
Real-time systems

“Real-time scheduling of independent tasks”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/realtime.html

1

Real-time scheduling of independent tasks

1. About real-time scheduling

2. Process and diagram models

3. Basic on-line algorithms for periodic tasks

3.1. Basic scheduling algorithms

3.2. Sufficient conditions

4. Hybrid task sets scheduling

4.1. Introduction to hybrid task sets scheduling

4.2. Hybrid scheduling algorithms

2

About real-time scheduling (1)

3

Operating System

Features no real-time real-time

Scheduling different

IPC and synchronization different

Resource management different

OS type full OS micro kernel

Interrupt handling slow fast

Context switch (dispatcher) slow fast

Process model basic extended

Considering the operating system level, real-time OS are

based on kernels which are modified versions of time-sharing

OS (i.e. no real-time). As a consequence, they have the same

basic features and differ in terms of:

System

Features no real-time real-time

Scalability ++ +

Maintainability + +

Fault tolerance + ++

Design for peak load + ++

Timeliness no yes

Predictability no yes

There are important properties that real-time systems

must have to support for critical applications.

(Short-term) scheduler is a system process running an algorithm to decide which of the ready processes are to be

executed (allocated a CPU). The short-term scheduler is concerned with:

Response time: total time between submission of a request and its completion

Waiting time: amount of time a process has been waiting in the ready queue

Throughput: number of processes that complete their execution per time unit

CPU utilization: to keep the CPU as busy as possible

Fairness: a process should not suffer of starvation i.e. never loaded to CPU

Etc.

Depending of the considered systems (mainframes, server computers, Personal Computers (PC), Real-Time Systems,

embedded systems, etc.) schedulers could be designed in different ways:

Scheduling

problems

R
ea

l-
ti

m
e

O
S

T
im

e-
sh

ar
in

g

O

S

About real-time scheduling (2)

algorithm’s

features

on-line off-line

preemptive no preemptive

optimal not optimal

relative deadline strict deadline

Processus

model

independents dependents

static priority dynamic priority

without resource with resource

aperiodic periodic

Type of

system

lazy processor full-time busy processor

mono-core multi-core

centralized distributed

on-line

both

both

relative deadline

both

both

both

aperiodic

lazy processor

both

centralized

on-line

both

both

both

both

both

both

both

lazy processor

both

centralized

Parameters

Real-time scheduling of independent tasks

1. About real-time scheduling

2. Process and diagram models

3. Basic on-line algorithms for periodic tasks

3.1. Basic scheduling algorithms

3.2. Sufficient conditions

4. Hybrid task sets scheduling

4.1. Introduction to hybrid task sets scheduling

4.2. Hybrid scheduling algorithms

5

Process and diagram models (1)

6

w0 s e

RT

WT WTC C

t

C(t)

t

p
ro

ce
ss

C(t)

t

C

0

Process model and context parameters

PID process number

rank rank in the ready queue

w0 wakeup time

C capacity

P priority

s start time (run as a first time)

e end time (termination)

RT = e- w0 response time

WT = RT-C waiting time

C(t) residual capacity at t

C(w0) = C, C(e)=0

T(t)=C-C(t) CPU time consumed at t

T(w0)=0, T(e) = C,

E(t)=t-w0 CPU time entitled

E(w0)=0, E(e)=RT

WT(t)=E(t)-T(t) waiting time at t

WT(w0)=0, WT(e)=WT

P
ro

ce
ss

p
ar

am
et

er
s

co
n
te

x
t

p
ar

am
et

er
s

Process and diagram models (2)

7

C

Task (i.e. process) model and context parameters

PID processus number

Rank rank in the ready queue

r0 (i.e. w0) release time (in the ready queue)

C capacity

P priority

D relative deadline

T period

P
ro

ce
ss

p
ar

am
et

er
s

E
x

te
n
d
ed

p
ar

am
et

er
s

fo
r

re
al

-t
im

e

rk = r0 + k×T the kth release

sk the kth start time

ek (or f) the kth end (finishing) time

dk = rk + D the kth absolute deadline

0 ≤C≤D≤T well formed task

Lk = ek - dk Lateness

Ek=max(0,Lk) Tardiness or exceeding time

r0 d0

D

T

r0+T

co
n
te

x
t

p
ar

am
et

er
s

r0 d0 r1 d1 r2

D

T T

t

D

r0 C D T

T1 0 2 4 5

T2 2 4 7 9

r0 r1 r2 r3 r4d0 d1 d3d2

T
1

0 4 5 9 10 14 15 19 20

T
2

r0 d1d0 r2

2 9 18

r1

11 20

Process and diagram models (3)

8

e.g. here is a random CPU diagram (i.e. virtual scheduling algorithm)

respecting scheduling constraints, absolute deadlines and releases for the

following set of tasks:

k sk ek Lk Ek

0 0 2 -2 0

1 5 7 -2 0

2 10 12 -2 0

3 15 17 -2 0

k sk ek Lk Ek

0 2 8 -1 0

1 12 18 0 0

9

Process and diagram models (4)

Task (i.e. process) model and context parameters, next …

processor utilization factor

mean processor utilization factor

processor load factor

mean processor load factor

D(t) = d-t residual relative (absolute) deadline

CH(t) = C(t)/D(t) residual load

L(0) = D-C nominal laxity

L(t) = D(t)-C(t) residual nominal laxity





n

i i

i
n

i

i
T

C
uU

11





n

i i

i
n

i

i
D

C
chCH

11

T

C
u 

D

C
ch 

   
1)()()(

,,0)(





tCHtDtC

drttCH kk

co
n
te

x
t

p
ar

am
et

er
s

C(t)

r0 d tt es

r0 d tt es

D(t)

