
Real-time systems

“Foundation of operating systems

for soft real-time scheduling”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/realtime.html

1

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

2

Introduction

“Definition of OS”
Middle view: the general definition

Operating System

(OS)

Applications

Hardware

User User User

Operating system: interface between the hardware and the user, responsible

for the management and coordination of activities and the sharing of

resources, that acts as a host for running applications on the machine.

Application: designed to help the user to perform a singular or multiple

related specific tasks (e.g. office, programming toolkit, web browser, etc.).

Hardware: physical electronic components and mechanical parts that make up

a piece of computer equipment (keyboard, disk drive, CPU, motherboard, etc.).

Users: could share a same computer (through session / terminal).

L
ay

er
s

Rq. This layer separation is quite subjective

Application / OS e.g. firewall, gesture recognition, voice command, fingerprint / eyes recognition, image

indexing and retrieval, etc.

Hardware / OS e.g. virtual memory, synchronization, DMA, SIMD / AVX instructions, GPU, bit counting,

Neural Processing Unit (NPU), CPU Deep Learning instructions, etc.
3

Introduction

“A brief history” (1)

4

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

Task

definition

Programming

on panel
Execute Printing

Human

operators

ENIAC ENIAC

1st generation e.g. ENIAC

Introduction

“A brief history” (2)

1401

Task

definition

Edit

punched

card

Card(s) to

tape

drive(s)

Execute

from tape

drive(s)

Human

programmer

1401 7090

Print

Punched

card

1401 7090

5

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

2sd generation e.g. IBM 1401 & 7090

Introduction

“A brief history” (3)

Job 3

Job 2

Job 1

OS

Memory

partitioning

Multiprogramming is the allocation of a computer system and

its resources to more than one concurrent application / job

Job2

Job3

Job1

CPU

schedule

If a job is blocked, go to next onePrivate memory area

3rd generation e.g. IBM system/360

 a game of compatible computer 360/(A-L)

 implement multi-programming and spooling

6

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

Introduction

“A brief history” (4)
3rd generation e.g. IBM system/360

 a game of compatible computer 360/(A-L)

 implement multi-programming and spooling

Spooling (simultaneous peripheral operation on-line) refers to a

process of transferring data by placing it in a temporary

working area where another program may access it for

processing at a later point in time.

Read Execute PrintTape

Read

Buffer Execute

Tape

PrintPrinter

Job

Job

Spooler

Without

spooling

With

spooling

7

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

Introduction

“A brief history” (5)
4th generation e.g. Personal Computer

 LSI (Large Scale Integration) made possible PC

 Doug Engelbart proposed IHM in the early 60s,

implemented in the first Apple computer in 1984

 Since end of 80s, Internet becomes part

of the computer world

Internet host computers First IBM PC to laptop First keyboard and mouse

8

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

Introduction

“A brief history” (6)
In the queue ….

Mobile systems

Multimodality

Visualization

Quantum computer

iOS

Mobile systems Multimodality

“ Voice recognition”

Multimodality

“Gesture based interaction”

9

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

Introduction

“A brief history” (7)

Multimodality

“Eye tracker”

Multimodality

“Brain computer interface”

10

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

In the queue ….

Mobile systems

Multimodality

Visualization

Quantum computer

iOS

Introduction

“A brief history” (8)

Visualization

“3D screen”

Visualization

“real virtuality”

Visualization

“Electronic paper”

11

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

In the queue ….

Mobile systems

Multimodality

Visualization

Quantum computer

iOS

Visualization

“Augmented reality and tagging the real world”

Introduction

“A brief history” (9)

12

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

Quantum computer

In the queue ….

Mobile systems

Multimodality

Visualization

Quantum computer

iOS

Introduction

“A brief history” (10)

13

G
en

er
at

io
n

B
at

ch

C
o

m
p

at
ib

il
it

y

M
u

lt
i-

p
ro

g

P
ar

al
le

li
sm

M
ic

ro
co

m
p

u
te

r

IH
M

N
et

w
o

rk

M
o
b

il
e

sy
st

em
s

M
u

lt
im

o
d
al

it
y

V
is

u
al

iz
at

io
n

Q
u
an

tu
m

 c
o

m
p

u
te

r

U
b

iq
u
it

o
u
s

co
m

p
u

ti
n

g

1945-1955 1st

1955-1965 2sd 

1965-1980 3rd   

1980-today 4th   

in the queue     

iOS (Artificial) intelligence Operating System is a system that

manages computer software and hardware and provides common

service for the computer using its intelligence by a computer or a

machine in order to solve complex problems with ease.

In the queue ….

Mobile systems

Multimodality

Visualization

Quantum computer

iOS

Introduction

“Taxonomy of OS”
OS depends of computer application

• Mainframes are powerful computers used mainly by large organizations

for critical applications, typically bulk data processing such as census,

industry and consumer statistics, etc.

• Server computers link other computers or electronic devices together.

They often provide essential services across a network, either to private

users inside a large organization or to public users via the Internet.

• Multicomputers offer a major-league computer power by connecting

multiple CPUs/GPUs together (e.g. a workstation). They need a special

OS support for communication, connectivity and consistency.

• Personal Computers (PC) are any general-purpose computers whose

sizes, capabilities, and original sale prices make them useful for

individuals, and which is intended to be operated directly by an end user

with no intervening computer operator.

• Real-Time Systems (RTS) implement hardware and software

components that are subject to real-time constraints i.e. operational

deadlines from events to system responses.

• Embedded systems are designed to perform one or a few dedicated

functions often with real-time computing constraints. They are

embedded as part of a complete device often including hardware and

mechanical parts.

• Mobile systems include personal digital assistants (PDA) or cellular

telephones, many of which use special purpose embedded systems.

