
Operating Systems

“Resource management”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/operating2.html

1

Operating Systems

“Resource management”

1. Introduction to resource management

2. Resource-allocation graph

2.1. Resource-allocation graph and sequence

2.2. Resource-allocation graph, primitive and scheduling

2.3. Deadlock and necessary conditions

3. Resource management protocols

4. The safe states and banker’s algorithm

4.1. Safe and unsafe states

4.2. Data representation

4.3. The safety and banker’s algorithms

2

Introduction to resource management (1)

A resource is any physical or virtual component of limited availability within a computer system e.g. CPU time, hard disk,

device (USB, CD/DVD, etc.), network, etc.

shareable Can be used in parallel

by several processes

e.g. read only memory

no shareable Can be accessed by a

single process at a time

e.g. write only memory, device, CPU

time, network access, etc.

R
es

o
u

rc
e

ty
p

e

Resource acquisition is related to the operation sequence to request, access and release a no sharable resource. This is a

synchronization problem for mutual exclusion, between 2 or mores processes, based on common semaphore / mutex

Request If the request cannot be granted immediately, then the

requesting process must wait until it can acquire the resource.

Access The process can operate on the resource.

Release The process releases the resource.

3

Resource management deals with the global allocation of no shareable resource of a computer to tasks/processes being

performed on that computer, for performance or safety issues.

Global resource allocation extends the allocation of no shareable resource to the overall processes in the operating system.

Introduction to resource management (2)

4

e.g. algorithm for mutual exclusion using a mutex is

A accesses the section, sem becomes true

while accessing the semaphore, B blocks

e.g. three processes A, B and C considering the scheduling,

the solution is presented with a table

while accessing the semaphore, C blocks

A exits and pops up B, B holds the section

B exits and pops up C, C holds the section

C exits and puts the semaphore to false

(1) before the request

do something ….

(2) down sem

(3) run in the critical section with P

do something ….

(4) before the release

do something ….

(5) up sem

sem is a semaphore, P is the

process, (1) to (5) the instructions

before after

value false true

queue  

before after

value true true

queue  P

regular down blocking down

before after

value true false

queue  

before after

value true true

queue P 

regular up unblocking up

sem
Section A state B state C state

value Q

false   ready ready ready

A1,2,3 true  A ready ready ready

B1,2 true B A ready blocked ready

C1,2 true C,B A ready blocked blocked

A4,5 true C A-B ready ready blocked

B3,4,5 true  B-C ready ready ready

C3,4,5 false  C- ready ready ready

Px,y process P executes the instructions x,y

Introduction to resource management (3)

5

job queue ready queue

CPU

ready-suspend

queue

blocked-suspend

queue

blocked queue

short-term

scheduling

mid-term

scheduling

long-term

scheduling

medium-term

scheduling

mid-term

scheduling

mid-term

scheduling

I/O or

event wait

I/O or event

completion

Exit

Queuing diagram for scheduling shows the queues involved in the state transitions of processes.

Rq. For simplicity, this diagram shows new processes going directly to the ready state without the option of either

the ready state or either the ready/suspend state.

Operating Systems

“Resource management”

1. Introduction to resource management

2. Resource-allocation graph

2.1. Resource-allocation graph and sequence

2.2. Resource-allocation graph, primitive and scheduling

2.3. Deadlock and necessary conditions

3. Resource management protocols

4. The safe states and banker’s algorithm

4.1. Safe and unsafe states

4.2. Data representation

4.3. The safety and banker’s algorithms

6

Resource-allocation graph and sequence (1)

Resource acquisition

A resource-allocation graph is a tool that helps in characterizing the allocation of resources. A resource-allocation graph is a

directed graph that describes a state of system resources as well as processes. Every resource and process is represented by a

node, and their relations (e.g. request, resource holding) by edges.

Single access

P1

request use

P1

R1R1

P1

R1

release

P1

P2

P3

R1

P1

P2

P3

R1

P3 holds R1,

P1 and P2 cannot access

When P3 releases R1,

P1 or P2 (not the both due to

mutual exclusion) can access

Pi
Process Pi (process node)

Resource of type Ri with 4

instances (resource node)
Ri

Pi

Pi is waiting for one

instance of Ri (request edge)
Ri

Pi
Pi holds one instance

of Ri (hold edge)
Ri

Notation

n
o
d

es
ed

g
es

Concurrent access

Resource-allocation graph and sequence (2)

8

Resource acquisition

P1

R1

R2

P1

R1

R2

(1) P1 requests, uses and

releases R1

(2) P1 requests, uses and

releases R2

Multiple and disjoint access

(1) P1

R1

R2

P1

R1

R2

P1

R1

R2

(2) P1

R1

R2

Pi
Process Pi (process node)

Resource of type Ri with 4

instances (resource node)
Ri

Pi

Pi is waiting for one

instance of Ri (request edge)
Ri

Pi
Pi holds one instance

of Ri (hold edge)
Ri

Notation

n
o
d

es
ed

g
es

A resource-allocation graph is a tool that helps in characterizing the allocation of resources. A resource-allocation graph is a

directed graph that describes a state of system resources as well as processes. Every resource and process is represented by a

node, and their relations (e.g. request, resource holding) by edges.

Resource-allocation graph and sequence (3)

9

Resource acquisition

(1) P1 requests R1 and R2

in any order

(2) P1 uses R1 and R2 and

releases them in any

order

Multiple and joint access

P1

R1

R2

P1

R1

R2

(1) P1

R1

R2

P1

R1

R2

P1

R1

R2

(2) P1

R1

R2

A resource-allocation graph is a tool that helps in characterizing the allocation of resources. A resource-allocation graph is a

directed graph that describes a state of system resources as well as processes. Every resource and process is represented by a

node, and their relations (e.g. request, resource holding) by edges.

Pi
Process Pi (process node)

Resource of type Ri with 4

instances (resource node)
Ri

Pi

Pi is waiting for one

instance of Ri (request edge)
Ri

Pi
Pi holds one instance

of Ri (hold edge)
Ri

Notation

n
o
d

es
ed

g
es

Resource-allocation graph and sequence (4)

P3 requests R2

P1 requests R1

P2 requests R2

P1

P2

P3

P4

R1 R2

P1

P2

P3

P4

R1 R2

(1) (2)

(6) (5)

(3)

P1

P2

P3

P4

R1 R2

(4)

P4 releases R2

P3 accesses R2

P3 releases R1,R2

P1 accesses R1

P2 accesses R2

P1 requests R2

P2 releases R1,R2

P1 accesses R2

P1 releases R1

P1 releases R2

P1

P2

P3

P4

R1 R2

P1

P2

P3

P4

R1 R2

P1

P2

P3

P4

R1 R2

10

A resource-allocation sequence is the order by which the resources are utilized (request, use and release).

e.g. a resource acquisition sequence involving 4 processes (P1, P2, P3 and P4), 3 resources of two types (R1, R2); we

have R1, R2 accessed in a disjoint (P1) and joint (P2, P3) ways, R1 accessed in a single way (P4).