0u

1ch

 
k

kk

dttD

drtifDtD





0)(

,)(0

0U

0CH

  ,)(tL

10

r0 C D T

T 2 4 7 9

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20

C(t) 4-3 3-2 2-1 1-1 1-1 1-0 4-4 4-3 3-2 2-1 1-1 1-1 1-0

D(t) 7-6 6-5 5-4 4-3 3-2 2-1 7-6 6-5 5-4 4-3 3-2 2-1 1-0

CH(t) 10-2 57-50 50-40 40-25 25-33 33-50 50-0 57-66 66-60 60-50 50-33 33-50 50-100 100-Na

L(t) 3-3 3-3 3-3 3-2 2-1 1-1 3-2 2-2 2-2 2-2 2-1 1-0 0-0

T

2 9 1811 205 7 8 12 15 17

L(t) is constant when the task is running

L(t) decreases when the task is waiting

Process and diagram models (5)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D(t)

C(t)

L(t)

CH(t) decreases when C(t) decreases

CH(t) grows when C(t) is constant

e.g. here is a random CPU diagram (i.e. virtual scheduling algorithm) to illustrate CH(t), L(t) vs. C(t), D(t).

0,0

0,2

0,4

0,6

0,8

1,0

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10111213141516171819

D(t)

C(t)

CH(t)

C
(t

),
 D

(t
)

C
H

(t
)

C
(t

),
 D

(t
),

 L
(t

)

Real-time scheduling of independent tasks

1. About real-time scheduling

2. Process and diagram models

3. Basic on-line algorithms for periodic tasks

3.1. Basic scheduling algorithms

3.2. Sufficient conditions

4. Hybrid task sets scheduling

4.1. Introduction to hybrid task sets scheduling

4.2. Hybrid scheduling algorithms

11

Basic scheduling algorithms

12

Algorithm Preemptive Criterion Priority
Predictable

capacity

Performance

criteria and constraints

Rate Monotonic
(RM)

yes

T

static no

easy to implement, cannot use

the full processor bandwidth,

increase the context switch
Deadline
Monotonic (DM)

D

Earliest Deadline
(ED)

D(t)

dynamic

no
hard implementation, can use the

full processor bandwidth, limit

the context switch, LL supports

the best average response time
Least Laxity
(LL)

L(t) yes

Basic scheduling algorithms

“Rate Monotonic (RM)”

13

r0 C T

T1 0 3 20

T2 0 2 5

T3 0 2 10

For a set of periodic tasks, assigning the priorities for the Rate Monotonic (RM) algorithm means that tasks with shortest

periods T (i.e. the higher request rates) get higher priorities. e.g.

According to the T values and the RM scheduling, priority order is given to

T2 (T=5), T3 (T=10) and T1 (T=20)

0 5 7 10 12 15 17 202

T
2

0 2 4 12 14 2010

T
3

0 4 20

T
1

5 7 9

Basic scheduling algorithms

“Deadline Monotonic (DM)”

14

The Deadline Monotonic (ED), or inverse deadline, algorithm assigns the priorities to tasks according to their relative deadlines

D. The task with the shortest relative deadline is assigned to the highest priority. e.g.

According to the D values and the DM scheduling, priority order is given to

T2 (D=4), T1 (D=7) and T3 (D=9)
r0 C D T

T1 0 3 7 20

T2 0 2 4 5

T3 0 2 9 10

0 2 5 7 20

T
1

0 5 7 10 12 15 17 204 9 19142

T
2

0 12 14 207 9 10 19

T
3

Basic scheduling algorithms

15

Algorithm Preemptive Criterion Priority
Predictable

capacity

Performance

criteria and constraints

Rate Monotonic
(RM)

yes

T

static no

easy to implement, cannot use

the full processor bandwidth,

increase the context switch
Deadline
Monotonic (DM)

D

Earliest Deadline
(ED)

D(t)

dynamic

no
hard implementation, can use the

full processor bandwidth, limit

the context switch, LL supports

the best average response time
Least Laxity
(LL)

L(t) yes

Basic scheduling algorithms

“Earliest Deadline (ED)”

16

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17

T1
D(t) 7-6 6-5 5-4 4-3 3-2

C(t) 3-3 3-3 3-2 2-1 1-0

T2
D(t) 4-3 3-2 4-3 3-2 2-1 4-3 3-2 4-3 3-2

C(t) 2-1 1-0 2-2 2-1 1-0 2-1 1-0 2-1 1-0

T3
D(t) 8-7 7-6 6-5 5-4 4-3 3-2 8-7 7-6 6-5

C(t) 1-1 1-1 1-1 1-1 1-1 1-0 1-1 1-1 1-0

T3 can be executed at

the first time

the task with the lowest

D(t) starts first

once C(t) at zero, we

shift to the lowest

D(t)

T2 restarts at r0+T

The Earliest Deadline (ED), or Earliest Deadline First, algorithm assigns the priorities to tasks according to their residual

relative deadline D(t). The task with the earliest absolute deadline will be executed at the highest priority. e.g.

r0 C D T

T1 0 3 7 20

T2 0 2 4 5

T3 0 1 8 10

According to the D(t) values and the ED scheduling, priority order is given to:

the scheduling will go on ….