E
rg

o
n

o
m

ic
s

C
o

m
m

u
n

ic
at

io
n

R
o
b

u
st

n
es

s

O
p

ti
m

iz
at

io
n

Mainframes  

Servers  

Multicomputers  

PC 

RTS  

Embedded systems   

Mobile systems  

 a major feature of concerned OS

14

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

15

Process description and control (1)

16

A process(us) is an instance of a computer program that is being executed. It

contains the program code and the liked data.

PCB “Process Control Block” (i.e. Task Controlling Block or Task Structure) is a

data structure in the operating system kernel containing the information needed to

manage a particular process.

Processus Table is an area of memory protected from normal user access, to manage

the PCBs, as they contain critical information for processes.

A thread takes part of a process but it has its own program counter, stack and

registers. The threads belonging to a process share common code and data.

TCB “Thread Control Block” is a data structure in the operating system kernel

containing the information needed to manage a particular thread (PCB look-like).

PCB-A
PCB-B

Process table

Main

memory

R
ef

er
 t

o

R
ef

er
 t

o

K
er

n
el

 s
p

ac
e

W
o
rk

in
g
 s

p
ac

e

*PCB-A

*PCB-B

*PCB-X

Queue 1

*PCB-X

*PCB-A

*PCB-B

Queue 2

Data

Program

Data

Program

Process A

Process B

Process description and control (2)

re
la

te
d

 t
o

 p
ro

ce
ss

m
an

ag
em

en
t

re
la

te
d

 t
o

 d
at

a

m
an

ag
em

en
t

17

List of frequent data appearing in a PCB

Process identifier (pid) refers the process in the OS.

Group data, hierarchy information (e.g. parents and childs), type of

process and group memberships.

CPU-scheduling information e.g. process priority, pointers to

scheduling queues, etc.

Process state e.g. ready, running, waiting, terminated, etc.

Program counter (PC) refers the current execution state of the process.

CPU registers correspond to the current state of the CPU.

Security attributes refer the owner or set of permissions (allowable

operations) of the process.

Accounting information e.g. start time, end time, amount of CPU used,

real-time used, etc.

Etc.

Memory management information includes page and segment tables

on the executable code, call stack (to keep track of active subroutines

and/or other events), etc.

Operating system descriptors refer to the resources that are allocated

to the process, such as files, devices, other data sources.

Etc.

PCB-A
PCB-B

Process table

Main

memory

R
ef

er
 t

o

R
ef

er
 t

o

K
er

n
el

 s
p

ac
e

W
o
rk

in
g
 s

p
ac

e

*PCB-A

*PCB-B

*PCB-X

Queue 1

*PCB-X

*PCB-A

*PCB-B

Queue 2

Data

Program

Data

Program

Process A

Process B

Process description and control (3)

P1

CPU

allocation

t

P3

P2

t

t

scheduling diagram of processes

0

The process Pi is running

18

Multitasking (i.e. multiprogramming) is a method by which multiple

tasks share common processing resources such as a CPU. With a single

CPU, only one task can run at any time. Multitasking solves the problem

by scheduling the tasks i.e. which task must run on the CPU, and which

task must wait.

Process description and control (4)

19

Scheduling refers to the way processes are assigned to run on the CPU.

The aim of scheduling is to assign processes to be executed by the

processor over the time, in a way that meets objectives of the system,

such as the response time, throughput and processor efficiency.

In many systems, the scheduling activity is broken into three separate

functions: long, medium and short-term scheduling.

Scheduling affects the performance of the system because it determines

which processes will wait and which will progress. Scheduling is a

matter of managing queues to minimize queuing delay and to optimize

performance in a queuing environment.

…

2. long-term

scheduler

CPU

4. short-term

scheduler
5. dispatcher

…

…

3. ready

queue
1. job

queue

7. mid-term

scheduler

…

8. suspend

queue(s)

…

…

6. blocked

queue

Main memory

Process description and control (5)

20

1. Job queue stores processes to enter in the system, they are put into

the job queue. The job queue contains the list of processes to create.

2. Long term scheduler (admission scheduler) decides which

processes are to be admitted to the ready queue, they are then created

and loaded into the main memory.

3. Ready queue is a data structure to keep in the main memory the

processes that are in a ready state.

4. Short-term scheduler (i.e. CPU scheduler) decides which of the

ready, in-memory processes, are to be executed (allocated to the CPU)

following a clock interrupt, an I/O interrupt, an operating system call or

ayn other form of signal.

5. Dispatcher gives the control of the CPU to the process selected by

the short-term scheduler.

…

2. long-term

scheduler

CPU

4. short-term

scheduler
5. dispatcher

…

…

3. ready

queue
1. job

queue

7. mid-term

scheduler

…

8. suspend

queue(s)

…

…

6. blocked

queue

Main memory

Process description and control (6)

21

6. Waiting/Blocked queue is a data structure to keep in the main

memory the processes in a blocked state.

7. Mid-term scheduler removes processes from the main memory (if

full) and places them on a secondary memory (such as a disk drive) and

vice-versa.

8. Blocked suspend queue(s) contain lists of processes moved to the

disk (i.e. swapping). Two queues are usually managed, related to the

processes in a suspended-blocked or a suspended-ready state.

…

2. long-term

scheduler

CPU

4. short-term

scheduler
5. dispatcher

…

…

3. ready

queue
1. job

queue

7. mid-term

scheduler

…

8. suspend

queue(s)

…

…

6. blocked

queue

Main memory

Process description

and control (7)

22

TerminatedNew

Ready
Running

Waiting/

Blocked

I/O or event

completion

Scheduler

dispatch I/O or event

wait

Admitted
Interrupt

Exit

Suspended

ready

Suspended

blocked

Suspend

Activate

I/O or event

completion

Short-termLong-term

Mid-term

Disk memory Main memory

Long-term

Admitted

Activate

Suspend

As a process executes, it changes its state. The state of a process is defined in part by the current activity of the process.