The resource-allocation

graph at t0

Operating Systems

“Resource management”

1. Introduction to resource management

2. Resource-allocation graph

2.1. Resource-allocation graph and sequence

2.2. Resource-allocation graph, primitive and scheduling

2.3. Deadlock and necessary conditions

3. Resource management protocols

4. The safe states and banker’s algorithm

4.1. Safe and unsafe states

4.2. Data representation

4.3. The safety and banker’s algorithms

11

Resource-allocation graph, primitive and scheduling (1)

12

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 1. the needs in resources will result in a chaining blocking without deadlocking

C
R0 R1

Q0(t) U0 R0 (t) Q1(t) U1 R1(t)

P0 15 s+9 6 s+15 s+4 7 s+11

P1 12 s+5 5 s+10 Na Na Na

P2 9 Na Na Na s+3 4 s+7

- C is the capacity of a process

- s is the start date of a process

- Q(t) is the query / request time (i.e. down on the mutex)

- U is the needed time to use the resource, with

Q(t)+U ≤ s+C

- R(t) is the release time (i.e. up on the mutex) with

R(t) = Q(t)+U

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 5

Q0(t)

10

R0(t)

12

e

R0

U0=5

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P1

P0

Resource-allocation graph, primitive and scheduling (2)

13

Burst 5 6 3 4 3 3 4 6 2

Process P1 P0 P2 P1 P0 P1 P0 P2 P0

Event a b c d e f g h

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

(a) (b) (c)

(d) (e) (f)

(g) (h)

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 5

Q0(t)

10

R0(t)

12

e

R0

U0=5

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P1

P0

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 1. the needs in resources will result in a chaining blocking without deadlocking

here is chaining blocking

P2 P0  P1

Resource-allocation graph, primitive and scheduling (3)

14

C
R0 R1

Q0(t) U0 R0 (t) Q1(t) U1 R1(t)

P0 15 s+9 6 s+15 s+4 7 s+11

P1 12 s+5 5 s+10 s+9 3 s+12

P2 9 Na Na Na s+3 4 s+7

- C is the capacity of a process

- s is the start date of a process

- Q(t) is the query / request time (i.e. down on the mutex)

- U is the needed time to use the resource, with

Q(t)+U ≤ s+C

- R(t) is the release time (i.e. up on the mutex) with

R(t) = Q(t)+U

U = R(t)–Q(t)

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P1

P0

s

0 5

Q0(t)

10

R0(t)

12

R1(t), e

R0

U0=5

R1

Q1(t)

U1=3

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 2. the needs in resources will result in chaining blocking and deadlocking

9

Resource-allocation graph, primitive and scheduling (4)

15

Burst 5 6 3 4 3

Process P1 P0 P2 P1 P0

Event a b c d e

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

(a) (b) (c)

(d) (e)

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P0

P1

s

0 5

Q0(t)

10

R0(t)

12

R1(t), e

R0

U0=5

R1

Q1(t)

U1=3

here is deadlock

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 2. the needs in resources will result in a chaining blocking and deadlocking

9

Resource-allocation graph, primitive and scheduling (5)

16

Burst 5 6 3 4 3

Process P1 P0 P2 P1 P0

Event a b c d e

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P0

P1

s

0 5

Q0(t)

10

R0(t)

12

R1(t), e

R0

U0=5

R1

Q1(t)

U1=3

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 2. the needs in resources will result in a chaining blocking and deadlocking

9

< (d) > (d) < (e) > (e)

P0 Ready Ready Running Blocked

P1 Running Blocked Blocked Blocked

P2 Blocked Blocked Blocked Blocked

S0 P1 P0

S1 P2 P2, P1 P2, P1 P2, P1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

(d) (e)

Operating Systems

“Resource management”

1. Introduction to resource management

2. Resource-allocation graph

2.1. Resource-allocation graph and sequence

2.2. Resource-allocation graph, primitive and scheduling

2.3. Deadlock and necessary conditions

3. Resource management protocols

4. The safe states and banker’s algorithm

4.1. Safe and unsafe states

4.2. Data representation

4.3. The safety and banker’s algorithms

17

Deadlock and necessary conditions (1)

1. Mutual

exclusion

At least one resource must be held in a no

sharable mode, that is only one process at

a time can use this resource.

2. Hold and

wait

A process must hold at least one resource

and wait to acquire additional resources

that are currently being held by other

processes.

3. No

preemption

Resources cannot be preempted; that is, a

resource can be released only voluntarily

by the process holding.

4. Circular

wait

A set {P0, P1, … Pn) of waiting process

must exit such that

-P0 is waiting for a resource held by P1

-P1 is waiting by a resource held by P2

-….

-Pn-1 is waiting by a resource held by Pn

-Pn is waiting by a resource held by P0

18

The necessary conditions are such that if they hold

simultaneously in a system, deadlocks could arise.

P1 is waiting for one instance

of R2, held by P2.

P2 is waiting for one instance

of R1, held by P1.

P1

P2

R1 R2

Deadlock refers to a specific condition when two or more

processes are each waiting for each other to release no

shareable resources, or more than two processes are waiting

for resources in a circular chain.

Deadlock and necessary conditions (2)

P

D
V

D
d
is

k
p

ri
n
te

r

2. The process P gets all the

resources in one shot.

3. The process P copies, sorts and

prints.

P

P

1. The process P has no resource,

it can make a request.

4. The process P releases its

resources.

protocol 1

with holding

Without hold and wait, whenever a process

requests resources, it does not hold any

other resources.

e.g. consider a process that

1. copy data from a DVD to disk files

2. sort the files

3. print the files on a printer

We can consider two protocols to manage this,

with and without holding.

19

Hold and wait of resources: the resource allocation is done with an hold and wait condition of resources.

Without hold and wait, resource utilization could be low, starvation probability higher and the programming task harder.

Deadlock and necessary conditions (3)

20

Hold and wait of resources: the resource allocation is done with an hold and wait condition of resources.

Without hold and wait, resource utilization could be low, starvation probability higher and the programming task harder.

P

D
V

D
d
is

k

2. The process P gets part of the

resources (DVD, disk).

3. The process P copies an sorts.

4. The process P releases its resources.

P
7. The process P releases its

resources.

P

5. P has no resource, it can make a request. It gets

part of the resources (disk, printer).

6. The process P prints.

d
is

k
p

ri
n
te

r

P
1. The process P has no resource,

it can make a request.

protocol 2

without holding

Without hold and wait, whenever a process

requests resources, it does not hold any

other resources.

e.g. consider a process that

1. copy data from a DVD to disk files

2. sort the files

3. print the files on a printer

We can consider two protocols to manage this,

with and without holding.

Deadlock and necessary conditions (4)

P1

P2

P3

P4

R1 R2

P1

P2

P3

P4

R1
R2

P1

P2

P3

P4

R1
R2

with preemption,

P3 can preempt R1 to P1 or P2

(1)

(1) (2)with preemption, the request sequence is

1. we check whether resources are available

2. if yes, we allocate them

3. if no, we check whether resources are allocated to

other processes waiting for additional resources

4. if so, we preempt the desired resources

5. if no, we wait

without preemption, the request sequence is

1. we check whether resources are available

2. if yes, we allocate them

3. if no, we wait

without preemption,

P3 waits for P1 or P2

21

Preemption of resource: the resource allocation is done with a condition of no preemption on the resources.