Basic scheduling algorithms

“Least Laxity (LL)”

17

T2 restarts with T=5,

L2(t) and L3(t) are equivalent,

we consider here the task id

T1 > T2 > T3

once C2(t) at zero,

we shift to the lowest Li(t),

T1 is scheduled first

T2 of lowest laxity L(t) starts,

L2(t) is constant when T2 running,

L3(t) and L1(t) decrease since T2,T3 are waiting

L3(t) is the lowest,

T3 is scheduled

T3 ends,

T2 restarts

T2 and T3 are starting a new period

L2(t) < L3(t), T2 is scheduled first

only T2 restarts

The Least Laxity (LL) algorithm assigns the priorities to tasks according to their nominal residual laxity L(t). The task with the

smallest laxity will be executed at the highest priority. e.g.

L(r0)

T1 7-3=4

T2 4-2=2

T3 8-1=7

We compute the values L(r0) (i.e. the nominal laxity). According to the

L(t) values and the LL scheduling, priority order is given to:

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18

T1
L(t) 4-3 3-2 2-2 2-2 2-2

C(t) 3-3 3-3 3-2 2-1 1-0

T2
L(t) 2-2 2-2 2-2 2-1 1-1 2-2 2-2 2-2 2-2

C(t) 2-1 1-0 2-1 1-1 1-0 2-1 1-0 2-1 1-0

T3
L(t) 7-6 6-5 5-4 4-3 3-2 2-1 1-1 7-6 6-5 5-5

C(t) 1-1 1-1 1-1 1-1 1-1 1-1 1-0 1-1 1-1 1-0

r0 C D T

T1 0 3 7 20

T2 0 2 4 5

T3 0 1 8 10

Real-time scheduling of independent tasks

1. About real-time scheduling

2. Process and diagram models

3. Basic on-line algorithms for periodic tasks

3.1. Basic scheduling algorithms

3.2. Sufficient conditions

4. Hybrid task sets scheduling

4.1. Introduction to hybrid task sets scheduling

4.2. Hybrid scheduling algorithms

18

Sufficient conditions

“Introduction”

19

)12(1

1




n
n

i i

i n
T

C

1
1





n

i i

i

D

C

)12(1

1




n
n

i i

i n
D

C

A set of periodic task is schedulable with the RM, DM, ED and LL algorithms if they respect the following sufficient

conditions. A sufficient condition is one that, if satisfied, assures the statement's truth. (i.e. a necessary condition of a statement

must be satisfied for the statement to be true).

Rate Monotonic

Deadline Monotonic

Earliest Deadline

Least Laxity

i.e. mean utilization processor factor

lowest to an upper bound factor n(21/n-1)

i.e. mean load factor lowest to an upper

bound factor, either n(21/n-1) either 1

C D T

T1 1 5 5

T2 2 4 7

T3 2 7 8

  7798,0123)12(311 nn

7357,0
8

2

7

2

5

1

1




n

i i

i

T

C

9857,0
7

2

4

2

5

1

1




n

i i

i

D

C

can be scheduled with Rate Monotonic

can’t be scheduled with Deadline Monotonic

can be scheduled with Earliest Deadline and

Least Laxity

7798,07357,0 

7798,09857,0 

19857,0 

e.g.

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (1)

20

Equation Comments

Utilization factor (U)

Given a set of n periodic tasks, the utilization factor U is

the fraction of processor time spent in the execution of

the task set.

Upper Bound (U
UB

)

Let UUB(,A) be the upper bound of the processor

utilization factor:

• for a task set ,

• under a given algorithm A,

when U = UUB(,A), the set  is said to fully utilize the

processor.

Least Upper Bound (U
LUB

)

For a given algorithm A, the least upper bound ULUB of

the processor utilization factor is the minimum of the

utilization factors over all task sets  that fully utilize

the processor.

 AUU UB ,





n

i i

i

T

C
U

1

 AUAU UBLUB ,min)(



UUB

ULUB

U

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (2)

21

ULUB defines an important characteristic of a scheduling algorithm because it allows to easily verify the

schedulability of a task set:

• Any task set whose processor utilization factor U is below ULUB is schedulable by A.

• On the other hand, utilization factor U above ULUB can be achieved only if the periods of the

tasks are suitably related.

Equation Comments

Utilization factor (U)

Given a set of n periodic tasks, the utilization factor U is

the fraction of processor time spent in the execution of

the task set.

Upper Bound (U
UB

)

Let UUB(,A) be the upper bound of the processor

utilization factor:

• for a task set ,

• under a given algorithm A,

when U = UUB(,A), the set  is said to fully utilize the

processor.

Least Upper Bound (U
LUB

)

For a given algorithm A, the least upper bound ULUB of

the processor utilization factor is the minimum of the

utilization factors over all task sets  that fully utilize

the processor.

 AUU UB ,





n

i i

i

T

C
U

1

 AUAU UBLUB ,min)(

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (3)

22

e.g. Consider a set of two periodic tasks T1, T2 with T1 < T2, in order to compare ULUB with the RM algorithm, we have:

• To assign priorities to tasks according to RM, so that T1 is the task with the shortest period.

• To compute the Upper Bound UUB for the set of setting task’s computation times to fully utilize the processor.