New: in this state, the process awaits for an admission to the ready state. This admission will be approved or delayed

by a long-term, or admission, scheduler.

Ready: a ready process has been loaded into the main memory and the ready queue and is awaiting for an execution

on the CPU (to be loaded into the CPU by the dispatcher following the decision of the short-term scheduler).

Running: process is being executed by CPU.

Terminated: a process may be terminated, either from the running state by completing its execution or by explicitly

being killed. If a process is not removed from the memory, this state may also be called zombie.

Process description

and control (8)

23

TerminatedNew

Ready
Running

Waiting/

Blocked

I/O or event

completion

Scheduler

dispatch I/O or event

wait

Admitted
Interrupt

Exit

Suspended

ready

Suspended

blocked

Suspend

Activate

I/O or event

completion

Short-termLong-term

Mid-term

Disk memory Main memory

Long-term

Admitted

Activate

Suspend

As a process executes, it changes its state. The state of a process is defined in part by the current activity of the process.

Waiting/Blocked: a process that cannot execute until some events occurs, such as the completion of an I/O operation

or a signal. Every blocked process is moved to the blocked queue.

Suspended blocked: a process is put in the disk memory by the mid-term scheduler (i.e. swapping out).

Suspended ready: a process is ready to be loaded from the disk to the main memory (i.e. swapping in).

Process description and control (9)

24

job queue ready queue

CPU

ready-suspend

queue

blocked-suspend

queue

blocked queue

short-term

scheduling

mid-term

scheduling

long-term

scheduling

medium-term

scheduling

mid-term

scheduling

mid-term

scheduling

I/O or

event wait

I/O or event

completion

Exit

Queuing diagram for scheduling shows the queues involved in the state transitions of processes.

Rq. For simplicity, this diagram shows new processes going directly to the ready state without the option of either

the ready state or either the ready/suspend state.

Process description and control (10)

25

New  Ready: the OS will move a process from the new state to the ready state (i.e. from the job queue to the ready

queue) when it is prepared to take an additional process. Most of the systems set some limits based on the number of existing

processes in memory.

Ready  Running: when it is time to select a process to run, the OS chooses one of the processes in the ready state. This is

the job of the scheduler.

Running  Terminated: the currently running process is terminated by the OS if the process indicates that it has

completed, or if it aborts.

Running  Ready: the most common reasons for this transition are

(1) in the case of a preemptive scheduling, the OS assigns different levels of priority to different processes;

thus a process A can preempt a process B and B will go to the ready state and shift to the ready queue.

(2) the running process has reached the maximum allowable time for an uninterrupted execution (all the

multiprogramming OS impose this type of time discipline).

(3) a process may voluntarily release the control of the processor (e.g. a background process that performs some

accounting or maintenance functions periodically).

Process description and control (11)

26

Running  Blocked: a process is put in the blocked state (and moves to the blocked queue) if

(1) it requests something (i.e. a resource) for which it must wait such as a file, a shared section, etc. that is not

immediately available (e.g. a down operation on a Mutex).

(2) it requests a service to the OS that is not prepared to perform immediately. A request to the OS is usually in

the form of a system service call; that is; a call from the running program to a procedure that is part of the OS.

Blocked  Running: a process in the blocked state is moved to the ready state (and moved to the ready queue) when the

event for which it has been waiting occurs (e.g. up operation on a Mutex, system call return, etc.).

Ready  Terminated: this transition is not shown on the state and queuing diagrams, in some systems, a parent may

terminate a child process at any time. Also, if a parent terminates, all child processes associated wit that parent may terminate.

Terminated  Ready: this transition has nosense.

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

27

About short-term scheduling (1)

28

P
er

fo
rm

an
ce

 c
ri

te
ri

a

re
la

te
d
 t

o
 t

h
e

u
se

r

(Short-term) scheduler is a system process running an algorithm to decide which of the ready processes

are to be executed (i.e. allocated to the CPU). Different performance criteria have to be considered:

Response time: total time between submission of a request and its completion

Predictability: to predict execution time of processes and avoid wide variations

in response time

Waiting time: amount of time a process has been waiting in the ready queue

Throughput: number of processes that complete their execution per time unit

CPU utilization: to keep the CPU as busy as possible

Fairness : a process should not suffer of starvation i.e. never loaded to CPU

Enforcing priorities: when processes are assigned with priorities, the scheduling policy should

favor the high priority processes

Balancing resources: the scheduling policy should keep the resources of the system busy

Etc. P
er

fo
rm

an
ce

 c
ri

te
ri

a

re
la

te
d

 t
o

 t
h

e
sy

st
em

About short-term scheduling (2)

algorithm’s

features

on-line off-line

preemptive no preemptive

relative deadline strict deadline

static priority dynamic priority

optimal not optimal

Processus

model

independants dependants

without resource with resource

aperiodic periodic

Type of

system

mono-core multi-core

centralized distributed

Scheduling

problems

on-line

both

relative deadline

both

both

both

both

aperiodic

mono-core

centralized

Standard parameters in

a time-sharing system

29

Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded

systems, etc.), different scheduling problems have to be considered:

Parameters

About short-term scheduling (3)

30

Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded

systems, etc.), different scheduling problems have to be considered:

On-line/off-line: off-line scheduling builds complete planning sequences with all the parameters of the process.

The schedule is known before the process execution and can be implemented efficiently.

Preemptive/non-preemptive: in a preemptive scheduling, an elected process may be preempted and the

processor allocated to a more urgent process with a higher priority.

