
Operating Systems

“Memory Management”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/operating2.html

1

Operating Systems

“Memory Management”

1. Introduction

2. Contiguous memory allocation

2.1. Partitioning and placement algorithms

2.2. Memory fragmentation and compaction

2.3. Process swapping

2.4. Loading, address binding and protection

3. Simple paging and segmentation

3.1. Paging, basic method

3.2. Segmentation

2

Introduction (1)

3

As one goes down in the hierarchy, the following occurs:

a. decreasing cost per bit,

b. increasing capacity,

c. increasing access time,

d. decreasing frequency of access to the memory by the

processor.

Memory hierarchy: memory is a major component in any computer. Ideally, memory should be extremely fast (faster than

executing an instruction on CPU), abundantly large and dirt chip. No current technology satisfies all these goals, so a different

approach is taken. The memory system is constructed as a hierarchy of layers.

Access time

(4KB)

Capacity

Registers 0.25 - 0.5 ns < 1 KB

Cache 0.5 - 25 ns > 16 MB

Main memory 80 - 250 ns > 16 GB

Disk storage 30 µs - plus > 100 GB

i.e. from 130.2 Mb.s-1 to 15.6 Gb.s-1

Introduction (2)

4

   211 1 TTHTHT 

The strategy of using a memory hierarchy works in principle, but only if

conditions (a) through (d) in the preceding list apply.

e.g. with a two-level memory hierarchy

H is the hit ratio, the faction of all memory accesses that are

found in the faster memory.

T1 is the access time to level 1.

T2 is the access time to level 2, with T2 >> T1.

is the average access time, computed as:T

T1

T2

T1+T2

0 1

Average access time

Hit ratio (H)

 T

Memory hierarchy: memory is a major component in any computer. Ideally, memory should be extremely fast (faster than

executing an instruction on CPU), abundantly large and dirt chip. No current technology satisfies all these goals, so a different

approach is taken. The memory system is constructed as a hierarchy of layers.

T1/T2

Access time

(4KB)

Capacity

Registers 0.25 - 0.5 ns < 1 KB

Cache 0.5 - 25 ns > 16 MB

Main memory 80 - 250 ns > 16 GB

Disk storage 30 µs - plus > 100 GB

i.e. from 130.2 Mb.s-1 to 15.6 Gb.s-1

Introduction (3)

5

The strategy of using a memory hierarchy works in principle, but only if

conditions (a) through (d) in the preceding list apply.

e.g. with a two-level memory hierarchy

Considering time accesses of 200 to the main memory T1 and 40 µs to

the main plus disk memories (T1+T2),

For a performance degradation less than 10 percent in main memory,

then, 1 fault access out of 1990.

additional constraints must be considered, a typical hard disk has:

  41041200  HHT

 
0,999497

1041200220 4





H

HH

Latency 3 ms

Seek time 5 ms

Access time 0.05 ms

Total 8 ms

Memory hierarchy: memory is a major component in any computer. Ideally, memory should be extremely fast (faster than

executing an instruction on CPU), abundantly large and dirt chip. No current technology satisfies all these goals, so a different

approach is taken. The memory system is constructed as a hierarchy of layers.

Access time

(4KB)

Capacity

Registers 0.25 - 0.5 ns < 1 KB

Cache 0.5 - 25 ns > 16 MB

Main memory 80 - 250 ns > 16 GB

Disk storage 30 µs - plus > 100 GB

i.e. from 130.2 Mb.s-1 to 15.6 Gb.s-1

Introduction (4)

6

Memory management: managing the lowest level of cache memory is normally done by hardware, the focus of memory

management is on the programmer’s model of main memory and how it can be managed well.

Memory management without memory abstraction: the simplest memory management is without abstraction. Main memory

is generally divided in two parts, one part for the operating system and one part for the program currently executed. The model

of memory presented to the programmer was physical memory, a set of addresses belonging to the user’s space.

e.g. three simple ways to organize memory with an operating system and user programs:

Operating

System in

RAM

User

Programs

in RAM

0

256 Operating

System in

ROM

User

Programs in

RAM

0

192

Operating

System in

RAM

User

Programs

in RAM

0

Device

drivers in

ROM

When a program executed an instruction like

MOV REGISTER1, 80

the computer just moved the content of physical

memory location 80 to REGISTER1.
64 64

192

Introduction (5)

7

Memory management: managing the lowest level of cache memory is normally done by hardware, the focus of memory

management is on the programmer’s model of main memory and how it can be managed well.

Memory management without memory abstraction: the simplest memory management is without abstraction. Main memory

is generally divided in two parts, one part for the operating system and one part for the program currently executed. The model

of memory presented to the programmer was physical memory, a set of addresses belonging to the user’s space.

e.g.

… …

ADD 28

MOV 24

20

16

12

8

4

JMP 24 0

… …

CMP 28

24

20

16

12

8

4

JMP 28 0

programming version of C,D

Program C Program D

Operating

System in

RAM

Main

memory

0

64

256

… …

ADD 92

MOV 88

84

80

76

72

68

JMP 88 64

… …

CMP 124

120

116

112

108

104

100

JMP 124 96

loadable version of C,D, physical

addresses must be directly specified by

the programmer in the program itself

Program C Program D

C

D
96

128

Introduction (6)

8

Memory management: managing the lowest level of cache memory is normally done by hardware, the focus of memory

management is on the programmer’s model of main memory and how it can be managed well.