• To minimize the Upper Bound UUB, to get the ULUB, with respect to all the other task parameters.

To do this, we adjust the computation time of T2 to fully utilize the processor, two cases must be considered.

Case 1: The computation time is short enough that all the requests of T1 within the critical zone of T2 are completed before the

second request of T2.

Let T1, T2, C1, C2 be the periods and

capacities of tasks T1, T2 respectively.

Let F be the number of periods of T1

entirely contained in T2.

That is,

In this situation, the largest possible value

for C2 is







1

2

T
T

F

)1(122  FCTC

121 FTTC 

T1

T2

T1 FT1 T2
T1

FT1

T2

T2-FT1

C1(F+1)

T2- C1(F+1)

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (4)

T1

T2

T1 FT1 T2

Considering the largest possible value for

C2 , the corresponding Upper Bound UUB is

then,

Since the quantity in brackets

is negative, UUB is monotonically

decreasing in C1, and being

the minimum of UUB then ULUB occurs for
















)1(1

)1(

1

2

2

1

2

12

1

1

2

2

1

1

F
T

T

T

C
U

T

FCT

T

C
U

T

C

T

C
U

UB

UB

UB









)1(

1

2 F
T

T

121 FTTC 
121 FTTC 

1

UUB

C1

ULUB

T2-FT1

e.g. Consider a set of two periodic tasks T1, T2 with T1 < T2, in order to compare ULUB with the RM algorithm, we have:

• To assign priorities to tasks according to RM, so that T1 is the task with the shortest period.

• To compute the Upper Bound UUB for the set of setting task’s computation times to fully utilize the processor.

• To minimize the Upper Bound UUB, to get the ULUB, with respect to all the other task parameters.

To do this, we adjust the computation time of T2 to fully utilize the processor, two cases must be considered.

Case 1: The computation time is short enough that all the requests of T1 within the critical zone of T2 are completed before the

second request of T2.

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (5)

24

Let T1, T2, C1, C2 be the periods and

capacities of tasks T1, T2 respectively.

Let F be the number of periods of T1

entirely contained in T2.

That is,

In this situation, the largest possible value

for C2 is
FCTC)(112 

121 FTTC 







1

2

T
T

F

Case 2: The execution of the last request of T1 in the critical time zone of T2 overlaps the second request of T2.

T1 FT1 T2

T1

T2

e.g. Consider a set of two periodic tasks T1, T2 with T1 < T2, in order to compare ULUB with the RM algorithm, we have:

• To assign priorities to tasks according to RM, so that T1 is the task with the shortest period.

• To compute the Upper Bound UUB for the set of setting task’s computation times to fully utilize the processor.

• To minimize the Upper Bound UUB, to get the ULUB, with respect to all the other task parameters.

To do this, we adjust the computation time of T2 to fully utilize the processor, two cases must be considered.

T1

FT1

T2

T2-FT1

(T1- C1)F

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (6)

T1 FT1 T2

T1

T2

Considering the largest possible value for

C2 , the corresponding Upper Bound UUB is

then,

Since the quantity in brackets

is positive, UUB is monotonically increasing

in C1, and being

the minimum of UUB then ULUB occurs for
















F
T

T

T

C
F

T

T
U

T

FCT

T

C
U

T

C

T

C
U

UB

UB

UB

1

2

2

1

2

1

2

11

1

1

2

2

1

1

)(









 F

T

T

1

2

121 FTTC 
121 FTTC 

1

UUB

C1
ULUB

T2-FT1

e.g. Consider a set of two periodic tasks T1, T2 with T1 < T2, in order to compare ULUB with the RM algorithm, we have:

• To assign priorities to tasks according to RM, so that T1 is the task with the shortest period.

• To compute the Upper Bound UUB for the set of setting task’s computation times to fully utilize the processor.

• To minimize the Upper Bound UUB, to get the ULUB, with respect to all the other task parameters.

To do this, we adjust the computation time of T2 to fully utilize the processor, two cases must be considered.

Case 2: The execution of the last request of T1 in the critical time zone of T2 overlaps the second request of T2.

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (7)

26

In both cases 1 and 2:

121 FTTC the minimum of UUB then ULUB occurs for

Considering the minimum value C1 within

the Upper Bound UUB calculation of case 2

we have

To simplify the notation, let














































2

1

2

2

1

1

2

2

12

2

1

1

2

2

1

2

1

F
T

T
F

T

T
U

F
T

T

T

FTT
F

T

T
F

T

T

T

C
F

T

T
U

UB

UB









 F

T

T
G

1

2

       

     
GF

GG

GF

GGGF
U

GF

GF

FF
T

T

GF

T
T

GF
GF

T

T
U

UB

UB



















 







1
1

2

2

1

2

2

1

2

2
2

2

1

e.g. Consider a set of two periodic tasks T1, T2 with T1 < T2, in order to compare ULUB with the RM algorithm, we have:

• To assign priorities to tasks according to RM, so that T1 is the task with the shortest period.

• To compute the Upper Bound UUB for the set of setting task’s computation times to fully utilize the processor.

• To minimize the Upper Bound UUB, to get the ULUB, with respect to all the other task parameters.

To do this, we adjust the computation time of T2 to fully utilize the processor, two cases must be considered.