Relative/strict deadline: a process is said with no (or a relative) deadline if its response time doesn’t affect the

performance of the system and jeopardize the correct behavior.

Dynamic/static priority: static algorithms are those in which the scheduling decisions are based on fixed

parameters, assigned to processes before their activation. Dynamic scheduling employs parameters that may

change during the system evolution.

Optimal: an algorithm is said optimal if it minimizes a given cost function.

About short-term scheduling (4)

31

Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded

systems, etc.), different scheduling problems have to be considered:

Dependent /independent process: a process is dependent (or cooperating) if it can affect (or be affected by) the

other processes. Clearly, any process than share data and uses IPC is a cooperating process.

Resource sharing: from a process point of view, a resource is any software structure that can be used by the

process to advance its execution.

Periodic/aperiodic process: a process is said periodic if, each time it is ready, it releases a periodic request.

Mono-core / Multi-core: when a computer system contains a set of processor that share a common main

memory, we’re talking about a multiprocessor /multi-core scheduling.

Centralized/distributed: scheduling is centralized when it is implemented on a standalone architecture.

Scheduling is distributed when each site defines a local scheduling, and the cooperation between sites leads to a

global scheduling strategy.

About short-term scheduling (5)

The general algorithm of a short-term scheduler is

While

1. A timer interrupt causes the scheduler to run once every time slice

2. Data acquisition (i.e. to list processes in the ready queue and update their parameters)

3. Selection of the process to run based on the scheduling criteria of the algorithm

4. If the process to run is different of the current process, to order to the dispatcher to switch the context

5. System execution will go on …

The real problem with the scheduling is the definition of the scheduling criteria, algorithm is little discussed.

32

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

33

Context switch, quantum and ready queue (1)

Process P0 Operating system

Dispatcher is in charge of passing the control of the CPU to the process selected by the short-term scheduler.

Context switch is the operation of storing and restoring state (context) of a CPU so that the execution can be resumed from the

same point at a later time. It is based on two distinct sub-operations, state safe and state restore. Switching from one process to

another requires a certain amount of time (saving and loading the registers, the memory maps, etc.).

Quantum (or time slice) is the period of time for which a process is allowed to run in a preemptive multitasking system. The

scheduler is run once every time slice to choose the next process to run.

Process P1

save state into PCB0

reload state from PCB1

save state into PCB1

reload state from PCB0

interrupt or system call

exit

P0 running, P1 waiting

Context switch

P0 / P1 waiting

P0 waiting, P1 running

Context switch

P0 / P1 waiting

P0 running, P1 waiting
exit

interrupt or

system call

34

q
u

an
tu

m

(tim
e slice)

Context switch, quantum and ready queue (2)

35

Cycle Instructions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

5000

5001

5002

5003

5004

5005

100

101

102

103

104

105

8000

8001

8002

8003

100

101

102

103

104

105

12000

12001

12002

12003

12004

12005

Process A

Dispatcher

Process B

Dispatcher

Process C

A starts

A interrupted

B starts

B ends

C starts

C interrupted

e.g. We consider the case of

i. Three processes A, B, C and a dispatcher which traces (i.e.

instructions listing), given in the next table.

ii. Processes are scheduled in a predefined order (A, B then C)

iii. The OS here only allows a process to continue for a

maximum of six instruction cycles (the quantum), after

which it is interrupted.

Process A Process B Process C Dispatcher

5000

5001

….

5011

8000

8001

8002

8003

12000

12001

…

12011

100

101

…

105

Context switch, quantum and ready queue (3)

36

Cycle Instructions

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

100

101

102

103

104

105

5006

5007

5008

5009

5010

5011

100

101

102

103

104

105

12006

12007

12008

12009

12010

1211

Dispatcher

Process A

Dispatcher

A continues

A ends

Process C

C continues

C ends

e.g. We consider the case of

i. Three processes A, B, C and a dispatcher which traces (i.e.

instructions listing), given in the next table.

ii. Processes are scheduled in a predefined order (A, B then C)

iii. The OS here only allows a process to continue for a

maximum of six instruction cycles (the quantum), after

which it is interrupted.

Process A Process B Process C Dispatcher

5000

5001

….

5011

8000

8001

8002

8003

12000

12001

…

12011

100

101

…

105

Context switch, quantum and ready queue (4)

37

5 quanta / 4 context switches (n-1 quanta)

28 process instruction (6+4+6+6+6)

64=24 dispatcher instructions

a maximum of two processes in the ready queue

Quantum < i i+1 i+2 i+3 i+4

Instruction cycle Na 6 4 6 6 6

Scheduled process

by the CPU

Na A B C A C

Ready queue state A

B

C

B

C

C

A

A C

The length of the quantum can be critical to balance the

system performance vs. process responsiveness.

• If the quantum is too short then the scheduler will

consume too much processing time.

• If the quantum is too long, processes will take longer to

respond to inputs.

e.g. We consider the case of

i. Three processes A, B, C and a dispatcher which traces (i.e.

instructions listing), given in the next table.

ii. Processes are scheduled in a predefined order (A, B then C)

iii. The OS here only allows a process to continue for a

maximum of six instruction cycles (the quantum), after

which it is interrupted.

Process A Process B Process C Dispatcher

5000

5001

….

5011

8000

8001

8002

8003

12000

12001

…

12011

100

101

…

105

Context switch, quantum and ready queue (5)

First

Last

Next

Data

PCB1

Next

Data

PCB2

Next

Data

PCB3

Next

Data

PCB4
First, last and next are PCB pointers in the list.

If we delete a PCB (i), pointer of the previous

PCB (i-1) jumps to next one (i+1) i.e. it is not

necessary to fill the empty space or to move

(copy) the PCBs.