Memory management with memory abstraction provides a different view of a memory location depending on the execution

context in which the memory access is made. The memory abstractions makes the task of programming much easier, the

programmer no longer needs to worry about the memory organization, he can concentrate instead on the problem to be

programmed. The memory abstraction covers:

Memory partitioning is interested for managing the available memory into partitions.

contiguous / noncontiguous

allocation

assigns a process to consecutive / separated memory

blocks.

fixed / dynamic partitioning manages the available memory into regions with fixed /

deformable boundaries.

complete / partial loading refers to the ability to execute a program that is only

fully or partially in memory.

Introduction (7)

9

Memory management: managing the lowest level of cache memory is normally done by hardware, the focus of memory

management is on the programmer’s model of main memory and how it can be managed well.

Memory management with memory abstraction provides a different view of a memory location depending on the execution

context in which the memory access is made. The memory abstractions makes the task of programming much easier, the

programmer no longer needs to worry about the memory organization, he can concentrate instead on the problem to be

programmed. The memory abstraction covers:

Placement algorithms: when it is time to load a process into main memory, the OS must decide which memory

blocks to allocate.

Fragmentation / compaction: is a phenomenon in which storage space is used inefficiently, reducing capacity or

performance and often both. compaction can eliminate, in part, the fragmentation.

Process swapping is a strategy to deal with memory overload, it consists in bringing each process in its

entirely, running if for a while, then putting it back on the disk.

Address protection determines the range of legal addresses that the process may access and to ensure that this

process can access only these legal addresses.

Address binding: the addresses may be represented in a different way between the disk and main memory

spaces. Address binding is a mapping from one address space to another.

10

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Introduction (8)

Operating Systems

“Memory Management”

1. Introduction

2. Contiguous memory allocation

2.1. Partitioning and placement algorithms

2.2. Memory fragmentation and compaction

2.3. Process swapping

2.4. Loading, address binding and protection

3. Simple paging and segmentation

3.1. Paging, basic method

3.2. Segmentation

11

12

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Partitioning and placement algorithms

“Fixed partitioning”

13

Fixed partitioning: the simple scheme for managing available memory is to partition into regions with fixed boundaries. There

are two alternatives for fixed partitioning, with equal-size or unequal-size partitions.

Size of

partitions

Max

loading size

Memory

fragmentation

Degree of

multi-

programming

Placement

algorithms

equal-size

partitions

M <M High High Single FIFO

queue

unequal-size

partitions

[M-N]

with M<N

<N Medium Medium Single / multiple

FIFO queue(s)

new

processes

new

processes
new

processes

equal-size partitions unequal-size partitions, single queue unequal-size partitions, multiple queues

14

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Partitioning and placement algorithms

“Memory management with bitmaps”

15

Memory management with bitmaps: with a bitmap, memory is divided into allocation units as small as a few words and as

large as several kilobytes. Corresponding to each allocation units is a bit in the bitmap, which is 0 if the unit is free and 1 if it is

occupied (or vice versa).

A B C D E

0 5 8 14 18 20 26 29 32

e.g. a part of memory with five processes and three holes, with the corresponding bitmap.

0-7 1 1 1 1 1 0 0 0

8-15 1 1 1 1 1 1 1 1

16-23 1 1 0 0 1 1 1 1

24-32 1 1 1 1 1 0 0 0

The size of a the allocation unit is an important design issue:

- the smaller the allocation unit, the larger the bitmap.

e.g. with an allocation unit of 4 bytes (32 bits), the bitmap will take 1/33 of the memory.

- if the allocation unit is chosen large, the bitmap will be smaller. However, appreciable

memory may be wasted in the last unit of process due to the rounding effect.

Another problem is the placement algorithm. When it has been decided to bring k unit process into

memory, we must search k consecutive 0 bits in the map, that is a slow operation.

Partitioning and placement algorithms

“Memory management with linked lists” (1)

16

Memory management with linked lists: another way of keeping track of memory is to maintain a linked list of allocated and

free memory segments, where a segment either contains a process or is an empty hole between two processes.

A B C D E

0 5 8 14 18 20 26 29 32

e.g. a part of memory with five processes and three holes, with the corresponding linked list

P 0 5 P 8 6H 5 3 P 14 4

H 18 2 P 20 6 P 26 3 H 29 3 

(H)ole or

(P)rocess

starts

at 18

length

is 2

Here, the segment list is sorted by address. Sorting this way has the advantage that when a process terminates,

updating the list is straightforward.

Partitioning and placement algorithms

“Memory management with linked lists” (2)

17

Memory management with linked lists: another way of keeping track of memory is to maintain a linked list of allocated and

free memory segments, where a segment either contains a process or is an empty hole between two processes.

A terminating process has two neighbors (except when it is at the very top or bottom of the memory). These may be either

processes or holes, leading to four combinations.

A X B

A X H

H X B

H X H

A H B

A H

H B

H

before X terminates after X terminates

becomes

H are holes,

A, B and X processes

Since the process table slot for the terminating process will normally point to the list entry for the process itself,

it may be more convenient to have the list as a double-linked list.

Partitioning and placement algorithms

“Memory management with linked lists” (3)

18

Memory management with linked lists: another way of keeping track of memory is to maintain a linked list of allocated and

free memory segments, where a segment either contains a process or is an empty hole between two processes.

Several algorithms can be used to allocate memory for a created process.

Statistical analysis reveals that the first-fit algorithm is not only the simplest one but usually the best and fastest as well.