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (8)

27

Since

with

the term

is non negative, hence UUB

is monotonically increasing in F, and being

the minimum value of F of UUB then ULUB

occurs for

 
GF

GG
UUB 




1
1

10 G

 GG 1

1F









 F

T

T
G

1

2






1

2

T
T

F

1

UUB

F
ULUB

1

e.g. Consider a set of two periodic tasks T1, T2 with T1 < T2, in order to compare ULUB with the RM algorithm, we have:

• To assign priorities to tasks according to RM, so that T1 is the task with the shortest period.

• To compute the Upper Bound UUB for the set of setting task’s computation times to fully utilize the processor.

• To minimize the Upper Bound UUB, to get the ULUB, with respect to all the other task parameters.

To do this, we adjust the computation time of T2 to fully utilize the processor, two cases must be considered.

In both cases 1 and 2:

Sufficient conditions

“Calculation of the Least Upper Bound ULUB” (9)

28

Minimizing U over G with

we have

the first derivative is

we can fix

for

with

the negative solution is discarded and

 
GF

GF
UUB 




2

 
G

G
UUB 




1

1 2

)1(

12

)1(

)1()1(2
2

2

2

2

G

GG

G

GGG

dG

dUUB










0
dG

dUUB

0122  GG

21

21

2

1





G

G

 
    83.0122

2

224

121

121
)(

2

2 










 

 GUU UBLUB

e.g. Consider a set of two periodic tasks T1, T2 with T1 < T2, in order to compare ULUB with the RM algorithm, we have:

• To assign priorities to tasks according to RM, so that T1 is the task with the shortest period.

• To compute the Upper Bound UUB for the set of setting task’s computation times to fully utilize the processor.

• To minimize the Upper Bound UUB, to get the ULUB, with respect to all the other task parameters.

To do this, we adjust the computation time of T2 to fully utilize the processor, two cases must be considered.

In both cases 1 and 2:

Real-time scheduling of independent tasks

1. About real-time scheduling

2. Process and diagram models

3. Basic on-line algorithms for periodic tasks

3.1. Basic scheduling algorithms

3.2. Sufficient conditions

4. Hybrid task sets scheduling

4.1. Introduction to hybrid task sets scheduling

4.2. Hybrid scheduling algorithms

29

Introduction to hybrid task sets scheduling (1)

30

Use Constraint

periodic regular event

in the system

strict deadline

aperiodic irregular event

in the system

could be strict or

relative

Basic on-line algorithms deal with homogeneous set of tasks where all are

periodic. However, some real-time applications may require aperiodic tasks.

Hybrid task set scheduling deals with the both type of

task. Such a scheduling is based on hybrid scheduler,

composed of a real-time scheduler combined with a time-

sharing one. Shifting between the two levels is controlled

according to some go-up and go-down criteria.

Real-time

scheduler

Time-sharing

scheduler

(1) Go down: the real-

time level shifts to the

time-sharing one

regarding a criterion .

(2) Go up: the time-

sharing level shifts to

the real-time one

regarding a criterion .

Two main approaches exist to design hybrid schedulers:

(1) the background/joint processing exploits the free idle time of

the processor to schedule the aperiodic tasks, or to schedule

jointly the aperiodic and the periodic tasks.

(2) the server based processing implements a virtual periodic task

(i.e. the server) in charge to schedule the aperiodic tasks.

31

Introduction to hybrid task sets scheduling (2)

Algorithms
scheduler

type

Schedulers periodic aperiodic aperiodic periodic Predictable

capacity

Performance

criteria and constraintsperiodic aperiodic preemptive criterion preemptive criterion

Background

background RM/DM FCFS

no idle time0

yes

idle time=0 no

worst response times for

aperiodic requests, minor

issues for implementation

Slack Stealing yes L(t)>0 L(t)=0 yes

optimum response times for

aperiodic requests at a high

aperiodic load, hard

implementation issues

Pooling

Fixed-

priority

server

RM/DM FCFS yes

poling at the

start time

yes
limit of

capacities
no

little improvement compared

to the background processing

Deferrable
Server

polling at

any time

a better average response time

for aperiodic requests, mainly

with SS
Sporadic
Sever

Priority
Exchange

optimum response times for

short aperiodic requests

Real-time scheduling of independent tasks

1. About real-time scheduling

2. Process and diagram models

3. Basic on-line algorithms for periodic tasks

3.1. Basic scheduling algorithms

3.2. Sufficient conditions

4. Hybrid task sets scheduling

4.1. Introduction to hybrid task sets scheduling

4.2. Hybrid scheduling algorithms

32

33

Algorithms
scheduler

type

Schedulers periodic aperiodic aperiodic periodic Predictable

capacity

Performance

criteria and constraintsperiodic aperiodic preemptive criterion preemptive criterion

Background

background RM/DM FCFS

no idle time0

yes

idle time=0 no

worst response times for

aperiodic requests, minor

issues for implementation

Slack Stealing yes L(t)>0 L(t)=0 yes

optimum response times for

aperiodic requests at a high

aperiodic load, hard

implementation issues

Pooling

Fixed-

priority

server

RM/DM FCFS yes

poling at the

start time

yes
limit of

capacities
no

little improvement compared

to the background processing

Deferrable
Server

polling at

any time

a better average response time

for aperiodic requests, mainly

with SS
Sporadic
Sever

Priority
Exchange

optimum response times for

short aperiodic requests

Hybrid task set scheduling

“Background scheduling”

34

Aperiodic tasks are scheduled on the processor idle time once all the

periodic tasks end. Periodic and aperiodic tasks are scheduled

according to RM and FCFS strategies, respectively. e.g.

