
Real-time systems

“Introduction to real-time systems”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/realtime.html

1

Introduction to real-time systems

1. Definition

2. Application use-case

3. Concept of time

4. Design issues

2

Definition

3

Observations

Real-time systems are hardware and software components that are subject to real-time constraints (i.e. operational

deadlines from events to system responses). They must execute within strict constraints on response time. By contrast, a

non-real-time system is one for which there is no deadline. They can be defined considering two aspects:

 Time means that the correctness of the system depends not only on the logical results of the computation but also

on the time at which the results are produced.

 Real indicates that the reaction of the system to external events must occur during their evolution. As a

consequence, the system time must be measured using the same time scale used in the controlled environment.

Computer

System

Controlled

process

data / events

orders / display

Actions

programming automata

application-specific circuit (e.g. ASIC)

uni or multi processor

distributed systems

etc.

production line,

home automation,

intelligent driving,

video game,

network,

etc.

Introduction to real-time systems

1. Definition

2. Application use-case

3. Concept of time

4. Design issues

4

Application use-case

DSP

data

localization

control /

states
setting

shared

memory

display

Control

Unit

Radar tracker

C2 (i.e. Command and Control) Tracking steps in C2.

1. Track initiation: to create a new radar track

from a radar plot.

2. Track smoothing: the latest track prediction is

combined with the associated plot to provide a

new, improved estimate of the target state. A

basic algorithm is the Kalman filter.

3. Track maintenance: to end the life of a track.

Other applications are at the corner:

chemical and nuclear plant control,

railway,

flight control systems,

telecommunication systems,

industrial automation,

robotics,

military systems,

etc.

5

DSP is Data Signal Processing

Introduction to real-time systems

1. Definition

2. Application use-case

3. Concept of time

4. Design issues

6

Concept of time (1)

7

Time and environment: a generally held opinion defines a system as working in real-time, if it is able to quickly react. The

concept of time is not an intrinsic property of the system, but strictly related to the environment in which the system operates.

Application Time scale

Aircraft millisecond

Machine Man Interface second

Production line minute

Chemical reaction hour

Meteorological prediction day

Pay slip month

Concept of time (2)

8

Fast vs. predictability: some people erroneously believe that it is worth investing in real-time because advances in computer

hardware will take care of any real-time requirements (i.e. the Moore law). In fact, the objective of fast computing is to

minimize the average response time of a given set of tasks, whereas the objective of real-time computing is to meet the

individual timing requirement of each task. Hence, rather than being fast, a real-time computing system should be predictable.

Soft vs. hard real-time: the main difference between a real-time and a non real-time system is that a task in a real-time

system is characterized by a deadline, which is the maximum time within which it must complete its execution. Therefore, in a

real-time system, a result provided after a deadline is not only in late but wrong. Depending of the consequence of a missed

deadline, the real-time systems could be considered in two categories:

Type Description Examples

Hard real-time

systems

A missing deadline may cause catastrophic consequences

on the environment under control.

Aircraft command, nuclear process control,

intelligent transportation, medical equipment, etc.

Soft real-time

systems

A meat deadline is desirable for performance reasons, but

a missed deadline does not cause serious damages to the

environment and does not jeopardize correct system

behavior.

Handling input data from keyboard, display

message on screen, handling input from pad for

video game, data format conversion, etc.

Introduction to real-time systems

1. Definition

2. Application use-case

3. Concept of time

4. Design issues

9

Design issues (1)

10

System

Features no real-time real-time

Scalability ++ +

Maintainability + +

Fault tolerance + ++

Design for peak load + ++

Timeliness no yes

Predictability no yes

Scalability: a system is described as scalable if will remain effective when

there is a significant increase in the number of resources and users.

Maintainability: the architecture of a system should be designed

according to a modular structure to ensure that possible system

modifications are easy to perform.

Fault tolerance: single hardware and software failures should not cause

the system to crash. Therefore, critical components of the system have to

be designed to be fault tolerant.

Design for peak load: systems must not collapse when they are subject to

peak-load conditions, so they must be designed to manage all anticipated

scenarios.

Timeliness: results have to be correct not only in their values but also in

the time domain. As a consequence, the system must provide specific

kernel mechanisms for time management and for handling tasks with

explicit time constraints and different criticality.

Predictability: to guarantee a minimum level of performance, the system

must be able to predict the consequences of any processing decision. If

some tasks cannot be guaranteed within time constraints, the system notify

this fact in advance so that alternative actions can be planned.

There are important properties that real-time systems

must have to support for critical applications.

Design issues (2)

11

Ad hoc vs. design methodologies: most of the real-time systems are still designed with ad hoc techniques (e.g. large portions

of code in assembly language, programming timers, handling tasks and interrupt priorities). Although the code produced by

these techniques can be optimized, this approach has the following disadvantages:

tedious programming,

difficult code understanding,

difficult software maintainability,

difficult verification of time constraint,

etc.

e.g. Patriot system, 25th of february 1991 (Dhahran city, Saudi Arabia)

During the golf war, a scud has been missed by the patriot system, and crashed

on the Dhahran city (Saudi Arabia). A bug on real-time clock management was

accumulating a delay of 57 s / mm. The day of the accident, a 100 hours

execution has accumulated 343 ms of delay corresponding to a distance

approximation error of 687 meters. The bug was corrected the day after (26th

of February).

This is mainly due to the fact, in real-time control applications, the program

flow depends of input sensory data and environmental conditions, which

cannot be fully replicated during the testing phase.

12

Design

Levels

No real-time features How to make it working in

real-time systemsComponents Problems

Hardware

Direct memory access Bus access restriction

disable optimization

& interrupt,

device handler rewriting

Cache memory Random reading access

Interrupt
Processor resource

restriction

CPU Optimization
Carry-look ahead, booth

encoding, etc.

Etc.

Operating

system

Scheduling No real time scheduling

Design of real-time systems

(VxWorks, RT Linux, etc.)

IPC and

synchronization
Priority inversion

System call
Processor resource

restriction

Memory management Expended memory

Etc.

Application Programming language
Garbage collector, recursive

programming, etc …

Real-time programming

language (C/C++, RUST, Ass…)

Ad hoc vs. design methodologies: a more robust guaranty of the real-time system performances under all possible operating

conditions can be achieved only by using more sophisticated design methodologies (operating system mechanisms, static

analysis of the source code, etc.).

Design issues (3)