To support the next-fit, circularly linked list with a tail pointer must be modeled.

Algorithms Descriptions

first-fit It scans along the list of segments from beginning until it finds a hole that is big enough.

next-fit It works the same way as first fit, except that it keeps track of where it is whenever it finds a suitable

hole.

best-fit It searches the entire list, from beginning to end, and takes the smallest hole that is adequate rather than

breaking up a big hole that might be needed later.

worst-fit To get around the problem, one could think about worst fit, that is, always take the largest available hole.

quick-fit It maintains separate lists for some of the most common sizes requested, to speed up the best-fist.

Partitioning and placement algorithms

“Memory management with linked lists” (4)

19

Type Size

(MB)

H 8

P4 …

H 12

P1 …

H 22

P3 …

H 18

P5 …

P2 …

H 8

P7 …

H 6

P6 …

H 14

P8 …

H 36

Memory management with linked lists: another way of keeping track of memory is to maintain a linked list of allocated and

free memory segments, where a segment either contains a process or is an empty hole between two processes.

e.g. a memory with 8 processes (P1 to P8), P2 is the last allocated. What about P9 (16 MB) with the placement algorithms.

the last allocated

block

initial state first fit best fitnext fit

Type Size

(MB)

H 8

P4 …

H 12

P1 …

P9 16

H 6

P3 …

H 18

P5 …

P2 …

H 8

P7 …

H 6

P6 …

H 14

P8 …

H 36

Type Size

(MB)

H 8

P4 …

H 12

P1 …

H 22

P3 …

P9 16

H 2

P5 …

P2 …

H 8

P7 …

H 6

P6 …

H 14

P8 …

H 36

Type Size

(MB)

H 8

P4 …

H 12

P1 …

H 22

P3 …

H 18

P5 …

P2 …

H 8

P7 …

H 6

P6 …

H 14

P8 …

P9 16

H 20

20

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Partitioning and placement algorithms

“Buddy memory allocation” (1)

21

The Buddy memory allocation: fixed and dynamic partitioning schemes have drawbacks. A fixed partitioning limits the

number of process and may use space inefficiently. The dynamic partitioning is more complex to maintain and includes the

overhead of compaction. An interesting compromise is the Buddy memory allocation, employing an hybrid partitioning.

blocks in a buddy system, memory blocks of holes are available of size 2K,

with L  K  U (L, U are the smallest and largest sizes blocks respectively).

init to begin, the entire space is treated as a single block hole of size 2K=U.

request at any time, the buddy system maintains a list of holes (unallocated blocks) of each size 2i:

(1) a hole may be removed from the i+1 list by splitting it in half to create two buddies of

size 2i in the i list.

(2) whenever a pair of buddies on the i list becomes unallocated, they are removed from that

list and coalesced into a single block on the i+1 list of size 2i+1.

(3) presented a request for an allocation of size s such that 2i -1  s  2i, the following

recursive algorithm applies.

get hole of size i

if i equals U+1 or L-1

failure

if the list i is empty

get hole of size i+1

split hole into buddies

put buddies on the i list

take first hole on the i list

failure case

recursive search

access case

Partitioning and placement algorithms

“Buddy memory allocation” (2)

22

The Buddy memory allocation: fixed and dynamic partitioning schemes have drawbacks. A fixed partitioning limits the

number of process and may use space inefficiently. The dynamic partitioning is more complex to maintain and includes the

overhead of compaction. An interesting compromise is the Buddy memory allocation, employing an hybrid partitioning.

e.g. a 1MB memory with L=6  K  U=10, considered blocks are 64K, 128K, 256K, 512K, 1MB.

1 MB block 1 MB

request A = 100K A=100K 128K 256K 512K

request B = 240 K A=100K 128K B=240K 512K

request C = 64 K A=100K C=64K 64K B=240K 512K

request D = 256K A=100K C=64K 64K B=240K D=256K 256K

release B A=100K C=64K 64K 256K D=256K 256K

release A 128K C=64K 64K 256K D=256K 256K

request E = 75K E=75K C=64K 64K 256K D=256K 256K

release C E=75K 128K 256K D=256K 256K

release E 512K D=256K 256K

release D 1MB

Partitioning and placement algorithms

“Buddy memory allocation” (3)

23

The Buddy memory allocation: fixed and dynamic partitioning schemes have drawbacks. A fixed partitioning limits the

number of process and may use space inefficiently. The dynamic partitioning is more complex to maintain and includes the

overhead of compaction. An interesting compromise is the Buddy memory allocation, employing an hybrid partitioning.

e.g. a 1MB memory with L=6  K  U=10, considered blocks are 64K, 128K, 256K, 512K, 1MB.

release B A=100K C=64K 64K 256K D=256K 256K

1 MB

512 K

256 K

128 K

64 K

non-leaf node

leaf node for

unallocated block

leaf node for

allocated block

Operating Systems

“Memory Management”

1. Introduction

2. Contiguous memory allocation

2.1. Partitioning and placement algorithms

2.2. Memory fragmentation and compaction

2.3. Process swapping

2.4. Loading, address binding and protection

3. Simple paging and segmentation

3.1. Paging, basic method

3.2. Segmentation

24

25

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Memory fragmentation and compaction (1)

26

External fragmentation: with dynamic partitioning, as processes are loaded and removed from memory, the free memory

space could be broken into little pieces. This phenomenon is known as external fragmentation of memory.

e.g. Type Size

(MB)

H 56

56

initial state

Type Size

(MB)

