P1
P2

16
6

At $\mathrm{t} 1 \mathrm{WSS} 1+\mathrm{WSS} 2=2+3=5=\mathrm{m}=5$)
At $\mathrm{t} 1 \mathrm{WSS} 1+\mathrm{WSS} 2=4+3=7>(\mathrm{m}=5)$
Not trashing at the corner
P1 is shifting to a new locality as the working sets are totally different at t 0 and t 2 trashing could occur at t1

Q2

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
3	2	5	4	3	5	1	5	2	4	3	3	4	2	5	1	5	3	4	5	2	3
3	3	3	4	4	4	1	1	1	4	4											
	2	2	2	3	3	3	3	2	2	2											
		5	5	5	5	5	5	5	5	3											
x	x	x	F	F		F		F	F	F											
3 is the LRU at $\mathrm{t}=0$																					
2 is the LRU at $\mathrm{t}=1$																					
4 is the LRU at $\mathrm{t}=3$																					
3 is the LRU at $\mathrm{t}=4$																					
1 is the LRU at $\mathrm{t}=6$																					
5 is the LRU at $\mathrm{t}=7$																					

S on $\mathrm{t}=[0,10]=\mathrm{SR}$ on $\mathrm{t}=[11,21]$, thus at $\mathrm{t}=10$, OPT and LRU provide the same result let's note that LRU produces more page faults on $t=[0,10]$, it is not optimal

t

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
7	3	4	5	7	3	6	7	3	4	5	6
7	7	7	7	7	7	6	6	6	6	5	5
	3	3	3	3	3	3	7	7	7	7	6
		4	4	4	4	4	4	3	3	3	3
			5	5	5	5	5	5	4	4	4
F	F	F	F			F	F	F	F	F	F

10 faults with 4 frames, the belady's anomaly is here

we scan all the buffer and set $\mathrm{u}=0$ and return to the initial possition for replacement
P11 is accessed, we set $u=1$
we go to P7 for replacement, we set $\mathrm{u}=0$ for P11 and loop on the circular buffer
Etc.

P29, we apply clock algorithm in step 1 and look for $(0,0)$ the P11 is replaced

1, we apply clock algorithm in step1 then step2 and look for ($0, \mathrm{x}$), we set $\mathrm{u}=0$ for P27