Some resources can be preempted in a system, when their

states can be easily saved and restored later (CPU

registers, memory, etc.)., but some others are intrinsically

no preemptible (e.g. printer, tape drives, etc.).

Operating Systems

“Resource management”

1. Introduction to resource management

2. Resource-allocation graph

2.1. Resource-allocation graph and sequence

2.2. Resource-allocation graph, primitive and scheduling

2.3. Deadlock and necessary conditions

3. Resource management protocols

4. The safe states and banker’s algorithm

4.1. Safe and unsafe states

4.2. Data representation

4.3. The safety and banker’s algorithms

22

Resource management protocols

“Introduction” (1)

23

A resource management protocol is the mechanism (code convention, algorithms, system, etc.) in charge of the resource

management. Main goals of such a protocol are to avoid/prevent deadlocks, to deal with resource starvation and to optimize

the resources allocation. Three main approaches exist based on prevention, avoidance and detection.

-Ostrich-like, do nothing

-Prevention ensures that at least one of the necessary

conditions cannot hold, to prevent the occurrence of a deadlock.

-Avoidance authorizes deadlocks, but makes judicious choices

to assure that the deadlock point is never reached.

-Detection and recovery do not employ prevention and

avoidance, then deadlocks could occur in the system. They aim

to detect deadlocks that occur, and to recover safe states.

Approach
Deadlocks

could exist

Deadlocks

could appear

Ostrich-like yes

Prevention no

Avoidance yes no

Detection &
recovery

yes

Resource management protocols

“Introduction” (2)

Approach
à priori

data

Programming

constraints
Complexity Algorithms

Ostrich-like

Prevention
resource

types and

instances

yes linear none

Avoidance

no polynomial

safety and

banker’s

algorithms
Detection &
recovery

24

A resource management protocol is the mechanism (code convention, algorithms, system, etc.) in charge of the resource

management. Main goals of such a protocol are to avoid/prevent deadlocks, to deal with resource starvation and to optimize

the resources allocation. Three main approaches exist based on prevention, avoidance and detection.

-Ostrich-like, do nothing

-Prevention ensures that at least one of the necessary

conditions cannot hold, to prevent the occurrence of a deadlock.

-Avoidance authorizes deadlocks, but makes judicious choices

to assure that the deadlock point is never reached.

-Detection and recovery do not employ prevention and

avoidance, then deadlocks could occur in the system. They aim

to detect deadlocks that occur, and to recover safe states.

Resource management protocols

25

Approach
à priori

data

Programming

constraints
Complexity Algorithms

Ostrich-like

Prevention

resource

types and

instances

yes linear none

Avoidance

no polynomial

safety and

banker’s

algorithmsDetection &
recovery

Resource management protocols

“The ostrich-like protocol”

The ostrich-like protocol: i.e. to ignore the problem

Cons Pros

Without management we can

have resource starvation and

deadlocks could appear.

-Regarding the systems, the frequency of deadlocks

could be low.

-Finite capacity of systems could raise in deadlocks (e.g.

job queue size, file table), deadlocks are part of OS.

-OS design is a complex task, resource management

protocols could result in bugs and hard implementation.

-Without resource management protocols, systems will

gain a lot in performance.

-Resource management protocols involve constraints for

users and impact the ergonomics of systems.

-etc.

26

Resource management protocols

27

Approach
à priori

data

Programming

constraints
Complexity Algorithms

Ostrich-like

Prevention

resource

types and

instances

yes linear none

Avoidance

no polynomial

safety and

banker’s

algorithmsDetection &
recovery

Resource management protocols

“The prevention protocol” (1)

Necessary

conditions
Statute about prevention Constraint

1. Mutual

exclusion

Resources in a computer are intrinsically no shareable (printer, write-only memory,

etc), prevention protocols can’t be defined from this condition.

Not applicable.

2. Hold and wait Without hold and wait, resource utilization could be low, starvation probability higher

and programming task harder.

Applicable with severe

performance lost.

3. No preemption Some resources are intrinsically no preemptible (e.g. printer, tape drives, etc.),

prevention protocols cannot be then defined from this condition.

Not applicable.

4. Circular wait One way to ensure that deadlocks never hold is to impose total ordering of all the

resources, and to require that each process requests resources in an increasing order

of enumeration. This involves to coerce the programming of processes.

Applicable with

programming

constraints.

28

The prevention protocol ensures that at least one of the necessary conditions cannot hold, to prevent the occurrence of deadlocks.

Resource management protocols

“The prevention protocol” (2)

29

e.g. we make the condition of a circular wait

 nRRRR ,...,, 21

 nPPPP ,...,, 21
ii RoldsHP)(1

11)( ii RequestsRP

With an increasing order of enumeration,

P0 cannot access R0 as it holds R7.

P0

P6 P2

P4

P7 P1

P3
P5

R7

R0

R1

R2

R3

R4

R5

R6

Order resource numerically: one way to ensure that the circular wait condition never holds is to impose the total ordering of

all the resources, and to require that each process requests resources in an increasing order of enumeration. This involves to

coerce the programming of processes.

Resource management protocols

30

Approach
à priori

data

Programming

constraints
Complexity Algorithms

Ostrich-like

Prevention

resource

types and

instances

yes linear none

Avoidance

no polynomial

safety and

banker’s

algorithmsDetection &
recovery

Resource management protocols

“The avoidance protocols” (1)

31

Total, available, allocated and claim

resources characterize the resource-allocation

state in the system.

A resource-allocation component maintains

on-line the resource-allocation state of the

system and the available resource instances.

A process-allocation component controls the

on-line allocation of processes using the

resource-allocation state.

The process allocation denial protocol is based on avoidance, it refuses to start new processes if their resource

requirements might lead deadlocks.

…

job

queue

…

Scheduler

Resources
Syncroni-

zation

Resource

allocation

ready queue

CPU

q
(P

i,
R

i)

re
q
u
es

t

Allocated resources

Long-term

scheduler

q(Pi, Ci)

with Ci is the claim

resources of Pi

reply (yes/no)

Total amount of resources

Process

allocation

Available resources

Claim resources

Resource management protocols

“The avoidance protocols” (2)

32

The resource-allocation denial protocol is based on avoidance, it requires additional information about how resources will

be requested. Based on the on-line requests, the system considers the resource currently available and allocated to evaluate the

future requests.

Total, available, allocated and claim

resources characterize the resource-allocation

state in the system.

A resource-allocation component maintains

on-line the resource-allocation state of the

system and the available resource instances.

…

q
(P

i,
R

i)

re
q
u
es

t

re
p

ly

Resource

allocation

ready queue

Allocated resources

Total amount of resources

Available resources

Claim resources

Scheduler

Resources
Syncroni-

zation

CPU

Resource management protocols

“The avoidance protocols” (3)

resource-allocation graph

P1

P2

P3

P4

R2

R1

scheduling level

with avoidance, access to resources is decided at the avoidance algorithm level, then

synchronization, P3 will be blocked before to access to R1

33

Synchroni-

zation
Process

request

granted

i.e. yes/no

Resources

Synchroni-

zation
Process

request

ResourcesAvoidance

filtered request

granted

i.e. yes/no

without avoidance, access to resources is decided at the synchronization level,

P3 will access R1 (e.g. down on a mutex) and will put the system in a deadlock state

granted

i.e. yes/no

The resource-allocation denial protocol is based on avoidance, it requires additional information about how resources will

be requested. Based on the on-line requests, the system considers the resource currently available and allocated to evaluate the

future requests.