P1 20

H 36

Total 56

F Rate 0

(a) P1 (20MB)

loaded

Type Size

(MB)

P1 20

P2 14

H 22

Total 56

F Rate 0

(b) P2 (14MB)

loaded

Type Size

(MB)

P1 20

P2 14

P3 18

H 4

Total 56

F Rate 0

(c) P3 (18MB)

loaded

Type Size

(MB)

P1 20

H 14

P3 18

H 4

Total 56

F Rate 0,22

(d) P2 leaves

Type Size

(MB)

P1 20

P4 8

H 6

P3 18

H 4

Total 56

F Rate 0,4

(e) P4 (8MB)

loaded

Type Size

(MB)

H 20

P4 8

H 6

P3 18

H 4

Total 56

F Rate 0,33

(f) P1 leaves

Type Size

(MB)

P1 14

H 6

P4 8

H 6

P3 18

H 4

Total 56

F Rate 0,62

(g) P5 (14MB)

loaded

 






i

i

i
i

H

H
RateF

max
1

One way to compute fragmentation rate of

memory F Rate is

This F Rate has an a log model tending to

1 for the strongest fragmentation.

Memory fragmentation and compaction (2)

27

External fragmentation: with dynamic partitioning, as processes are loaded and removed from memory, the free memory

space could be broken into little pieces. This phenomenon is known as external fragmentation of memory.

50-percent rule: memory fragmentation depends of the exact sequence of incoming processes, the considered system and

placement algorithms (e.g. first, next and best fit). Statistical analysis reveals that even with some optimization, given N

allocated blocks 0,5N block will be lost to fragmentation. That is, one third of memory may be unusable.

This property is known as the 50-percent rule. NN

N

5,01

5,0



Memory fragmentation and compaction (3)

28

External fragmentation: with dynamic partitioning, as processes are loaded and removed from memory, the free memory

space could be broken into little pieces. This phenomenon is known as external fragmentation of memory.

Memory compaction: when internal fragmentation results in multiple holes in memory, it is possible to combine them all into

one big one by moving all the processes downward as far as possible. This technique is knows as memory compaction. It

requires lot of CPU time.

e.g. on a 1GB machine that can copy 4 bytes in 20 ns, it would take 5 s to compact all memory.

Memory fragmentation and compaction (4)

29

Internal fragmentation: memory allocated to a process may be larger than the request memory, two cases occur.

Track overhead: the general approach is to break the physical memory into fixed size blocks and allocate memory in units

based on block size. The difference between these two numbers is internal fragmentation of memory.

e.g.

Type Size

(bytes)

P1 …

H 16384

P2 …

Type Size

(bytes)

P1 …

P3 16382

H 2

P2 …

P3

(16382 bytes)

initial state

Type Size

(bytes)

P1 …

P3 16384

P2 …

P3

(16382 bytes)

case without allocation

of blocks of fixed-size,

a hole of size 2 bytes is

produced

case with allocation of blocks

of fixed-size 256 bytes,

64 blocks are allocated to P3

internal fragmentation is then

16384-16382 = 2 bytes

Memory fragmentation and compaction (5)

30

Internal fragmentation: memory allocated to a process may be larger than the request memory, two cases occur.

Extra memory allocation: when it is expected that the most processes will grow as they run, it is probably a good idea to

allocate a little extra memory.

e.g. a process with two growing segments, a data segment to being used as a heap for variables that are dynamically allocated and

released, and a stack segment for the local normal variables and return addresses. An arrangement is to place the stack at the top

that is growing downward, and the data segment just beyond the program text that is growing upward.

A-Program

A-Data

A-stack

B-Program

B-Data

B-stack

Hole

room for grow

room for grow

Operating Systems

“Memory Management”

1. Introduction

2. Contiguous memory allocation

2.1. Partitioning and placement algorithms

2.2. Memory fragmentation and compaction

2.3. Process swapping

2.4. Loading, address binding and protection

3. Simple paging and segmentation

3.1. Paging, basic method

3.2. Segmentation

31

32

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Process swapping (1)

33

Swapping is a strategy to deal with memory overload, it consists in bringing each process in its entirely, running if for a while,

then putting it back on the disk.

e.g. a 88MB memory system, we consider the following events with swapping.

Type Size

(MB)

P1 32

H 56

Total 88

(a) P1 (32MB)

loaded

Type Size

(MB)

P1 32

P2 16

H 40

Total 88

(b) P2 (16MB)

loaded

Type Size

(MB)

P1 32

P2 16

P3 32

H 8

Total 88

(c) P3 (32MB)

loaded

(d) P1 swapped

out from disk

(e) P4 (16MB)

loaded

Type Size

(MB)

H 32

P2 16

P3 32

H 8

Total 88

Type Size

(MB)

P4 16

H 16

P2 16

P3 32

H 8

Total 88

(f) P2 (16MB)

leaves

Type Size

(MB)

P4 16

H 32

P3 32

H 8

Total 88

(g) P1 swapped

in at a different

location

Type Size

(MB)

P4 16

P1 32

P3 32

H 8

Total 88

Process swapping (2)

34

Swapping is a strategy to deal with memory overload, it consists in bringing each process in its entirely, running if for a while,

then putting it back on the disk.

Operating

System in

RAM

User

Programs

in RAM
swap in

Backing

store

swap out

criterion

swap out I/O blocked processes, huge memory processes, ready processes

with low-level priorities, etc.

swap in no ready process in the ready queue, processes in the ready

suspend queue with priorities higher to the ones in the ready queue,

processes for which the blocking event will occur soon, etc.

