
Real-time systems

“Foundation in synchronization

and resource management”

Mathieu Delalandre

University of Tours, Tours city, France

mathieu.delalandre@univ-tours.fr

Lecture available at http://mathieu.delalandre.free.fr/teachings/realtime.html

1

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

2

Introduction to synchronization (1)

3

Cooperating/independent process: a process is cooperating if it can affect (or be affected) by the other

processes. Clearly, any process than shares data is a cooperating process. Any process that does not share

data with any other process is independent.

Inter-process communication (IPC) refers to the set of techniques for the exchange of data among

different processes. There are several reasons for providing an environment allowing IPC.

 Information sharing: several processes could be interested in the same piece of information, we

must provide a framework to allow a concurrent access to this information.

Modularity: we may to construct the system in a modular fashion, dividing a function of the

system into separate blocks.

Convenience: even an individual user may work on many related tasks at the same time e.g.

editing, printing and compiling a program.

Speedup: with parallelism, if we are interested to run faster a particular task, we must break it

into sub-tasks.

Introduction to synchronization (2)

4

Process synchronization: refers to the idea that multiple processes join up to reach an agreement or to commit a

sequence of action. Clearly, any cooperating process is concerned with synchronization. We can classify the

synchronization on the basis of the degree to which the processes are aware of each other:

Processes unaware of each other: are independent and not intended to work together. Although the

processes are not working together, the OS must deal with the concurrency and mutual exclusion problems.

Processes indirectly aware of each other: are not necessarily aware of each other by their respective ids,

but share access to objects such as an I/O buffer. Such processes exhibit coordination in sharing objects.

Processes directly aware of each other: cooperate and are able to communicate with each other by process

ids. These processes are designed to work jointly in some activity. Again, such processes exhibit coordination.

Degree of awareness Synchronization

Processes unaware of each other Mutual exclusion

Processes indirectly aware of each other Coordination by sharing

Processes directly aware of each other Coordination by communication

Process

synchronization

Mutual

exclusion
Coordination

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

5

Principles of concurrency (1)

6

Critical section is a piece of code that accesses a shared resource (a data

structure or a device) that must not be concurrently accessed by other

concurrent/cooperating processes.

Mutual exclusion: two events are mutually exclusive if they cannot

occur at the same time. Mutual exclusion algorithms are used to avoid the

simultaneous use of a resource by the piece of code of the critical section.

Process synchronization: refers to the idea that multiple processes join

up to reach an agreement or to commit a sequence of action.

Inter-process communication (IPC) is a set of techniques for the

exchange of data among multiple processes or threads.

Race conditions arise when separate processes of execution depend on

some shared states. Operations upon shared states could result in harmful

collisions between these processes.

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

Principles of concurrency (2)

7

slot file name

1 

2 

3 lesson.pptx

4 paperid256.rtf

5 

6 

7 

(S)pooling directory

(P)rocess

in = 4 out = 3

Printer

(D)aemon

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(P)rocess

Printer

(D)aemon

(P)rocess

Spooling

Race conditions arise when separate processes of execution depend on some shared states.

Operations upon shared states could result in harmful collisions between these processes.

S the spooling directory

in current writing index of S

out current reading index of S

P a process

D the printer daemon process

X.a A data a part of a process X

N
o
ta

ti
o
n

P

loop

(1) P.in=in

(2) S[P.in] = P.name

(3) in = P.in+1

D

loop

(4) D.out=out

(5) D.name=S[D.out]

(6) out = D.out+1

(7) print

(1) to (7) are atomic instructions

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

Principles of concurrency (3)

8

in A.in B.in S[7] out D.out D.name

7    7 6 X.name

A1 7 7   7 6 X.name

B1,2,3 8 7 7 B.name 7 6 X.name

A2,3 8 7 7 A.name 7 6 X.name

D4,5,6,7 8 7 7 A.name 8 7 A.name

Notation

initial states

A reads “in”

B reads “in”, writes in “S” and increments “in”

A writes in “S”, and increments “in”, the harmful collision is here

D prints the file of A, the B one will be never processed

Px,y process P executes the instructions x,y

S the spooling directory

in current writing index of S

out current reading index of S

P a process

D the printer daemon process

X.a A data a part of a process X

Race conditions arise when separate processes of execution depend on some shared states.

Operations upon shared states could result in harmful collisions between these processes.

e.g. spooling with 2 processes A, B and a Daemon D

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

P

loop

(1) P.in=in

(2) S[P.in] = P.name

(3) in = P.in+1

D

loop

(4) D.out=out

(5) D.name=S[D.out]

(6) out = D.out+1

(7) print

Principles of concurrency (4)

9

ProcessA

Process

B

t1 t2 t3 t4

A enters in the

critical section

B tries to access to the

critical section

A exits from

critical section

B accesses the

critical section

B exits from the

critical section

B is

blocked

Critical section is a piece of code that accesses a shared resource (a data structure or a device) that

must not be concurrently accessed by other concurrent/cooperating processes. A critical section will

usually terminate within a fixed time, a process will have to wait a fixed time to enter it.

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

Principles of concurrency (5)

10

Mutual exclusion: two events are mutually exclusive if they cannot occur at the same

time. Mutual exclusion algorithms are used to avoid the simultaneous use of a resource by

the piece of code of the critical section.

Process synchronization: refers to the idea that multiple processes join up to reach an

agreement or to commit a sequence of action.