Resource management protocols

34

Approach
à priori

data

Programming

constraints
Complexity Algorithms

Ostrich-like

Prevention

resource

types and

instances

yes linear none

Avoidance

no polynomial

safety and

banker’s

algorithmsDetection &
recovery

Resource management protocols

“The detection & recovery protocols” (1)

35

The detection and recovery protocol does not employ prevention and avoidance, then deadlocks could occur. It aims to

detect deadlocks that occur, and to recover a safe state. If a deadlock is detected two approaches can be employed,

based on rollback and process killing.

Detection and recovery with rollback

Resource allocation: the algorithm collects the

allocation states (processes / resources) and maintains the

current allocation state.

Deadlock detection: based on different detection

methods, the algorithm searches for a deadlock. If

negative, the algorithm saves the current state, otherwise

it goes to recovery.

Recovery: if a deadlock is detected, the algorithm uses

the safe states to restore the system.

…

Sheduler

Resources
Synchroniza-

tion

Resource

allocation

re
ad

y
 q

u
eu

e

CPU

q
(P

i,
R

i)

re
q
u
es

t

Deadlock

detection

Recovery

Safe states

update allocation

state

yes

restore with a safe state

no,

save stateCurrent-

allocation state

load state

Resource management protocols

“The detection & recovery protocols” (2)

36

…

Sheduler

Resources
Synchroniza-

tion

Resource

allocation

re
ad

y
 q

u
eu

e

CPU

q
(P

i,
R

i)

re
q
u
es

t

Deadlock

detection

Recovery

yes

Current-

allocation state

processes aborted

update allocation

state

The detection and recovery protocol does not employ prevention and avoidance, then deadlocks could occur. It aims to

detect deadlocks that occur, and to recover a safe state. If a deadlock is detected two approaches can be employed,

based on rollback and process killing.

Detection and recovery with process killing

Resource allocation: the algorithm collects the

allocation states (processes / resources) and maintains the

current allocation state.

Deadlock detection: based on different detection

methods, the algorithm searches for deadlocks. If

negative, the algorithm does nothing, otherwise it goes to

recovery.

Recovery: if a deadlock is detected, the algorithm kills

processes to unlock the system, two approaches:

i. all the deadlocked processes are aborted.

ii. only some selected processes in the deadlock are

aborted until the system moves to an unlock state.

Operating Systems

“Resource management”

1. Introduction to resource management

2. Resource-allocation graph

2.1. Resource-allocation graph and sequence

2.2. Resource-allocation graph, primitive and scheduling

2.3. Deadlock and necessary conditions

3. Resource management protocols

4. The safe states and banker’s algorithm

4.1. Safe and unsafe states

4.2. Data representation

4.3. The safety and banker’s algorithms

37

Safe and unsafe states (1)

unsafe states

safe states

deadlock

states

The goal of the safety and banker’s algorithms is to characterize the safe state of a system

-A safe state can be defined as follow, considering

1. a given set of processes S = {P0, …, Pn}.

2. we have a resource-allocation state Rs corresponding to the available resources

and the resources held by {P0, …, Pn}.

3. we have a safe state if a sequence of requests <P0, …, Pn>, that could satisfy all

the processes, exists considering the available resources and the ones than can be released by

processes.

-An unsafe state is not a safe state.

-A deadlock state is unsafe, but not all the unsafe states are deadlock states.

38

Safe and unsafe states (2)

e.g. we consider the allocation problem with three processes {P0, P1, P2} to access a resource R of 12 instances,

the needs of process are P0 = 10, P1 = 4, P2 = 9.

Processes Hold Rest

P0 5 5

P1 2 2

P2 2 7

Free resources 3

At t0, we consider the following allocation state:

The state is safe because it exists a request sequence that satisfies all the processes.

Processes Hold Rest

P0 0 0

P1 0 0

P2 2 7

Free resources 10

Processes Hold Rest

P0 5 5

P1 0 0

P2 2 7

Free resources 5

P1 accesses 2 R and releases all P0 accesses 5 R

and releases all

Processes Hold Rest

P0 0 0

P1 0 0

P2 0 0

Free resources 12

P2 can accesses 7 R

and releases all

Processes Hold Rest

P0 5 5

P1 2 2

P2 2 7

Free resources 3

Only P1 can access additional

resources

39

Safe and unsafe states (3)

e.g. we consider the allocation problem with three processes {P0, P1, P2} to access a resource R of 12 instances,

the needs of process are P0 = 10, P1 = 4, P2 = 9.

Processes Hold Rest

P0 5 5

P1 2 2

P2 3 6

Free resources 2

At t0, we consider another allocation state

in which P2 held one more resource:

The state is unsafe because it exists none request sequence that satisfies all the processes.

Processes Hold Rest

P0 5 5

P1 0 0

P2 3 6

Free resources 4

Processes Hold Rest

P0 5 5

P1 2 2

P2 3 6

Free resources 2

Only P1 can access additional

resources

The free resources cannot

satisfy P0 or P2

40

P1 accesses 2 R and releases all

Safe and unsafe states (4)

41

The joint progress diagram illustrates the concept of safety in a graphic and easy-to-understand way, by

showing the progress of two processes competing for resources, with each of the process needing an exclusive

use of resources for a certain period of time.

e.g. deadlock with two processes P, Q and resources A, B

unsafe

region
get

B

get

A

release

B

release

A

g
et A

g
et B

re
le

as
e A

re
le

as
e B

A
 r

eq
u
ir

ed

B
 r

eq
u
ir

ed

Progress

of P

A required

B required

P and Q

want A

P and Q

want B

Progress

of Q



P and Q

finish

-Every point of a path line in the diagram represents a

joint state of the two processes.

-All the paths must be vertical or horizontal, neither

diagonal. Motion is always to the north or east, neither to

the south or west (because processes cannot backward in

time, off course).

-When a path is next to an instruction line, its request is

granted, otherwise it is blocked. The unblocking cases

result in a “horizontal/vertical” path.

-Gray zones are forbidden regions due to mutual

exclusion.

-The light-gray area (bottom-left to mutual exclusion

zones) is referred as the unsafe region.

-The top-right corners bounded in the unsafe regions are

deadlocks.

(1)

deadlock

Safe and unsafe states (5)

42

unsafe

region
get

B

get

A

release

B

release

A

g
et A

g
et B

re
le

as
e A

re
le

as
e B

A
 r

eq
u
ir

ed

B
 r

eq
u
ir

ed

Progress

of P

A required

B required

P and Q

want A

P and Q

want B

Progress

of Q P and Q

finish

(2)

(5)

(6)

(3)
(4)

(1) P acquires A and then B, Q executes and blocks on a

request for B. P releases A and B. When Q resumes

execution, it will be able to acquire the both resources.