Mid-term

scheduler

Mid-term scheduler removes processes from main memory (if full) and places

them on secondary memory (such as a disk drive) and vice versa.

Backing store is a fast disk that must be large enough to accommodate copies of

all memory images. The system maintains suspend queues consisting in all

processes whose are on the backing store. The context switch time in such a

swapping system is fairly high.

Process swapping (3)

35

Swapping is a strategy to deal with memory overload, it consists in bringing each process in its entirely, running if for a while,

then putting it back on the disk.

The context switch time in such a swapping system is fairly high.

e.g. a user process of 10 MB and backing store with a transfer rate of 40 MB.s-1

- The standard swap operation is 10/40 = ¼ s = 250 ms.

- Assuming no head seeks are necessary, and a latency of 8 ms,

the swap time is 258 ms.

- The total swap time (in and out) is then 516 ms.
Operating

System in

RAM

User

Programs

in RAM
swap in

Backing

store

swap out

Mid-term

scheduler

Operating Systems

“Memory Management”

1. Introduction

2. Contiguous memory allocation

2.1. Partitioning and placement algorithms

2.2. Memory fragmentation and compaction

2.3. Process swapping

2.4. Loading, address binding and protection

3. Simple paging and segmentation

3.1. Paging, basic method

3.2. Segmentation

36

37

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Loading, address binding and protection

“Loading and address binding” (1)

38

module

1

module

2

module

n

static

library

…

linker
load

module

dynamic

library

loader program

main memorydisk memory

address

binding

Loading: the first step is to load a program into

the main memory and to create a process image.

Any program consists in compiled modules in an

object-code form linked together or to library

routines. The library routines can be

incorporated into the program or referenced as a

shared code to be call at the run time.

Address space is the set of addresses that a

process can use to address memory. Each

process has its own address space, independent

of those belonging to other processes.

Address binding: addresses may be represented

in different way between the disk and main

memory spaces. Address binding is a mapping

from one address space to another.

Loading, address binding and protection

“Loading and address binding” (2)

39

Loading mode Binding time

Absolute loading

At the programming time

At the compile or assembly

time

Relocatable loading at the load time

Dynamic loading at the run time

module

1

module

2

module

n

static

library

…

linker
load

module

dynamic

library

loader program

main memorydisk memory

address

binding

Loading, address binding and protection

“Loading and address binding” (3)

40

Absolute loading: an absolute loader requires that a given load module always be loaded into the same location in main

memory. Thus, in the load module presented to the loader, all address references must be specific to main memory addresses.

Binding time Function

programming

time

All actual physical addresses are directly specified

by the programmer in the program itself. … …

ADD 92

MOV 88

84

80

76

72

68

JMP 88 64

load module C

Operating

System in

RAM

main

memory

0

64

256

C
96

Loading, address binding and protection

“Loading and address binding” (4)

41

… …

ADD

MOV X

JMP X

Module C at

programming

… …

ADD 92

MOV 88

84

80

76

72

68

JMP 88 64

load module C

after compilation

Operating

System in

RAM

main

memory

0

64

256

C
96

Binding time Function

compile or

assembly time

The program contains symbolic address references,

and these are converted to actual physical addresses

by compiler or assembler.

Absolute loading: an absolute loader requires that a given load module always be loaded into the same location in main

memory. Thus, in the load module presented to the loader, all address references must be specific to main memory addresses.

Loading, address binding and protection

“Loading and address binding” (5)

42

Relocatable loading: when many programs share a main memory, it may not desirable to decide ahead of time into which

region of memory a particular module should be loaded. It is better to make that decision at load time, thus we need a load

module that can be located anywhere in main memory.

Binding time Function

load time The compiler or assembler produces relative

addresses. The loader translates these to absolute

addresses at the time of program loading.

The load module must include information about

that tells the loader where the addresses references

are. This set of information is prepared by the

compiler and referred as the relocation directory.

… …

ADD

MOV Y+X

JMP X+Y X

module before

to be loaded

… …

ADD 92

MOV 88

84

80

76

72

68

JMP 88 64

module when

loaded with X=128

Operating

System in

RAM

Main

memory

0

128
C

132

Loading, address binding and protection

“Loading and address binding” (6)

43

Dynamic runtime loading: to maximize memory utilization, we would like to be able to swap the process image back into

different locations at different times, that involves to update the load module at every swap. The relocatable loaders cannot

support this scheme. The alternative is to defer the calculation of the absolute address until it is actually needed at run time.

Binding time Function

run time The loaded program retains relative addresses,

these are converted dynamically to absolute

addresses by processor hardware.

Logical address space is the set of all logical

addresses generated by a program, in the range

[0,max].

Relocation register: the value R in the relocation

register is added to every logical address to obtain

the corresponding physical address.

Physical address space: is the set of all physical

addresses corresponding to the logical addresses, in

the range [R+0,R+max].

Memory Management Unit (MMU): the run time

mapping from logical to physical addresses is done

by an hardware device called MMU.

CPU

14000
main

memory

relocation

register

+
logical

address

“346”

physical

address

“14346”MMU

Loading, address binding and protection

“Address protection” (1)

44

Address protection: we need to make sure that every process has a separate memory space. To do this, we need the ability to

determine the range of legal addresses that the process may access and to ensure that the process can access only these legal

addresses. Protection of memory space is accomplished by having a special CPU hardware.