Linked list of PCBs
Head of the

queue

Delete operation

38

The ready queue is a huge-data list generally composed of PCB pointers, it is stored

as a linked list in the main memory, managing pointers from the first to the last PCB.

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

39

Process and diagram models (1)

w0 s e

RT

WT WTC C

t

C(t)

t

p
ro

ce
ss

40

C(t)

t

C

0

Process model and context parameters

PID process number

rank rank in the ready queue

w0 wakeup time

C capacity

P priority

s start time (run as a first time)

e end time (termination)

RT = e- w0 response time

WT = RT-C waiting time

C(t) residual capacity at t

C(w0) = C, C(e)=0

T(t)=C-C(t) CPU time consumed at t

T(w0)=0, T(e) = C,

E(t)=t-w0 CPU time entitled

E(w0)=0, E(e)=RT

WT(t)=E(t)-T(t) waiting time at t

WT(w0)=0, WT(e)=WT

P
ro

ce
ss

p
ar

am
et

er
s

co
n
te

x
t

p
ar

am
et

er
s

Process and diagram models (2)

w0 1 (if = s)

C 6

P Na

Process

1 4 6 7 10 12 t

41

s 1

e 12

RT 12-1 = 11

WT 11-6 = 5

Process model and context parameters

PID process number

rank rank in the ready queue

w0 wakeup time

C capacity

P priority

s start time (run as a first time)

e end time (termination)

RT = e- w0 response time

WT = RT-C waiting time

C(t) residual capacity at t

C(w0) = C, C(e)=0

T(t)=C-C(t) CPU time consumed at t

T(w0)=0, T(e) = C,

E(t)=t-w0 CPU time entitled

E(w0)=0, E(e)=RT

WT(t)=E(t)-T(t) waiting time at t

WT(w0)=0, WT(e)=WT

P
ro

ce
ss

p
ar

am
et

er
s

co
n
te

x
t

p
ar

am
et

er
s

Process and diagram models (3)

Process

1 4 6 7 10 12 t

Process model and context parameters

co
n
te

x
t
p

ar
am

et
er

s

42

CPU burst time is an assumption of how long

a process requires the CPU between I/O waits.

It means the amount of time that a process uses

the CPU without interruption.

There is a direct and relationship between the

durations of the burst tn to come and the

residual capacity C(t) (i.e. any future burst is a

fraction of the residual capacity):

Burst

id Position Duration t

t0 1, 4 4-1=3

t1 4, 12 (7-6)+(12-10)=3

next burst

within the

same burst

ready queue

CPU

blocked queue

short-term

scheduling

I/O wait

I/O completion

Exit

C(t) = �t�
∀�

I/O Interrupt S Interrupt I/O Interrupt

C t = 1 =
� +

 = 3 + 3
C t = 4 =

 = 3

Process and diagram models (4)

43

Process behavior: some processes spend most of their

time computing (time-bound), while others spend most of

their time waiting for I/O (I/O bound).

The key factor is the length of the CPU burst, not the

length of the I/O burst i.e. The I/O bound processes do not

compute much between the I/O requests.

It is worth nothing that as a CPU gets faster, processes

tend to be bounded with I/O. As a consequence, resource

scheduling become an important issue.

I/O bound process

I/O

interrupt

I/O

interrupt

I/O

interrupt

I/O

interrupt

Time bound process

CPU

switch

CPU

switch

CPU

switch

fr
eq

u
en

cy

Burst duration (s)

Time measurement is related to the analysis of the duration of CPU

bursts. The CPU bursts tend to have a frequency characterized as an

exponential. This law varies from process to process and from

computer to computer.

Process and diagram models (5)
• Gantt diagram

P1 P2 P3

t1 t2 t3t0

• Table

time or quantum 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

P1
C(t) 7-6 6-5 5-4 4-3 3-2 2-2 2-2 2-1 1-0

(t) 14-13 13-12 12-11 11-10 10-9 9-9 9-9 9-8 8-7

P2 C(t) 2-2 2-1 1-0

(t) 10-10 10-9 9-8

• Process diagram

id
 p

ro
ce

ss
u
s

variation of C(t)

with an other criterion (t)
x-x

x-x running process

waiting process

Process

t

P1

P2

P3

P1

Process

t

P3

P2

t

t

time or quantum 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

P1 C(t) 7 - 6 6 - 5 5 - 4 4 - 3 3 - 2 2 - 2 2 - 2 2 - 1 1 - 0

P2 C(t) 2 - 2 2 - 1 1 - 0

id
 p

ro
ce

ss
u
s

x-x

x-x running process

waiting process
variation of C(t) only

P1

Process

t

P1P2

P1

value when the

quantum starts

C(t=2) = 5

value when the

quantum stops

C(t=3) = 4

Scheduling diagrams vary from book to book

and from lecture to lecture.

• The diagram is a text ….

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

45

Algorithm Preemptive
Scheduling

criterion
Priority

Predictable

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority

Scheduling
yes

process priority

with aging
dynamic no

Respecting the priority and

avoiding the fairness

Highest Response Ratio

Next
no response ratio dynamic yes

Optimal

response time

OptimizationShortest Job First yes/no
shortest remaining

time

static/

dynamic
yes

Optimal

waiting time

Time prediction no/yes
shortest predicted

time
dynamic no

Achieving the

predictability with the SJF

Processes Wakeup (w0) Capacity (C)

P1 0 24

P2 5 3

P3 9 3

P4 9 3

47

Scheduling algorithms

“First Come, First Served (FCFS)”

First Come First Serve (FCS): processes are

scheduled regarding their positions in the ready

queue (1, 2, 3, …). With equal arrival date

(wakeup time) w0, the process id could be used

P1>P2>P3 etc.