(2) P acquires A and B, then releases A and B. When Q

resumes its execution, it will be able to acquire the both

resources.

(3,4) are inverted paths of (1,2).

(5) Q acquires B and then P acquires A. Deadlock is

inevitable, Q will block on A and P will block on B.

(6) P acquires A and Q acquires B. P blocked when

accessing B, same for Q with A. The deadlock is here.

The joint progress diagram illustrates the concept of safety in a graphic and easy-to-understand way, by

showing the progress of two processes competing for resources, with each of the process needing an exclusive

use of resources for a certain period of time.

e.g. deadlock with two processes P, Q and resources A, B



(1)

Safe and unsafe states (6)

43

The joint progress diagram illustrates the concept of safety in a graphic and easy-to-understand way, by

showing the progress of two processes competing for resources, with each of the process needing an exclusive

use of resources for a certain period of time.

e.g. no deadlock with two processes P, Q and resources A, B

get

B

get

A

release

B

release

A

g
et A

re
le

as
e A

g
et B

re
le

as
e B

A
 r

eq
u
ir

ed

B
 r

eq
u
ir

ed

Progress

of P

A required B required

P and Q

want A

P and Q

want B

Progress

of Q P and Q

finish

(2)

(5)

(6)

(3)

(1) P acquires A then releases A. P acquires B, Q

executes and blocks on a request for B. P releases B.

When Q resumes execution, it will be able to acquire the

both resources.

(2) P acquires then releases A and B. When Q resumes

execution, it will be able to acquire the both resources.

(3,4) are inverted paths of (1,2).

(5) Q acquires B and then P acquires and releases A. Q

acquires A then releases B and A. When P resumes

execution, it will be able to acquire B.

(6) Q acquires B and then P acquires and releases A. Q

acquires A then releases B. P acquires then releases B.

When Q resumes execution, it will be able to release A.

When deadlocks cannot appear, unsafe states cannot

exist.



(1)

(4)

Operating Systems

“Resource management”

1. Introduction to resource management

2. Resource-allocation graph

2.1. Resource-allocation graph and sequence

2.2. Resource-allocation graph, primitive and scheduling

2.3. Deadlock and necessary conditions

3. Resource management protocols

4. The safe states and banker’s algorithm

4.1. Safe and unsafe states

4.2. Data representation

4.3. The safety and banker’s algorithms

44

Data representation (1)

R describes the total amount of

the m resources in the system.

C is the claim matrix with Ci,j is

the requirement of process i for

resource j, with n,m the sizes of

processes and resources

respectively.

Ai,j is the current allocation to

process i of resource j, with n,m

the sizes of processes and

resources respectively.

Ni,j indicates the remaining (i.e.

needed) resources needed by

process i (i.e. Qmax), with n,m

the sizes of processes and

resources respectively.

Qi,j indicates the current

resource request by a process i,

with n,m the sizes of processes

and resources respectively.

V is the total amount of the m

available resources (not

allocated) in the system.

 mRRRR ,...,, 21

 mVVVV ,...,, 21























mnnn

m

CCC

CCC

CCC

C

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

AAA

AAA

AAA

A

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

NNN

NNN

NNN

N

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

QQQ

QQQ

QQQ

Q

,2,1,

1,22,21,2

,12,11,1

...

............

...

...

C

C
la

im

A

N

A
ll

o
ca

te
d

N
ee

d
ed

Q

R
eq

u
es

t

(o
r

q
u

er
y
)

R

A
v

ai
la

b
le

A

V

T
o

ta
l

re
so

u
rc

e

process system

Data representation: the safety, banker and related

algorithms exploit a common internal data representation

based on vector/matrix of resource.

45

part of

Data representation (2)

ACN 

jAVR
n

i

jijj  
1

,

jiCA jiji ,,, 

For the system, all the resources are either available or

allocated.

No process can claim more than the total amount of

resource in the system.

No process is allocated with more resources that it

originally claims.

For the process, all the resources are either allocated or needed.

jiRC jji ,, 

None process can request more resources than needed.

NQ 

R describes the total amount of

the m resources in the system.

C is the claim matrix with Ci,j is

the requirement of process i for

resource j, with n,m the sizes of

processes and resources

respectively.

Ai,j is the current allocation to

process i of resource j, with n,m

the sizes of processes and

resources respectively.

Ni,j indicates the remaining (i.e.

needed) resources needed by

process i (i.e. Qmax), with n,m

the sizes of processes and

resources respectively.

Qi,j indicates the current

resource request by a process i,

with n,m the sizes of processes

and resources respectively.

V is the total amount of the m

available resources (not

allocated) in the system.

 mRRRR ,...,, 21

 mVVVV ,...,, 21























mnnn

m

CCC

CCC

CCC

C

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

AAA

AAA

AAA

A

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

NNN

NNN

NNN

N

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

QQQ

QQQ

QQQ

Q

,2,1,

1,22,21,2

,12,11,1

...

............

...

...

Data representation: the safety, banker and related

algorithms exploit a common internal data representation

based on vector/matrix of resource.

46

Operating Systems

“Resource management”

1. Introduction to resource management

2. Resource-allocation graph

2.1. Resource-allocation graph and sequence

2.2. Resource-allocation graph, primitive and scheduling

2.3. Deadlock and necessary conditions

3. Resource management protocols

4. The safe states and banker’s algorithm

4.1. Safe and unsafe states

4.2. Data representation

4.3. The safety and banker’s algorithms

47

The safety and banker’s algorithms

48

Avoidance

Process

allocation

Denial with claiming

matrix

Resource

allocation
The banker’s algorithm

Detection and recovery The safety algorithm

The safety and banker’s algorithms

“Denial with claiming matrix” (1)

49

The denial with claiming matrix method refuses to start new processes if their resources requirements might lead deadlocks.

R describes the total amount of

the m resources in the system.

C is the claim matrix with Ci,j is

the requirement of process i for

resource j, with n,m the sizes of

processes and resources

respectively.

Ai,j is the current allocation to

process i of resource j, with n,m

the sizes of processes and

resources respectively.

V is the total amount of the m

available resources (not

allocated) in the system.

 mRRRR ,...,, 21

 mVVVV ,...,, 21























mnnn

m

CCC

CCC

CCC

C

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

AAA

AAA

AAA

A

,2,1,

1,22,21,2

,12,11,1

...

............

...

...
jAVR

n

i

jijj  
1

,

jiRC jji ,, 

jiCA jiji ,,, 

  jCCR
n

i

jijnj  



1

,1

All resources are either available or allocated.

No process can claim more than the total amount of

resource in the system.

No process is allocated with more resources that it

originally claims.

We start a new process Pn+1 in the system only if the

maximum claim of all current processes, plus those of the

new process, can be met.

