (10)

56

standard

code

monitor

standard

code

critical sectio
n

program

standard

code

The Buhr’s representation of a Hoare monitor

wait

wait

signalled

signalled

a.q

b.q

e.q s.q

signal

exit

enter

access

m

a.q, b.q are the queues of the condition variables a, b

e.q queue of processes that want to enter

s.q
queue of processes that have been pushed out

after a signal operation

m the monitor with one process at a time

enter when a process requests the monitor

access when a process gets the monitor

exit when a process exits the monitor

wait when a process moves after a wait operation

signalled
when a process leaves the queue of a condition

variable following a signal operation

signal
when a process moves out after a successful

signal operation

Notation

A monitor is a special piece of code, associated to condition variables, that are providing mutual

exclusion within the monitor. Special rules are applied to the scheduler and memory:

1. only one process at a time can access the monitor,

2. irregular in/out of monitor by processes are controlled with two operations, wait and signal, to be

applied on the condition variables that are close to semaphore mechanisms,

3. monitors are given in two implementations, Mesa and Hoare.

Solving the multiple Producer/Consumer

problem “monitor” (11)

57

monitor ProducerConsumer

full = 0, empty = n are conditions

count is a numerical value

add item

(1) if count equals N

(2) wait on full

(3) push new item in buffer

(4) increment count

(5) signal on empty

remove item

(1) if count equals 0

(2) wait on empty

(3) pop item from buffer

(4) decrement count

(5) signal on full

producer

loop

(0) call add new item

consumer

loop

(0) call remove item

The bounded-buffer algorithm with multiple consumers and producers,

using a Hoare monitor.

M
o

n
it

o
r

M
ai

n
 m

et
h

o
d

s

Solving the multiple Producer/Consumer

problem “monitor” (12)

58

producer

loop

(0) call add new item

consumer

loop

(0) call remove item

monitor ProducerConsumer

full = 0, empty = n are conditions

count is a numerical value

add item

(1) if count equals N

(2) wait on full

(3) push new item in buffer

(4) increment count

(5) signal on empty

remove item

(1) if count equals 0

(2) wait on empty

(3) pop item from buffer

(4) decrement count

(5) signal on full

buffer count
Conditions

Section
entry queue


Turn

full empty signal

0 0  C1    

P10,1,3,4 1 1  C1  P1  1 (E)

C20 1 1  C1  P1 C2 1 (E)

P15 1 1   P1 P1-C1 C2 1 (E)

C13,4,5,0 0 0   P1 C1- C1,C2 Signalled

P30 0 0   P1  P3,C1,C2 

P20 0 0   P1  P2,P3,C1,C2 

C21,2 0 0  C2 P1 C2- P2,P3,C1 2 (E)

C11,2 0 0  C1,C2 P1 C1- P2,P3 3 (E)

P11,3,4,5 1 1  C1 P1-P1 P1-C2 P2,P3 4 (S)

C23,4,5,0 0 0  C1 P1 C2- C2,P2,P3 Signalled

P31,3,4,5 1 1   P3,P1 P3-C1 C2,P2 1 (E)

Extend the previous problem with an Hoare monitor:

- Scheduling between the (E)ntry and the (S)ignal

queues is a Round Robin with a time slice 3/4 (E) and

1/4 (S). At the turn 1, the time slice starts with (E).

wait

wait

signalled

signalled

a.q

b.q

e.q s.q

signal

exit

enter

access

m

P1 enters/accesses

C2 enters

P1 blocked on (5)

C1 signalled on (3)

P3 enters

P2 enters

C2 blocked on (2)

C1 blocked on (2)

P1 loops on s.q

C2 signalled on (3)

P3 blocked on (5)

Px,y process P executes the instructions x,y