P1 P2 P3

24 27 300

P1 arrives at t=0, the

single process in the

ready queue

P2, P3, P4 arrive at t=5 and t=9 while

P1 is scheduled, in a non-preemptive

policy P1 will terminate first

When P1 ends, P2, P3, P4

are scheduled regarding their

arrival dates w0 in the ready

queue, then P2 starts

P4

33

With a similar wakeup time w0

for P3, P4, we use the process id

P3>P4 for scheduling

Algorithm Preemptive
Scheduling

criterion
Priority

Predictable

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority

Scheduling
yes

process priority

with aging
dynamic no

Respecting the priority and

avoiding the fairness

Highest Response Ratio

Next
no response ratio dynamic yes

Optimal

response time

OptimizationShortest Job First yes/no
shortest remaining

time

static/

dynamic
yes

Optimal

waiting time

Time prediction no/yes
shortest predicted

time
dynamic no

Achieving the

predictability with the SJF

Priority Scheduling (PS): when a process is

finished, we shift to the process with the highest

priority (i.e. the lowest P value).

Processes Wakeup (w0) Capacity (C) Priority (P)

P1 0 6 3

P2 1 1 1

P3 2 2 4

P4 3 1 5

P5 4 6 2

49

Scheduling algorithms

“Priority Scheduling (PS)” (1)

P1 P2 P5 P3 P4

0

P1 alone in the ready

queue arrives at t=0

6 7

At t=6, P2, P3, P4, P5 are in the ready

queue, the scheduling will go on with the

priority order P2>P5>P3>P4

13 15 16

Scheduling algorithms

“Priority Scheduling (PS)” (2)

Priority Scheduling (PS): the preemptive case, at

any time, we look for the process of the highest

priority (i.e. the lowest P value).

Processes Wakeup (w0) Capacity (C) Priority (P)

P1 0 6 3

P2 1 1 1

P3 2 2 4

P4 3 1 5

P5 4 6 2

t or q 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16

P1 C(t) 6-5 5-5 5-4 4-3 3-3 3-3 3-3 3-3 3-3 3-3 3-2 2-1 1-0

P2 C(t) 1-0

P3 C(t) 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-1 1-0

P4 C(t) 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-0

P5 C(t) 6-5 5-4 4-3 3-2 2-1 1-0

P2 of highest priority

takes the CPU
P5 of highest priority

preempts P1

50

When a process ends, the

process with the lowest

priority is scheduled

51

Dynamic Priority Scheduling (DPS): works with

a dynamic priority P(t) and is a preemptive algorithm

1. a process starts with a P(t=w0) = P, its initial priority value

2. when a process is running, P(t) is constant

3. when a process is waiting P(t+1) = P(t)+1

4. at any time, the process of highest P(t) takes the CPU

5. if Pi(t) = Pj(t) for two processes i,j, thus we look for Pi (w0), Pj (w0)

6. when a process recovers the CPU at tn, we reset P(tn) = P(w0) = P

t or q 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16

P1 P(t) 1-2 2-3 3-4 4-5 5-6 1-1 1-2 2-3 3-4 4-5 5-6 6-7 1-1 1-2 2-3 3-4

P2 P(t) 3-4 4-5 5-6 3-3 3-4 4-5 5-6 3-3 3-4 4-5 5-6 3-3 3-4 4-5 5-6 3-3

P3 P(t) 5-5 5-5 5-5 5-6 5-5 5-6 5-5 5-6 5-5 5-5 5-5 5-6 6-7 5-5 5-5 5-6

Processes Wakeup (w0) Capacity (C) Priority (P)

P1 0  1

P2 0  3

P3 0  5

Equivalence case,

we look for P (w0)

A context switch

we reset P(t)
Equivalence case,

we look for P (w0)

P3 is running,

P(t) is constant

Scheduling algorithms

“Dynamic Priority Scheduling (DPS)”

Algorithm Preemptive
Scheduling

criterion
Priority

Predictable

capacity
Performance criteria Taxonomy

First Come First Serve no rank in the queue static no Arrival time Arrival

Priority Scheduling yes/no process priority static no Respecting the priority

PriorityDynamic Priority

Scheduling
yes

process priority

with aging
dynamic no

Respecting the priority and

avoiding the fairness

Highest Response Ratio

Next
no response ratio dynamic yes

Optimal

response time

OptimizationShortest Job First yes/no
shortest remaining

time

static/

dynamic
yes

Optimal

waiting time

Time prediction no/yes
shortest predicted

time
dynamic no

Achieving the

predictability with the SJF

Scheduling algorithms

“Highest Response Ratio Next (HRRN)” (1)

53

For each process, we would like to minimize a normalized turnaround time defined as

with WTi(t) the waiting time of process i at t and Ci the capacity. Let’s note that 1  Ri(t)  

Considering a non-preemptive scheduling we have T(t) = 0 at t<s,

then WT(t) = E(t) – (T(t)=0) = E(t) = t – w0, R(t) is then

The scheduling is non-preemptive and looks for the highest R(t) value at any context switch.

The idea behind this method is to get the mean response ratio low,

so if a job has a high response ratio, it should be run at once to reduce the mean.

��
 = ���
 + ��
�� = ���

�� + 1

��
 = (
 − ��) + ��
�� = (
 − ��)

�� + 1

D
is

tr
ib

u
ti

o
n

RT

HRRN

Misc

scheduling

54

P1

0 3

P1 arrives at t=0, it is

the single process in

the ready queue and

then scheduled

P2

P2 arrives at w0=2, the single

waiting process in the ready

queue, it is scheduled next

9

P3, P4 and P5 are here, we

compute the Ri(t), we have

R3(t) > R4(t) > R5(t),

P3 is scheduled next

��
 = (9 − 4) + 4
4 = 9

4 = 2,25

��
 = (9 − 6) + 5
5 = 8

5 = 1,6

��
 = (9 − 8) + 2
2 = 3

2 = 1,5

P3

13

P4 and P5 are still waiting, with

R5(t) > R4(t) P5 is the next process.