The safety and banker’s algorithms

“Denial with claiming matrix” (2)

50

The denial with claiming matrix method refuses to start new processes if their resources requirements might lead deadlocks.

e.g. 3 processes P1, P2 and P3 are currently in a ready state, they share two resources R1, R2, a new process P4 wants to enter in

the system with C4 = (1,1) considering the following state:

R1 R2

R 3 4

R1 R2

V 2 2

A R1 R2

P1 0 1

P2 0 0

P3 1 1

1 2

jAVR
n

i

jijj  
1

,




n

i

jiA
1

,

C R1 R2

P1 1 1

P2 0 1

P3 1 1

2 3 


n

i

jiC
1

,

C R1 R2

P4 1 1

C R1 R2

All 3 4

Allocated

resources

Available

resources

Total amount

of resources

Claim resources by

P1, P2, P3

Claim resources by

P4

Claim resources

by P1, P2, P3 and P4

P4 can be allocated and

inserted in the ready queue

  jCCR
n

i

jijnj  



1

,1

  jnC 1

The safety and banker’s algorithms

51

Avoidance

Process

allocation

Denial with claiming

matrix

Resource

allocation
The banker’s algorithm

Detection and recovery The safety algorithm

The safety and banker’s algorithms

“The safety algorithm” (1)

52

jAVR
n

i

jijj  
1

,

jiCA jiji ,,, 

For the system, all the resources are either available or

allocated.

No process can claim more than the total amount of

resource in the system.

No process is allocated with more resources that it

originally claims.

R describes the total amount of

the m resources in the system.

C is the claim matrix with Ci,j is

the requirement of process i for

resource j, with n,m the sizes of

processes and resources

respectively.

Ai,j is the current allocation to

process i of resource j, with n,m

the sizes of processes and

resources respectively.

Ni,j indicates the remaining (i.e.

needed) resources needed by

process i (i.e. Qmax), with n,m

the sizes of processes and

resources respectively.

V is the total amount of the m

available resources (not

allocated) in the system.

 mRRRR ,...,, 21

 mVVVV ,...,, 21























mnnn

m

CCC

CCC

CCC

C

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

AAA

AAA

AAA

A

,2,1,

1,22,21,2

,12,11,1

...

............

...

... For the process, all the resources are either allocated or

needed.

The safety algorithm investigates every possible allocation sequences for the process that remains to be completed.

jiRC jji ,, 























mnnn

m

NNN

NNN

NNN

N

,2,1,

1,22,21,2

,12,11,1

...

............

...

...

ACN 

The safety and banker’s algorithms

“The safety algorithm” (2)

53

The safety algorithm investigates every possible allocation sequences for the process that remains to be completed.

jWN jij 

i j
1. Let W(ork) and F(inish) be vectors of length m,n

respectively. For , Fi = false and Wj = Vj

2. Find an index i such that both

a. Fi == false

b.

If no such exist, go to step 4.

3. W = W + Ai

Fi = true

Go to step 2.

4. For all 0<i<n, if Fi == true, then the system is in a safe

state. If for some 0<i<n Fi == false, then the system is in

an unsafe state and processes would be deadlocked.

The safety and banker’s algorithms

“The safety algorithm” (3)

54

R1 R2 R3

R 7 2 6

R1 R2 R3

V 0 0 0

A R1 R2 R3

P1 0 1 0

P2 2 0 0

P3 3 0 3

P4 2 1 1

P5 0 0 2

N R1 R2 R3

P1 0 0 0

P2 2 0 2

P3 0 0 0

P4 1 0 0

P5 0 0 2

e.g. a system with 5 processes P1 to P5 and three resources

R1, R2 and R3 with instances 7, 2 and 6. Suppose at time

t0, we have the following resource-allocation state:

The safety algorithm investigates every possible allocation sequences for the process that remains to be completed.

jWN jij 

i j
1. Let W(ork) and F(inish) be vectors of length m,n

respectively. For , Fi = false and Wj = Vj

2. Find an index i such that both

a. Fi == false

b.

If no such exist, go to step 4.

3. W = W + Ai

Fi = true

Go to step 2.

4. For all 0<i<n, if Fi == true, then the system is in a safe

state. If for some 0<i<n Fi == false, then the system is in

an unsafe state and processes would be deadlocked.

The safety and banker’s algorithms

“The safety algorithm” (4)

55

R1 R2 R3

W 0 0 0

F

P1 0

P2 0

P3 0

P4 0

P5 0

N R1 R2 R3

P1 0 0 0

P2 2 0 2

P3 0 0 0

P4 1 0 0

P5 0 0 2

At step 1, we have

R1 R2 R3

V 0 0 0

The safety algorithm investigates every possible allocation sequences for the process that remains to be completed.

jWN jij 

i j
1. Let W(ork) and F(inish) be vectors of length m,n

respectively. For , Fi = false and Wj = Vj

2. Find an index i such that both

a. Fi == false

b.

If no such exist, go to step 4.

3. W = W + Ai

Fi = true

Go to step 2.

4. For all 0<i<n, if Fi == true, then the system is in a safe

state. If for some 0<i<n Fi == false, then the system is in

an unsafe state and processes would be deadlocked.

The safety and banker’s algorithms

“The safety algorithm” (5)

56

At step 2, we have i==1 considering

jWN jj 1

N R1 R2 R3

P1 0 0 0

P2 2 0 2

P3 0 0 0

P4 1 0 0

P5 0 0 2

R1 R2 R3

W 0 0 0

F1 is false and

F

P1 0

P2 0

P3 0

P4 0

P5 0

At step 3, we have and W=W+ A1 and F1 is true

A R1 R2 R3

P1 0 1 0

P2 2 0 0

P3 3 0 3

P4 2 1 1

P5 0 0 2

R1 R2 R3

W 0 1 0

F

P1 1

P2 0

P3 0

P4 0

P5 0

The safety algorithm investigates every possible allocation sequences for the process that remains to be completed.

jWN jij 

i j
1. Let W(ork) and F(inish) be vectors of length m,n

respectively. For , Fi = false and Wj = Vj

2. Find an index i such that both

a. Fi == false

b.

If no such exist, go to step 4.

3. W = W + Ai

Fi = true

Go to step 2.

4. For all 0<i<n, if Fi == true, then the system is in a safe

state. If for some 0<i<n Fi == false, then the system is in

an unsafe state and processes would be deadlocked.

The safety and banker’s algorithms

“The safety algorithm” (6)

57

We repeat step 2, we have i==3 considering

jWN jj 3

N R1 R2 R3

P1 0 0 0

P2 2 0 2

P3 0 0 0

P4 1 0 0

P5 0 0 2

R1 R2 R3

W 0 1 0

F3 is false and

F

P1 1

P2 0

P3 0

P4 0

P5 0

At step 3, we have and W=W+ A3 and F3 is true

A R1 R2 R3

P1 0 1 0

P2 2 0 0

P3 3 0 3

P4 2 1 1

P5 0 0 2

R1 R2 R3

W 3 1 3

F

P1 1

P2 0

P3 1

P4 0

P5 0

The safety algorithm investigates every possible allocation sequences for the process that remains to be completed.

jWN jij 

i j
1. Let W(ork) and F(inish) be vectors of length m,n

respectively. For , Fi = false and Wj = Vj

2. Find an index i such that both

a. Fi == false

b.

If no such exist, go to step 4.

3. W = W + Ai

Fi = true

Go to step 2.