Rate

Monotonic

FCFS

(1)(2)

(1) If they are no periodic task ready to be executed.

(2) Whenever a periodic task restarts.

RM scheduling between

Tp1, Tp2

the first idle time, Ta1 is ready

and can be scheduled

Ta2, Ta3 blocked while

periodic tasks are running

the idle time is over when

Tp1 restarts
when Tp1 ends, a new

idle time slot appears, but

too large comparing to

the C(t) of Ta1

the scheduling will go on …

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19

Tp1 C(t) 2-1 1-0 2-1 1-0 2-1 1-0 2-1 1-0

Tp2 C(t) 2-2 2-2 2-1 1-0 2-2 2-2 2-1 1-0

Idle time

Ta1 C(t) 2-1 1-1 1-1 1-0

Ta2 C(t) 1-1 1-1 1-1 1-1 1-0

Ta3 C(t) 2-2 2-2 2-2 2-2 2-2 2-2 2-1 1-0

r0 C T

Tp1 0 2 5

Tp2 0 2 10

Ta1 4 2 Na

Ta2 10 1 Na

Ta3 11 2 Na

Hybrid task set scheduling

“Slack stealing”

35

Rate

Monotonic

FCFS

(1)(2)

(1) If the residual nominal laxities Li(t) of periodic

tasks are up to zero.

(2) Whenever a residual nominal laxity Li(t) of a

periodic task goes down to zero.

Each time an aperiodic task enters in the system, time for servicing this

aperiodic task is made by “stealing” processing time from the periodic

tasks looking for laxity without causing a deadline missing. e.g.

RM scheduling between

Tp1, Tp2

r0 C D=T

Tp1 0 2 5

Tp2 0 2 10

Ta1 4 2 Na

Ta2 10 1 Na

Ta3 11 3 Na

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18

Tp1

C(t) 2-1 1-0 2-2 2-1 1-0 2-2 2-2 2-2 2-1 1-0 2-2 2-1 1-0

L(t) 3-3 3-3 3-2 2-2 2-2 3-2 2-1 1-0 0-0 0-0 3-2 2-2 2-2

Tp2

C(t) 2-2 2-2 2-1 1-0 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2

L(t) 8-7 7-6 6-6 6-6 8-7 7-6 6-5 5-4 4-3 3-2 2-1 1-0

Ta1 C(t) 2-1 1-0

Ta2 C(t) 1-0

Ta3 C(t) 3-2 2-1 1-1 1-1 1-0

Ta1 starts at the first idle time

Tp1 restarts with L1(t)>0,

Ta1 continues

when Ta1 ends,

Tp1 can be scheduled

Tp1, Tp2 blocked while the

aperiodic tasks are running

when L1(t)=0 for Tp1,

Tp1 preempts the aperiodic

tasks

the scheduling

will go on …

36

Algorithms
scheduler

type

Schedulers periodic aperiodic aperiodic periodic Predictable

capacity

Performance

criteria and constraintsperiodic aperiodic preemptive criterion preemptive criterion

Background

background RM/DM FCFS

no idle time0

yes

idle time=0 no

worst response times for

aperiodic requests, minor

issues for implementation

Slack Stealing yes L(t)>0 L(t)=0 yes

optimum response times for

aperiodic requests at a high

aperiodic load, hard

implementation issues

Pooling

Fixed-

priority

server

RM/DM FCFS yes

poling at the

start time

yes
limit of

capacities
no

little improvement compared

to the background processing

Deferrable
Server

polling at

any time

a better average response time

for aperiodic requests, mainly

with SS
Sporadic
Sever

Priority
Exchange

optimum response times for

short aperiodic requests

Hybrid task set scheduling

“Pooling Server (PS)”

37

Rate

Monotonic

FCFS

(1)(2)

(1) Whenever the server starts its period with

aperiodic task(s) waiting for him.

(2) If the server ends its capacity, or none aperiodic

task is waiting.

The Pooling Server (PS) becomes active at regular intervals equal to

its period and serves the aperiodic tasks within its capacity. If none

aperiodic task is waiting, the polling server suspends itself until the

beginning of its next period, and releases time to periodic tasks. e.g.

r0 C T

Tps 0 2 5

Tp1 0 3 20

Tp2 0 2 10

Ta1 4 2 Na

Ta2 10 1 Na

Ta3 11 2 Na

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19

Tps 2-0 2-1 1-0 2-1 1-0 2-0

Tp2 2-1 1-0 2-2 2-2 2-1 1-0

Tp1 3-2 2-1 1-0

Ta1 2-2 2-1 1-0

Ta2 1-0

Ta3 2-1 1-1 1-1 1-1 1-0

no aperiodic requests are

pending, the server Tps

suspends itself

the server capacity is not

preserved for aperiodic execution,

Ta1 must wait until the beginning

of the next pooling period

Tps restarts,

Ta1 is scheduled

Tps is active and serves

any pending requests

within the limit of its

capacity

the scheduling will go on …

Hybrid task set scheduling

“Deferrable Server (DS)”

38

Rate

Monotonic

FCFS

(1)(2)

(1) Whenever the server can scheduled aperiodic tasks

with respect to its priority and remaining capacity.

(2) If the server ends its capacity, or none aperiodic

task is waiting.