We observe a priority inversion between P4,

P5 at t=9 and t=13 due to the dynamic R(t)

��
 = (13 − 6) + 5
5 = 12

5 = 2,4

��
 = (13 − 8) + 2
2 = 7

2 = 3,5

P5

15

P4

20

P4 the last process is

scheduled next

Scheduling algorithms

“Highest Response Ratio Next (HRRN)” (2)

For each process, we would like to minimize a normalized

turnaround time defined as

��
 = ���
 + ��
�� = (
 − ��) + ��

��

Processes Wakeup (w0) Capacity (C)

P1 0 3

P2 2 6

P3 4 4

P4 6 5

P5 8 2

Scheduling algorithms

“Shortest Job First (SJF)”

Processes Wakeup (w0) Capacity (C)

P1 0 7

P2 2 4

P3 4 1

P4 5 4

t or q 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16

P1 C(t) 7-6 6-5 5-5 5-5 5-5 5-5 5-5 5-5 5-5 5-5 5-5 5-4 4-3 3-2 2-1 1-0

P2 C(t) 4-3 3-2 2-2 2-1 1-0

P3 C(t) 1-0

P4 C(t) 4-4 4-4 4-3 3-2 2-1 1-0

A shortest process arises,

we shift the context

When a process ends,

we shift to the process of shortest remaining C(t)

55

Shorted Job First (SJF): in the preemptive case, at

any time, it looks for the process of the shortest

residual capacity C(t) in the ready queue. It is also

called Shortest Remaining Time (SRT). The non

preemptive version is called the Shortest Process Next

(SPN). When a process ends, it looks for the process of

the shortest capacity C in the ready queue.

Scheduling algorithms

“Time prediction” (1)

56




 
n

i

in t
n

T
1

1

1

nnn T
n

n
t
n

T
11

1




  nnn TtT   11

      011 1...1...1 TtttT
n

jn

j

nnn   

because   [0-1], each term has

less weight than its predecessor

One difficulty with the SJF algorithm is the need to know

the required residual capacity. When the system cannot

guaranty a predictability, we can use the time prediction.

For the I/O bound processes, the OS may keep a CPU

burst average Tn for each of the processes. This criterion T

interpolates a fraction 1/n of the CPU time consumed (and

then the residual capacity C(t)).

The simplest calculation for Tn would be the following

To avoid recalculating the entire summation each time,

we can rewrite the previous equation as

A common technique for predicting a future value on the

basis of a time series is exponential averaging

with,

Tn+1 is the prediction of the next CPU burst “n+1”

Tn time prediction of the current CPU burst “n”

tn time value of the current CPU burst “n”

 controls the relative weight (0-1) between the

next (Tn+1) and the previous (Tn) prediction

Scheduling algorithms

“Time prediction” (2)

57

  nnn TtT   11
A common technique for predicting a future value on the

basis of a time series is exponential averaging
with,

Tn+1 is the prediction of the next CPU burst “n+1”

Tn time prediction of the current CPU burst “n”

tn time value of the current CPU burst “n”

 controls the relative weight (0-1) between the

next (Tn+1) and the previous (Tn) prediction

 = 0 recent history has no effect

 = 1 only the most recent CPU burst matters

nn TT 1

nn tT 1

If first execution

(i.e. w0), T0 is a chosen

as a constant (e.g. the

overall system average)

ti

Ti

alpha

0,1 0,5 0,9

6,00 10,00 10,00 10,00

4,00 9,60 8,00 6,40

6,00 9,04 6,00 4,24

4,00 8,74 6,00 5,82

13,00 8,26 5,00 4,18

13,00 8,74 9,00 12,12

13,00 9,16 11,00 12,91

13,00 9,55 12,00 12,99

109,061,06,9  101,069,04,6 

Scheduling algorithms

“Time prediction” (3)

58

e.g. Time prediction with the SRT algorithm (SJF preemptive)

i. We consider the case of two processes A, B with the

following observed CPU bursts and I/O completion events at

a time interval [t0, t0+T] At t0, A, B are in the blocking queue.

ii. We have T0 = 5 and  = 0.4 as parameters.

iii. We assume that at any I/O completion event A, B are

concurrent for the CPU access (i.e. when B released A is

scheduled and vice-versa).

ti

Ti

alpha

0,4

3,00 5,00

6,00 4,20

4,00 4,92

ti

Ti

alpha

0,4

4,00 5,00

5,00 4,60

3,00 4,76

Process A Process B

ready queue

CPU

blocked queue

short-term

scheduling

I/O wait

I/O completion

Exit

I/O completion

events

1 A

2 B

3 A

4 A,B

5 B

Scheduling algorithms

“Time prediction” (4)

59

events <1 1 2 3 4 5

blocked queue A,B B A A A,B B A A,B

ready queue B(5) B(5) A(4.7) B(4.9)

CPU A(5) A(5) B(5) A(4.6) B(5) B(4.2) A(4.7) A(4.7) B(4.9)

A is released and alone in the

ready queue, then scheduled

B is released while A is

scheduled (iii), with TB=TA then

B waits in the ready queue

e.g. Time prediction with the SRT algorithm (SJF preemptive)

i. We consider the case of two processes A, B with the

following observed CPU bursts and I/O completion events at

a time interval [t0, t0+T] At t0, A, B are in the blocking queue.

ii. We have T0 = 5 and  = 0.4 as parameters.

iii. We assume that at any I/O completion event A, B are

concurrent for the CPU access (i.e. when B released A is

scheduled and vice-versa).