4. For all 0<i<n, if Fi == true, then the system is in a safe

state. If for some 0<i<n Fi == false, then the system is in

an unsafe state and processes would be deadlocked.

The safety and banker’s algorithms

“The safety algorithm” (7)

58

We repeat step 2, we have i==2 considering

jWN jj 2

N R1 R2 R3

P1 0 0 0

P2 2 0 2

P3 0 0 0

P4 1 0 0

P5 0 0 2

R1 R2 R3

W 3 1 3

F2 is false and

At step 3, we have and W=W+ A2 and F2 is true

A R1 R2 R3

P1 0 1 0

P2 2 0 0

P3 3 0 3

P4 2 1 1

P5 0 0 2

R1 R2 R3

W 5 1 3

F

P1 1

P2 1

P3 1

P4 0

P5 0

F

P1 1

P2 0

P3 1

P4 0

P5 0

The safety algorithm investigates every possible allocation sequences for the process that remains to be completed.

jWN jij 

i j
1. Let W(ork) and F(inish) be vectors of length m,n

respectively. For , Fi = false and Wj = Vj

2. Find an index i such that both

a. Fi == false

b.

If no such exist, go to step 4.

3. W = W + Ai

Fi = true

Go to step 2.

4. For all 0<i<n, if Fi == true, then the system is in a safe

state. If for some 0<i<n Fi == false, then the system is in

an unsafe state and processes would be deadlocked.

The safety and banker’s algorithms

“The safety algorithm” (8)

59

We repeat steps (2,3), (2,3) for P4 and P5, we have

At step 2, no index exists, we shift to step 4,

the system is safe as for Fi is true

A R1 R2 R3

P1 0 1 0

P2 2 0 0

P3 3 0 3

P4 2 1 1

P5 0 0 2

R1 R2 R3

W 7 2 6

F

P1 1

P2 1

P3 1

P4 1

P5 1

i

The safety algorithm investigates every possible allocation sequences for the process that remains to be completed.

jWN jij 

i j
1. Let W(ork) and F(inish) be vectors of length m,n

respectively. For , Fi = false and Wj = Vj

2. Find an index i such that both

a. Fi == false

b.

If no such exist, go to step 4.

3. W = W + Ai

Fi = true

Go to step 2.

4. For all 0<i<n, if Fi == true, then the system is in a safe

state. If for some 0<i<n Fi == false, then the system is in

an unsafe state and processes would be deadlocked.

The safety and banker’s algorithms

60

Avoidance

Process

allocation

Denial with claiming

matrix

Resource

allocation
The banker’s algorithm

Detection and recovery The safety algorithm

The … algorithms

“The banker’s algorithm” (1)

61

The banker's algorithm tests for safety by simulating the

allocation of pre-determined maximum amounts of resource, and

then makes a safe state check to test for possible deadlocks,

before deciding whether allocation should be allowed

to continue.

R describes the total amount of

the m resources in the system.

C is the claim matrix with Ci,j is

the requirement of process i for

resource j, with n,m the sizes of

processes and resources

respectively.

Ai,j is the current allocation to

process i of resource j, with n,m

the sizes of processes and

resources respectively.

Ni,j indicates the remaining (i.e.

needed) resources needed by

process i (i.e. Qmax), with n,m

the sizes of processes and

resources respectively.

Qi,j indicates the current

resource request by a process i,

with n,m the sizes of processes

and resources respectively.

V is the total amount of the m

available resources (not

allocated) in the system.

 mRRRR ,...,, 21

 mVVVV ,...,, 21























mnnn

m

CCC

CCC

CCC

C

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

AAA

AAA

AAA

A

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

NNN

NNN

NNN

N

,2,1,

1,22,21,2

,12,11,1

...

............

...

...























mnnn

m

QQQ

QQQ

QQQ

Q

,2,1,

1,22,21,2

,12,11,1

...

............

...

...

ACN 

jAVR
n

i

jijj  
1

,

jiCA jiji ,,, 

For the system, all the resources are either available or

allocated.

No process can claim more than the total amount of

resource in the system.

No process is allocated with more resources that it

originally claims.

For the process, all the resources are either allocated or needed.

jiRC jji ,, 

None process can request more resources than needed.

ACQ 

62

jWN jij 

Safety Algorithm (SA)

SA1. Let W(ork) and F(inish) be vectors of length m,n

respectively. For , Fi = false and Wj = Vj

SA2. Find an index i such that both

a. Fi == false

b.

If no such exist, go to step 4.

SA3. W = W + Ai

Fi = true

Go to step 2.

SA4. For all 0<i<n, if Fi == true, then the system is in a safe

state . If for some 0<i<n Fi == false, then the system is in an

unsafe state and processes would be deadlocked.

i j

The Banker's algorithm is based on two sub-algorithms:

Resources-Request Algorithm (RRA)

Let Qi be a query resources vector for process Pi

RRA1. If Qi  Ni, go to RRA2. Otherwise, raise an error

condition, since the process has exceeded its maximum

claim.

RRA2. If Qi  V, go to RRA3. Otherwise, Pi must wait,

since the resources are not available.

RRA3. The system simulates the resource allocation to

process Pi by modifying the state as follows:

V = V – Qi

Ai = Ai + Qi

Ni = Ni – Qi

RRA4. If the resources-allocation state is safe SA4, the

transaction is completed, and process Pi is allocated its

resources. However, if the new state is unsafe, then Pi must

wait for Qi, and the old-resources allocation state is restored.

RRA1 RRA2 RRA3 RRA4

SA1

SA2 SA3

SA4

end

The … algorithms

“The banker’s algorithm” (2)

The safety and banker’s algorithms

“The banker’s algorithm” (3)

A R1 R2 R3

P1 1 0 0

P2 5 1 1

P3 2 1 1

P4 0 0 2

R1 R2 R3

R 9 3 6

R1 R2 R3

8 2 4

total amount of resources

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

R1 R2 R3

V 1 1 2

available resources

claim resources

allocated resources

N R1 R2 R3

P1 2 2 2

P2 1 0 2

P3 1 0 3

P4 4 2 0

needed resources

N = C-A

Q2=(1,0,2)
RRA1, RRA2: we test Q2  N2 then Q2  V, yes

e.g. a safe state with Q2=(1,0,2)

63

jARV
n

i

jijj  
1

,

jA
n

i

ji 
1

,

F

0

0

0

0

The safety and banker’s algorithms

“The banker’s algorithm” (3)

A R1 R2 R3

P1 1 0 0

P2 6 1 3

P3 2 1 1

P4 0 0 2

R1 R2 R3

R 9 3 6

R1 R2 R3

9 2 6

total amount of resources

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

R1 R2 R3

V 0 1 0

available resources

claim resources

needed resources

N = C-A

Q2=(1,0,2)
RRA3: we simulate the resource allocation to P2

V = V – Q2

A2 = A2 + Q2

N2 = N2 – Q2

64

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F

0

0

0

0

N R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

e.g. a safe state with Q2=(1,0,2)

The safety and banker’s algorithms

“The banker’s algorithm” (3)