Non-dynamic address protection (absolute and relocatable loading)

CPU

base register

main

memory

base + limit

registers

<
yes

no

yes

no

trap to operating system,

addressing error

Base register holds the smallest legal physical

memory address.

Limit (or bound) register specifies the size of the

range e.g. if the base register holds 300 040 and limit

register is 120 900, then the program can legally

access all addresses from 300 040 to 420 940.

physical

address

Loading, address binding and protection

“Address protection” (2)

45

Address protection: we need to make sure that every process has a separate memory space. To do this, we need the ability to

determine the range of legal addresses that the process may access and to ensure that the process can access only these legal

addresses. Protection of memory space is accomplished by having a special CPU hardware.

Dynamic address protection (dynamic runtime loading)

CPU

limit register

main

memory<

logical

address

relocation

register

+
yes

no

trap to operating system,

addressing error

physical

address

MMU with protection

The protection must be tuned with the

relocation register in the case of MMU.

Operating Systems

“Memory Management”

1. Introduction

2. Contiguous memory allocation

2.1. Partitioning and placement algorithms

2.2. Memory fragmentation and compaction

2.3. Process swapping

2.4. Loading, address binding and protection

3. Simple paging and segmentation

3.1. Paging, basic method

3.2. Segmentation

46

47

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Simple paging and segmentation

“Paging, basic method” (1)

48

Paging: is a memory-management scheme that permits the physical address space of a process to be noncontiguous. The basic

method for implementing paging involves breaking logical memory into fixed-sized blocks called pages and breaking physical

memory into blocks of the same size called frame. A page table contains the base address of each page in physical memory.

When a process is to be executed, its pages are loaded into any available memory frames from the backing store.

p data

0 page 0

1 page 1

2 page 2

3 page 3

f data

0

1 page 0

2

3 page 2

4 page 1

5

6

7 page 3

logical

address space

physical

address space

page

number

frame

number p f

0 1

1 4

2 3

3 7

frame

number

page

number

page table

Simple paging and segmentation

“Paging, basic method” (2)

49

Paging: is a memory-management scheme that permits the physical address space of a process to be noncontiguous. The basic

method for implementing paging involves breaking logical memory into fixed-sized blocks called pages and breaking physical

memory into blocks of the same size called frame. A page table contains the base address of each page in physical memory.

When a process is to be executed, its pages are loaded into any available memory frames from the backing store.

e.g. 4 processes are loaded in main memory using paging: A, C (4 pages), B (3 pages) and D (5 pages).

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(t0) initial state

0 A.0

1 A.1

2 A.2

3 A.3

4

5

6

7

8

9

10

11

12

13

14

(t1) A loaded

0 A.0

1 A.1

2 A.2

3 A.3

4 B.0

5 B.1

6 B.2

7

8

9

10

11

12

13

14

(t2) B loaded

0 A.0

1 A.1

2 A.2

3 A.3

4 B.0

5 B.1

6 B.2

7 C.0

8 C.1

9 C.2

10 C.3

11

12

13

14

(t3) C loaded

0 A.0

1 A.1

2 A.2

3 A.3

4

5

6

7 C.0

8 C.1

9 C.2

10 C.3

11

12

13

14

(t4) B swapped out

0 A.0

1 A.1

2 A.2

3 A.3

4 D.0

5 D.1

6 D.2

7 C.0

8 C.1

9 C.2

10 C.3

11 D.3

12 D.4

13

14

(t5) D loaded

frame

number

Simple paging and segmentation

“Paging, basic method” (3)

50

Paging: is a memory-management scheme that permits the physical address space of a process to be noncontiguous. The basic

method for implementing paging involves breaking logical memory into fixed-sized blocks called pages and breaking physical

memory into blocks of the same size called frame. A page table contains the base address of each page in physical memory.

When a process is to be executed, its pages are loaded into any available memory frames from the backing store.

e.g. 4 processes are loaded in main memory using paging with A, C (4 pages), B (3 pages) and D (5 pages).

p f

0 0

1 1

2 2

3 3

page table

A

0 A.0

1 A.1

2 A.2

3 A.3

4 D.0

5 D.1

6 D.2

7 C.0

8 C.1

9 C.2

10 C.3

11 D.3

12 D.4

13

14

p f

0 -

1 -

2 -

page table

B

p f

0 7

1 8

2 9

3 10

page table

C

p f

0 4

1 5

2 6

3 11

4 12

page table

D

f

13

14

free frame

list

(t5) D loaded
data structure

at t5

Simple paging and segmentation

“Paging, basic method” (4)

51

Address binding: every address generated by the CPU is dived in two parts, a page number (p) and a page offset (d). The page

number is used as index into the page table, and the page table contains the base address of each page in physical memory. This

base address is combined with the page offset (d) to define the physical memory address that is sent to the memory unit.

The size of a page is typically a power of 2 that makes the translation of a logical address into a page number and page offset

particularly easy e.g. if the size of logical address space is 2m, and a page size is 2n addressing units, then the high order m-n

bits designates the page number. As a result, the addressing scheme is transparent to programmer, assembler and linker.

p d

page number (p) page offset (d)

m-n n

m

m number of bits to encode the

logical address

n number of bit to encode the

page offset

m-n number of bits to encode the

page number

Simple paging and segmentation

“Paging, basic method” (5)

52

Address binding: every address generated by the CPU is dived in two parts, a page number (p) and a page offset (d). The page

number is used as index into the page table, and the page table contains the base address of each page in physical memory. This

base address is combined with the page offset (d) to define the physical memory address that is sent to the memory unit.