The Deferrable Server (DS) looks like a polling server. However, it

preserves its capacity if no request are pending upon the invocation of

the server. The capacity is maintained until the end of the period. This

improves the average response time of the aperiodic requests. e.g.

r0 C T

Tps 0 2 5

Tp1 0 1 4

Tp2 0 2 6

Ta1 2 2 Na

Ta2 9 1 Na

Ta3 13 2 Na

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18

Tp1 1-0 1-0 1-0 1-0 1-0

Tps 2-2 2-2 2-1 1-0 2-2 2-2 2-2 2-2 2-1 2-2 2-2 2-2 2-1 1-0 2-2 2-2 2-2

Tp2 2-2 2-1 1-1 1-1 1-1 1-0 2-1 1-0 2-2 2-2 2-2 2-1 1-0

Ta1 2-1 1-0

Ta2 1-0

Ta3 2-1 1-0

capacity of the server is

maintained while none

aperiodic request is here

Ta1 is in the ready queue, Tps with a

higher priority preempts Tp2 in respect

with the pooling service

at any new period,

the server Tps

reloads its capacity

as Ta1, Tps with a higher

priority preempts Tp2 to

schedule Ta2 in respect

with the pooling service

Ta2 is scheduled

in respect with the

pooling service

the scheduling

will go on …

Hybrid task set scheduling

“Sporadic Server (SS)”

39

Rate

Monotonic

FCFS

(1)(2)

(1) Whenever the server starts its period with

aperiodic task(s) waiting for him.

(2) If the server ends its capacity, or none aperiodic

task is waiting.

The Sporadic Server (SS) preserves its capacity until an aperiodic task

occurs. When it processes a set of task as first time (at t0) it must wait a

time equals to Ts (its period) to replenish its capacity. A count down

R(t) can be computed like with

e.g.

tTttR s  0)(

r0 C T

Tps 0 2 5

Tp1 0 3 20

Tp2 0 2 10

Ta1 4 2 Na

Ta2 10 1 Na

Ta3 11 2 Na

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18

Tps

C(t) 2-2 2-2 2-2 2-2 2-1 1-0 0-0 0-0 0-0 2-2 2-1 1-0 0-0 0-0 0-0 2-1 1-1 1-1

R(t)     5-4 4-3 3-2 2-1 1-0  5-4 4-3 3-2 2-1 1-0 5-4 4-3 3-2

Tp2 2-1 1-0 2-2 2-2 2-1 1-0

Tp1 3-2 2-1 1-1 1-1 1-0

Ta1 2-1 1-0

Ta2 1-0

Ta3 2-1 1-1 1-1 1-1 1-0

capacity of the server is

maintained while none

aperiodic request is here

Ta1 is scheduled in respect with

the pooling service, the

replenishment time is set to

sTtR )(with tt 0

Tps is active and serves any

pending requests within the

limit of its capacity

at

we have ,

the replenishment amount is set to the

capacity consumed within the interval

sTtt  0

0)(tR

 sTtt 00 ,

the scheduling will go on …

0tt 

40

Algorithms
scheduler

type

Schedulers periodic aperiodic aperiodic periodic Predictable

capacity

Performance

criteria and constraintsperiodic aperiodic preemptive criterion preemptive criterion

Background

background RM/DM FCFS

no idle time0

yes

idle time=0 no

worst response times for

aperiodic requests, minor

issues for implementation

Slack Stealing yes L(t)>0 L(t)=0 yes

optimum response times for

aperiodic requests at a high

aperiodic load, hard

implementation issues

Pooling

Fixed-

priority

server

RM/DM FCFS yes

poling at the

start time

yes
limit of

capacities
no

little improvement compared

to the background processing

Deferrable
Server

polling at

any time

a better average response time

for aperiodic requests, mainly

with SS
Sporadic
Sever

Priority
Exchange

optimum response times for

short aperiodic requests

Hybrid task set scheduling

“Priority Exchange (PE)” (1)

S gives Ps to T for

a duration of Cs

As T advances its execution, T gives

capacity at priority PT for a duration Cs to S.

Thus, the S’s capacity is not lost but

preserved at a lowest priority.

t0, server at release k, no

aperiodic task is here

Server S of

priority Ps and

capacity Cs

S is blocked for

a duration Cs

t2, an aperiodic task is here, the

capacity of priority level PT is used
t1, priority

exchange ends

S preempts T

and runs with a

priority PT

A task T of

priority PT with

PT < Ps
T advances its

execution and runs

with a priority Ps

T continues its

execution with the

priority PT

T is blocked for

a duration Cs

This execution block is swapped

Like the Deferrable server (DS), Priority Exchange (PE) algorithm uses a

periodic task for servicing aperiodic requests. However, it differs from

DS in the manner in which the capacity is preserved. PE preserves its

capacity by exchanging it for the execution time of a lower priority task.

Rate

Monotonic

FCFS

(1)(2)

(1) Whenever the server can use some (accumulated

or not) capacities.

(2) If no server capacities are available, or if a task

with higher priority occurs.

Hybrid task set scheduling

“Priority Exchange (PE)” (2)

42

Rate

Monotonic

FCFS

(1)(2)

(1) Whenever the server can use some (accumulated

or not) capacities.

(2) If none server capacity is available, or if a task

with higher priority occurs.
The Priority Exchange (PE) can be defined as follows:

•Like the pooling and the deferrable servers, the PE algorithm uses a periodic task (usually at a high priority) for

servicing aperiodic requests.