I/O completion

events

1 A

2 B

3 A

4 A,B

5 B

ti

Ti

alpha

0,4

3,00 5,00

6,00 4,20

4,00 4,92

ti

Ti

alpha

0,4

4,00 5,00

5,00 4,60

3,00 4,76

Process A Process B

When A ends, B shifts from the ready queue to the

CPU then ends and returns to the blocked queue

When A ends,

B is scheduled

A is released while B is scheduled (iii), with

TA  TB then B is preempted

Two releases occur at the same time,

TBTA then A waits in the queue

B is released while A is scheduled (iii),

with TBTA B waits in the ready queue

Scheduling algorithms

“Time prediction” (5)

60

A

(4)

B

(6)

A

(3)

t1 t1+6 t1+9t0 t0+4

B,A, B

(3,5)

t0+12

B

(4)

t1+13

e.g. Time prediction with the SRT algorithm (SJF preemptive)

i. We consider the case of two processes A, B with the

following observed CPU bursts and I/O completion events at

a time interval [t0, t0+T] At t0, A, B are in the blocking queue.

ii. We have T0 = 5 and  = 0.4 as parameters.

iii. We assume that at any I/O completion event A, B are

concurrent for the CPU access (i.e. when B released A is

scheduled and vice-versa).

ti

Ti

alpha

0,4

3,00 5,00

6,00 4,20

4,00 4,92

ti

Ti

alpha

0,4

4,00 5,00

5,00 4,60

3,00 4,76

Process A Process B

I/O completion

events

1 A

2 B

3 A

4 A,B

5 B

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

61

Modeling multiprogramming

62

npnutilizatioCPU 1 n is the number of processes

p is their (common) I/O rate

Modeling multiprogramming: from a probabilistic point of view,

suppose that a process spends a fraction p of its time waiting for

I/O to complete.

With n processes in memory, the probability that these processes

are waiting for I/O (the case where the CPU will be idle) is pn. The

CPU utilization is then given by the formula





n

i

ipnutilizatioCPU
1

1

When the I/O rates are different, formula can be expressed as

e.g. 80% I/O rate, 4 processes 5904,08,01 4 nutilizatioCPU

n is the number of processes

pi is the I/O rate of process i

e.g. P1 (80%), P2(60%), P3(40%) P4(60%)   8704,06,04,0068,01 nutilizatioCPU

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

63

Evaluation of algorithms

P r0 C

P1 0 10

P2 5 20

P3 3 3

P4 7 7

P5 9 12

process workload

Statistics
FCFS 28

SJF 13

RR 23

WT
Random number

generator

Recording a real

system

P r0 Bursts

P1 0 {7,3}

P2 5 {1,8,7,4}

P3 3 {2,1}

P4 7 {2,1,2,2}

P5 9 {8,1,3}

trace tapes

As the simulation reflects a real system, statistics about the algorithm

performances could be computed. However, simulation requires hours of

computation and a huge amount of data. In addition, design, coding and

debugging of a simulator can be a major task.

64

Simulation aims to handle a model of the OS for evaluation (scheduling algorithm, processes, etc.). The simulator has a variable

representing a clock, when increasing the simulator modifies the state of the system.

The data to drive simulation can be generated in two main ways:

- to use synthetic data with a random number generator.

- to record trace tapes by monitoring a real system.

Foundation of operating systems

for soft real-time scheduling

1. Introduction

2. Process description and control

3. Short-term scheduling

3.1. About short-term scheduling

3.2. Context switch, quantum and ready queue

3.3. Process and diagram models

3.4. Scheduling algorithms

3.5. Modeling multiprogramming

3.6. Evaluation of algorithms

4. Soft real-time scheduling

65

Algorithm Pros Cons

First Come First

Serve

The FCFS can be applied for the batch processing i.e.

the real-time task is still the most recent submitted task.

As the scheduling policy is no preemptive, the critical

section problem doesn’t matter.

The wakeup times need to be ordered. The scheduling

policy is not preemptive, while running an equal

priority matters.

Priority

Scheduling

The real-time tasks having high priorities are mixed

with time-sharing tasks having low priorities.

The number of real-time tasks must be low to avoid

starvation and missed deadlines. The scheduling policy

is preemptive, a critical section could be handled but

with a priority inversion.

Dynamic Priority

Scheduling

The DPS will smooth the starvation for the time-

sharing tasks, in the case of a huge CPU consumption

of the real-time tasks.

Similar to PS, however, it relaxes the response times of

real-time tasks and constraints.

Highest Response

Ratio Next

The HRRN is able to respect real-time constraints for a

set of tasks having in-balance deadline and capacity. As

the scheduling policy is no preemptive, the critical

section problem doesn’t matter.

The deadlines must be aligned the capacities with the

Rmax(t) value for all the real-time tasks. The algorithm

requires a constant execution time for all the tasks.

Shortest Job First The SJF can be applied if the real-time constraint

targets the tasks having a low-level capacity. While

running, the priority of a task increases. This smooths

the priority inversion problem for mutual exclusion.

Predictability ensures estimation of the capacity.

As the priority increases while running, a task with a

large capacity will require a largest laxity.Time prediction

Soft real-time scheduling (1/2)

Soft real-time scheduling (2/2)

Algorithm wo RT tasks Capacity Predictability

First Come First

Serve
Known

A large

number
Variable No

Priority

Scheduling Un-

known
A few

Small

No
Dynamic Priority

Scheduling
Large

Highest Response

Ratio Next
Un-

known

A large

number

Variable
Yes

Shortest Job First
Short

Time prediction No