CPU page (p) offset (d)

page table*

frame (f)

page table

logical address

+

page table*

p

page table*+p

frame (f) offset (d)

f*

data page

Main

memory

f*+d

d

Simple paging and segmentation

“Paging, basic method” (6)

53

Address binding: every address generated by the CPU is dived in two parts, a page number (p) and a page offset (d). The page

number is used as index into the page table, and the page table contains the base address of each page in physical memory. This

base address is combined with the page offset (d) to define the physical memory address that is sent to the memory unit.

e.g. a memory of 16 bytes with a page size of 4 bytes, consider the logical address 0101.

address p d data

0000

0

0 a

0001 1 b

0010 2 c

0011 3 d

0100

1

0 e

0101 1 f

0110 2 g

0111 3 h

1000

2

0 i

1001 1 j

1010 2 k

1011 3 l

1100

3

0 m

1101 1 n

1110 2 o

1111 3 p

logical address

space

p f

0 1

1 3

2 0

3 2

page table address f d data

0000

0

0 i

0001 1 j

0010 2 k

0011 3 l

0100

1

0 a

0101 1 b

0110 2 c

0111 3 d

1000

2

0 m

1001 1 n

1010 2 o

1011 3 p

1100

3

0 e

1101 1 f

1110 2 g

1111 3 h

the logical address

0101 (page 1, offset 1)

corresponds to the physical address

1101 (frame 3, offset 1)

physical

address space

Simple paging and segmentation

“Paging, basic method” (7)

54

Transaction look-aside buffer (TLB): in principle every binding from logical address space to physical address space using

paging causes two physical memory accesses (1) to fetch the appropriate page table entry (2) to fetch the desired data. This will

have the effect of doubling the memory access time. To overcome this problem, we use a special high speed cache for page

table entries called Transaction look-aside buffer (TLB).

TLB is an associative high speed memory.

Each entry in the TLB consists of two parts

{key; value}.

When an item (i.e. a page number) is

presented, it is compared with all the keys

simultaneously. This technique is referred as

associative mapping. If item == key, the

corresponding value (i.e. offset) is returned.

The search is fast and hardware, however, is

expensive. Typically, the number of entries in a

TLB is small e.g. 64 to 1024 entries.

CPU page offset

page frame

frame offset

TLB

page table

TLB hit

TLB miss

main

memory
physical

address

logical address

add /

replacement

Simple paging and segmentation

“Paging, basic method” (8)

55

TLB hit: it occurs when the page number is in

the TLB.

TLB miss: if the page number is not in the

TLB, we add the page number and frame so

that they will be found quickly on the next

reference. If the TLB is already full of entries,

OS must select one entry for replacement

(LRU or FIFO policy, etc).

wired down: some TLBs allow entries to be

wired down, meaning that they cannot be

removed from the TLB.

Transaction look-aside buffer (TLB): in principle every binding from logical address space to physical address space using

paging causes two physical memory accesses (1) to fetch the appropriate page table entry (2) to fetch the desired data. This will

have the effect of doubling the memory access time. To overcome this problem, we use a special high speed cache for page

table entries called Transaction look-aside buffer (TLB).

CPU page offset

page frame

frame offset

TLB

page table

TLB hit

TLB miss

main

memory
physical

address

logical address

add /

replacement

Simple paging and segmentation

“Paging, basic method” (9)

56

Entry in

the

TLB?

Access

the page table

Update the TLB

Start

Generate the

physical address

yes i.e. TLB hit

no i.e. TLB miss

Check the TLB

TLB hit: it occurs when the page number is in

the TLB.

TLB miss: if the page number is not in the

TLB, we add the page number and frame so

that they will be found quickly on the next

reference. If the TLB is already full of entries,

OS must select one entry for replacement

(LRU or FIFO policy, etc).

wired down: some TLBs allow entries to be

wired down, meaning that they cannot be

removed from the TLB.

Transaction look-aside buffer (TLB): in principle every binding from logical address space to physical address space using

paging causes two physical memory accesses (1) to fetch the appropriate page table entry (2) to fetch the desired data. This will

have the effect of doubling the memory access time. To overcome this problem, we use a special high speed cache for page

table entries called Transaction look-aside buffer (TLB).

Simple paging and segmentation

“Paging, basic method” (10)

57

Shared pages: an advantage of paging is the possibility of sharing common code. This can appear with reentrant code (or pure

code) that is a non-self-modifying code i.e. it never changes during execution.

e.g. consider a system that supports three users, each of whom executes a text editor. It the text editor consists of 150 KB of

code and 50 KB of data space, we need 600 KB to support the three users. If the code is reentrant code, it can be shared as:

0

1 data 1

2 data3

3 editor 1

4 editor 2

5

6 editor 3

7 data 2

8

9 data 4

10

11

loaded

p Data

0 editor 1

1 editor 2

2 editor 3

3 data 1

Process 1

page

number
p f

0 3

1 4

2 6

3 1

frame

number

p Data

0 editor 1

1 editor 2

2 editor 3

3 data 2

Process 2

page

number
p f

0 3

1 4

2 6

3 7

frame

number

p Data

0 editor 1

1 editor 2

2 editor 3

3 data 3

Process 3

page

number
p f

0 3

1 4

2 6

3 2

frame

number

p Data

0 editor 1

1 editor 2

2 editor 3

3 data 4

Process 4

page

number
p f

0 3

1 4

2 6

3 9

frame

number

Simple paging and segmentation

“Paging, basic method” (11)

58

Address protection: address (or memory) protection in a paged environment is accomplished by protection bits associated to

each frame. Normally, these bits are kept in the page table.

valid bit (v): when this bit is set to valid, the associated page in the process’s logical address space is thus a valid page.