A R1 R2 R3

P1 1 0 0

P2 6 1 3

P3 2 1 1

P4 0 0 2

R1 R2 R3

R 9 3 6

R1 R2 R3

9 2 6

total amount of resources

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

R1 R2 R3

W 0 1 0

available resources

claim resources

needed resources

N = C-A

Q2=(1,0,2)
SA1: we initiate the safety algorithm, V becomes W

SA2: we select P2 (i==2) as

F2 == false and

65

jARV
n

i

jijj  
1

,
jWN jj 2

allocated resources

jA
n

i

ji 
1

,

F

0

0

0

0

N R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

e.g. a safe state with Q2=(1,0,2)

The safety and banker’s algorithms

“The banker’s algorithm” (3)

R1 R2 R3

R 9 3 6

total amount of resources

R1 R2 R3

W 6 2 3

available resources

claim resources

needed resources

N = C-A

Q2=(1,0,2)
SA3: we apply W=W+A2 and F2==true

66

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F

0

1

0

0

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2A R1 R2 R3

P1 1 0 0

P2 6 1 3

P3 2 1 1

P4 0 0 2

R1 R2 R3

9 2 6

N R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

e.g. a safe state with Q2=(1,0,2)

The safety and banker’s algorithms

“The banker’s algorithm” (3)

R1 R2 R3

R 9 3 6

total amount of resources

R1 R2 R3

W 6 2 3

available resources

claim resources

needed resources

N = C-A

Q2=(1,0,2)
SA2: we select P1 (i==1) as

F1 == false and

67

jARV
n

i

jijj  
1

,

jWN jj 1

allocated resources

jA
n

i

ji 
1

,

F

0

1

0

0

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2A R1 R2 R3

P1 1 0 0

P2 6 1 3

P3 2 1 1

P4 0 0 2

R1 R2 R3

9 2 6

N R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

e.g. a safe state with Q2=(1,0,2)

The safety and banker’s algorithms

“The banker’s algorithm” (3)

R1 R2 R3

R 9 3 6

total amount of resources

R1 R2 R3

W 7 2 3

available resources

claim resources

needed resources

N = C-A

Q2=(1,0,2)
SA3: we apply W=W+A1 and F1==true

68

jARV
n

i

jijj  
1

,

e.g. a safe state with Q2 = (R1=1,R2=0,R3=2) for P2

allocated resources

jA
n

i

ji 
1

,

F

1

1

0

0

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2A R1 R2 R3

P1 1 0 0

P2 6 1 3

P3 2 1 1

P4 0 0 2

R1 R2 R3

9 2 6

N R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

The safety and banker’s algorithms

“The banker’s algorithm” (3)

R1 R2 R3

R 9 3 6

total amount of resources

R1 R2 R3

W 9 3 4

available resources

claim resources

needed resources

N = C-A

Q2=(1,0,2)
SA2, SA3: we repeat the SA2, SA3 steps with P3

69

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F

1

1

1

0

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2A R1 R2 R3

P1 1 0 0

P2 6 1 3

P3 2 1 1

P4 0 0 2

R1 R2 R3

9 2 6

N R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

e.g. a safe state with Q2=(1,0,2)

The safety and banker’s algorithms

“The banker’s algorithm” (3)

R1 R2 R3

R 9 3 6

total amount of resources

R1 R2 R3

W 9 3 6

available resources

claim resources

needed resources

N = C-A

Q2=(1,0,2)
SA2, SA3: we repeat the SA2, SA3 steps with P4

SA2, SA4: no more process satisfy SA2, we jump to SA4, the

state is safe

70

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F

1

1

1

1

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2A R1 R2 R3

P1 1 0 0

P2 6 1 3

P3 2 1 1

P4 0 0 2

R1 R2 R3

9 2 6

N R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

e.g. a safe state with Q2=(1,0,2)

The safety and banker’s algorithms

“The banker’s algorithm” (3)

A R1 R2 R3

P1 1 0 0

P2 6 1 3

P3 2 1 1

P4 0 0 2

R1 R2 R3

R 9 3 6

R1 R2 R3

9 2 6

total amount of resources

R1 R2 R3

V 0 1 0

available resources

claim resources

needed resources

N = C-A

Q2=(1,0,2)
RRA4: we validate the allocation of resources to P2

71

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F









C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

N R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

e.g. a safe state with Q2=(1,0,2)

The safety and banker’s algorithms

“The banker’s algorithm” (4)

A R1 R2 R3

P1 1 0 0

P2 5 1 1

P3 2 1 1

P4 0 0 2

R1 R2 R3

R 9 3 6

R1 R2 R3

8 2 4

total amount of resources

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

R1 R2 R3

V 1 1 2

available resources

claim resources

N R1 R2 R3

P1 2 2 2

P2 1 0 2

P3 1 0 3

P4 4 2 0

needed resources

N = C-A

Q1=(1,0,1)
RRA1, RRA2: we test Q1  N1 then Q1  V, yes

e.g. a unsafe state with Q1=(1,0,1)

72

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F

0

0

0

0

The safety and banker’s algorithms

“The banker’s algorithm” (4)

A R1 R2 R3

P1 2 0 1

P2 5 1 1

P3 2 1 1

P4 0 0 2

R1 R2 R3

R 9 3 6

R1 R2 R3

9 2 5

total amount of resources

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

R1 R2 R3

V 0 1 1

available resources

claim resources

N R1 R2 R3

P1 1 2 1

P2 1 0 2

P3 1 0 3

P4 4 2 0

needed resources

N = C-A

Q1=(1,0,1)
RRA3: we simulate the resource allocation to P1

V = V – Q1

A1 = A1 + Q1

N1 = N1 – Q1

73

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F

0

0

0

0

e.g. a unsafe state with Q1=(1,0,1)

The safety and banker’s algorithms

“The banker’s algorithm” (4)

A R1 R2 R3

P1 2 0 1

P2 5 1 1

P3 2 1 1

P4 0 0 2

R1 R2 R3

R 9 3 6

R1 R2 R3

9 2 5

total amount of resources

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

R1 R2 R3

W 0 1 1

available resources

claim resources

N R1 R2 R3

P1 1 2 1

P2 1 0 2

P3 1 0 3

P4 4 2 0

needed resources

N = C-A

Q1=(1,0,1)
SA1: we initiate the safety algorithm, V becomes W

SA2, SA3, SA4: resources in W can’t satisfy any

process (P1, P2, P3 and P4), the state is unsafe

74

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F

0

0

0

0

e.g. a unsafe state with Q1=(1,0,1)

The safety and banker’s algorithms

“The banker’s algorithm” (4)

A R1 R2 R3

P1 1 0 0

P2 5 1 1

P3 2 1 1

P4 0 0 2

R1 R2 R3

R 9 3 6

R1 R2 R3

8 2 4

total amount of resources

C R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

R1 R2 R3

V 1 1 2

available resources

claim resources

N R1 R2 R3

P1 2 2 2

P2 1 0 2

P3 1 0 3

P4 4 2 0

needed resources

N = C-A

Q1=(1,0,1)
RRA4: we restore the old resource-allocation state

75

jARV
n

i

jijj  
1

,

allocated resources

jA
n

i

ji 
1

,

F

0

0

0

0

e.g. a unsafe state with Q1=(1,0,1)