•At the beginning of each server period, the capacity is replenished at its full value.

•Like the deferrable server, if aperiodic requests are pending and the server is the ready task with the highest

priority, then the requests are serviced using the available capacity.

•If no aperiodic task exists, the high priority server exchanges its priority with a lower priority periodic task (the

next priority) for a duration of Cs, where Cs is the remaining computation time of the server. Thus, the priority task

advances its execution, and the server capacity is not lost but preserved at a lowest priority.

• If no periodic and aperiodic requests arrive to use the capacity, priority exchange continues with other periodic

tasks until either the capacity is used for aperiodic services or either it is degraded to the priority level of

background processing.

•Otherwise, if aperiodic requests are pending the capacity accumulated at lowest priority levels are used to execute

the aperiodic requests from highest to lowest priorities. When the server runs at a lowest priority level, it preempts

the periodic tasks at the same level of priority.

Hybrid task set scheduling

“Priority Exchange (PE)” (3)

43

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20

Tps

C0(t) 1-0 1-0 1-0 1-0

C1(t) 0-1 1 1 1 1-0 0-1 1 1-0

C2(t) 0-1 1 1 1 1 1 1 1 1 1 1 1-2 2 2 2-1 1-0

P(t) 1 0 0 0 2 0 0 0 0 0 1 0 1 0 0 2 0 0 0 0

Tp1

C(t) 4-3 3-2 2-1 1-0 4-3 3-2 2 2-1 1-0

P(t) 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1

Tp2

C(t) 8 8 8 8 8-7 7 7-6 6-5 5-4 4-3 3 3 3 3 3 3-2 2-1 1-0

P(t) 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 0 2 2

Ta1
C(t) 1-0

Ta2
C(t) 1-0

•a priority exchange occurs

between Tps and Tp1

•Tps accumulates a capacity

of value Cs at the priority

level of the Tp1

•Tps exchanges its priority

with Tp1 for a duration of Cs

•no aperiodic request arrive,

priority exchange shifts to Tp2

•Tps shifts the accumulated

capacity from Tp1 to Tp2

•Tps exchanges its priority with

Tp2 for a duration of Cs

an aperiodic request arrives while

the server is restarting, Tps uses its

capacity Cs to process Ta1

Tps is restarting while none

aperiodic request is here, a priority

exchange occurs with Tp1

Ta2 is in the queue while the

capacity Cs is null, Tps uses its

highest accumulated capacity of

Tp1 to schedule Ta1 and shifts its

priority, at lowest priority level

Tps preempts Tp1 of same priority

Tps is restarting while no aperiodic

request is here, a priority exchange

occurs with Tp2

no periodic and aperiodic request

arrives, the accumulated capacity

of Tp2 it is degraded to the

priority level of background

r0 C T P

Tps 0 1 5 0

Tp1 0 4 10 1

Tp2 0 8 20 2

Ta1 5 1 Na Na

Ta2 12 1 Na Na

e.g. Tps accumulates capacities

from Tp1, Tp2:

•the capacity of Tp1 is used to

process the latest aperiodic

release Ta2.

•the capacity of Tp2 is degraded

to the priority level of

background.

after Cs, Tps recovers

its nominal priority

Hybrid task set scheduling

“Priority Exchange (PE)” (4)

44

Tps

accumulates a

capacity from

Tp1

the accumulated

capacity shifts from

the Tp1 to Tp2 level

Tps accumulates one

more time a capacity

from Tp2

Tps accumulates a

capacity from Tp1

Ta1 is in the queue while the capacity

of Tps is null, Tps uses its accumulated

capacity of highest priority Tp1 to

schedule Ta1 and preserves its priority

at the Tp1 level

the accumulated capacity Tp1 of Tps is

empty, Tps shifts its priority to Tp2 but

it is blocked while Tp1 is here

Tp1 resumes, Tps can continue

at the priority level of Tp2

r0 C T P

Tps 0 1 5 0

Tp1 0 2 10 1

Tp2 0 12 20 2

Ta1 11 2 Na Na

Ta2 18 1 Na Na

t 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20

Tps

C0(t) 1-0 1-0 1-0 1-0

C1(t) 0-1 1 1-0 0-1 1-0

C2(t) 0-1 1 1 1-2 2 2 2 2 2 2 2 2-1 1 1-2 2 2 2-1 1-0

P(t) 1 0 2 0 0 2 0 0 0 0 1 1 2 2 0 2 0 0 2 0

Tp1

C(t) 2-1 1-0 2-1 1 1-0

P(t) 0 1 1 1 1 1 1 1 1 1 0 1

Tp2

C(t) 12 12 12-11 11-10 10-9 9-8 8-7 7-6 6-5 5-4 4 4 4 4 4-3 3-2 2-1 1-0

P(t) 2 2 0 2 2 0 2 2 2 2 2 2 2 2 2 0 2 2

Ta1
C(t) 2-1 1 1-0

Ta2
C(t) 1-0

after Cs, Tps

recovers its

nominal priority

the scheduling will go on …

e.g. Tps accumulates capacities

from Tp1, Tp2:

•the both capacities of Tp1, Tp2

are used to process the first

aperiodic release Ta1.

•during the schedule of Ta1 , at

the lowest priority level Tp2,

Tps is preempted by Tp1.