When the bit is set to invalid then the page is not in the process’s logical address space.

e.g. in a system with m=14 bits address space (0 to 16383), using a page size of 2 KB, then n=11, m-n=3 (i.e. 8 pages).

We have a process P of size 10438 bytes.

p data

0 page 0

1 page 1

2 page 2

3 page 3

4 page 4

5 page 5

f data

0 page 4

1 page 0

2

3 page 2

4 page 1

5

6

7 page 3

8 page 5

logical

address space

physical

address space

p f v

0 1 true

1 4 true

2 3 true

3 7 true

4 0 true

5 8 true

6  false

7  false

valid

bit

page table

P

Accesses to addresses up to 12287 (6211) are

valid, only the addresses from 12288 to 16383

are not valid.

Because the program extends to the address from

10468 to 12288, only the references beyond that

address are illegal. This problem results of the

2KB page size and reflects the internal

fragmentation of paging.

Simple paging and segmentation

“Paging, basic method” (12)

59

Address protection: address (or memory) protection in a paged environment is accomplished by protection bits associated to

each frame. Normally, these bits are kept in the page table.

r/w bit: defines a page to be read-write or read only; we can easily expand this approach to provide a finer level of

protection by considering execute-only sate.

Operating Systems

“Memory Management”

1. Introduction

2. Contiguous memory allocation

2.1. Partitioning and placement algorithms

2.2. Memory fragmentation and compaction

2.3. Process swapping

2.4. Loading, address binding and protection

3. Simple paging and segmentation

3.1. Paging, basic method

3.2. Segmentation

60

61

Methods Partitioning Placement

algorithms

Fragmentation

/ compaction

Swapping Address binding

& protection

Layer

Fixed partitioning
contiguous / fixed /

complete

searching

algorithms

yes / no

yes

no / yes (MMU) OS kernel

Memory management

with bitmap

contiguous / dynamic /

complete
yes / yes

Memory management

with linked lists

contiguous / dynamic /

complete

Buddy memory

allocation

contiguous / hybrid /

complete
yes / no

Simple paging and

segmentation

noncontiguous /

dynamic / complete
yes / no yes (TLB)

programs /

services

Simple paging and segmentation

“Segmentation” (1)

62

One vs. separated address spaces: logical addressing discussed so far is one-dimensional because the logical addresses go from

zero to some maximum. For many problems, having separate logical address space may be much more better.

e.g. a compiler has tables that are built up as compilation proceeds, and each of them grows continuously. In a one dimensional

memory, these tables are allocated contiguous chunks of logical addresses. Consider what happens if a program has a much

larger than usual number of variables; the chunk of address space allocated for a table may fill up.

Some approaches to deal with are:

(1) the compiler could simply issue a message saying

that the compilation cannot continue.

(2) to play “Robin Hood”, tacking space from the tables

with an excess of room and giving it to the tables with

little room. This is a nuisance at best and a great deal of

tedious, unrewarding work, at worst.

Symbol table

Source text

constants

Parse-tree

Call stack

free

Symbol table has bumped

into the source text table

free

free

Simple paging and segmentation

“Segmentation” (2)

63

Segmentation is a memory management scheme that supports independent address spaces called segment.

-Each segment consists in linear sequence of addresses, from 0 to some maximum (usually very large).

-The length of each segment may be anything from 0 to the maximum allowed.

-Different segments may have different lengths.

-Segment lengths may change during execution.

-With segments, a logical address consists of a two tuple <segment number, offset>.

e.g. a compiler has tables that are built up as compilation proceeds, and each of them grows continuously. Because each

segment constitutes a separate address space, the different segments can grow independently without affecting each other.

symbol

table

constants

Source

text

Parse tree

Call stackSegment 1 Segment 2

Segment 3 Segment 4

Segment 5

Logical address space

Simple paging and segmentation

“Segmentation” (3)

64

Segmentation: is a memory management scheme that supports independent address spaces called segment.

-Each segment consists in linear sequence of addresses, from 0 to some maximum (usually very large).

-The length of each segment may be anything from 0 to the maximum allowed.

-Different segments may have different lengths.

-Segment lengths may change during execution.

-With segments, a logical address consists of a two tuple <segment number, offset>.

CPU seg (s) offset (d)

seg table*

base

segment table

logical address

+

seg table*

s

seg table*+s

base (b) offset (d)

b*

data segment

Main

memory

b*+ d

d

Simple paging and segmentation

“Segmentation” (4)

65

Combined paging and segmentation: both paging and segmentation have their strengths. In combined paging / segmentation

system, the user’s address space is broken up into a number of segments, at the discretion of the programmer. Each segment is,

in turn, broken up into a number of fixed-size page.

-From the programmer’s point of view, a logical address still consists of a segment number and a segment offset.

-From the system’s point of view, the segment offset is viewed as a page number and page offset for a page within the

specified segment.

CPU s d

seg page

table*

page

table*

seg page

table

logical address

+

seg page

table*
s

seg page

table*+s

f d

data

p
ag

e

Main

memory

p

+ frame

page table

page

table*

page

table*+p

p