Race

conditions

IPC

raises

Critical

section

defines

Mutual

exclusion

solved by

Synchroni-

zation

Considered as

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

11

Synchronization for mutual exclusion

12

Methods Approach Type Process Ordering Starvation

disabling the interrupts disabling the interrupts
hardware 2

yes no

Swap, TSL, CAS
busy-waiting no possible

Perterson’s algorithm
software

2

binary semaphore / mutex sleep and wakeup 2 yes no

Synchronization methods for mutual exclusion

“Disabling the interrupts ”

13

A B A
Process

t

B A

A B A

Disable the interrupts

can’t be B

Process

t

B

Disable the interrupts

can’t be A

Correspond to the areas of critical sections

Disabling the interrupts: within an uniprocessor system, processes cannot have an overlapped execution. To guarantee a mutual

exclusion, it is sufficient to prevent a process from being interrupted. This capability can be provided in the form of primitives

defined in the OS kernel, for disabling and enabling the interrupts when entering in a critical section. e.g.

Scheduling two processes A, B

accessing a critical section with

interruption

The price of this approach is high:

the scheduling performance could

be noticeably degraded,

this approach cannot work in a

multi-processor architecture.Access a critical section

disable the interrupts

Release a critical section

enable the interrupts

Scheduling two processes A, B

accessing a critical section while

disabling the interrupts

B

Synchronization for mutual exclusion

14

Methods Approach Type Process Ordering Starvation

disabling the interrupts disabling the interrupts
hardware 2

yes no

Swap, TSL, CAS
busy-waiting no possible

Perterson’s algorithm
software

2

binary semaphore / mutex sleep and wakeup 2 yes no

Synchronization methods for mutual exclusion

“Swap, TSL and CAS”

15

RX LOCK

Na $0

TSL RX, LOCK $0 $1

TSL RX,LOCK LOCKRX

(1) copy

(2) set to 1 if lock at 0

RX LOCK

Na $1

TSL RX, LOCK $1 $1

atomic

instruction

B accesses the section

A is blocked

B releases the section

A can access

C is blocked

A releases the section

C can access

C releases the section

TSL is an alternative instruction to Swap, achieving in one-shot

a if and a set instruction, atomically.

Access to the section

RX set to 0

LOCK moves to 1

Busy-waiting

RX set to 1

Nothing happens on LOCK

(4) Release the critical section with P

(5) set LOCK at 0

R
eq

u
es

t
R

el
ea

se

Run in the critical section with P

do something ….

(1) Request the critical section with P

(2) do TSL RX, LOCK

(3) while RX equals 1

e.g. three processes A, B and C considering the scheduling

RXA RXB RXC LOCK Section

   0 

B1,2  0  1 B

A1,2,3,2,3,2 1 0  1 B

B3,4,5 1 0  0 

A3,2 0 0  1 A

C1,2,3,2,3 0 0 1 1 A

A3,4,5 0 0 1 0 

C2,3 0 0 0 1 C

C4,5 0 0 0 0 

Px,y process P executes the instructions x,y

Synchronization for mutual exclusion

16

Methods Approach Type Process Ordering Starvation

disabling the interrupts disabling the interrupts
hardware 2

yes no

Swap, TSL, CAS
busy-waiting no possible

Perterson’s algorithm
software

2

binary semaphore / mutex sleep and wakeup 2 yes no

Synchronization methods for mutual exclusion

“binary semaphores / mutex” (1)

17

semaphore

value

Semaphore is a synchronization primitive composed of a blocking

queue and a variable controlled with two operations down / up.

A binary semaphore takes only the values 0 and 1. A mutex is a

binary semaphore for which a process that locks the semaphore

must be the process that unlocks it.

The down operation decreases the value of the semaphore or sleeps

the current process and pushes it into the queue.

before after

value false true

queue  

before after

value true true

queue  P

regular down blocking down

Main

memory

CPU

short-term

scheduler

dispatcher

re
ad

y
 q

u
eu

e

running process

if the semaphore is true,

sleep and push Pj

in the queue

semaphore

value

Pj

Pj

down with Pj

is
 t

ru
e

value

sleep and push Pj

in the queue

if false

else

blocking

down

regular

down

Synchronization methods for mutual exclusion

“binary semaphores / mutex” (2)

18

The up operation increases the value of the semaphore or wakeups a

process in the queue.

Main

memory

CPU

short-term

scheduler

dispatcher

re
ad

y
 q

u
eu

e

running process

semaphore

value

Pk

Pj

if the queue is not empty, wakeup

and pop Pk from the queuebefore after

value true false

queue  

before after

value true true

queue P 

regular up unblocking up

Semaphore is a synchronization primitive composed of a blocking

queue and a variable controlled with two operations down / up.

A binary semaphore takes only the values 0 and 1. A mutex is a

binary semaphore for which a process that locks the semaphore

must be the process that unlocks it.

semaphore

value

Pk

up with Pj

is
 f

al
se

value

wakeup and pop

Pk from the queue

if stack empty

else

unblocking

up

regular

up

Synchronization methods for mutual exclusion

“binary semaphores / mutex” (3)

19

The algorithm for mutual exclusion using a binary semaphore is

A accesses the section, sem becomes true

while accessing the semaphore, B blocks

e.g. three processes A, B and C considering the scheduling,

the solution is presented with a table

while accessing the semaphore, C blocks

A exits and pops up B, B holds the section

B exits and pops up C, C holds the section

C exits and puts the semaphore to false

(1) before the request

do something ….

(2) down sem

(3) run in the critical section with P

do something ….

(4) before the release

do something ….

(5) up sem

sem is a semaphore, P is the

process, (1) to (5) the instructions

before after

value false true

queue  

before after

value true true

queue  P

regular down blocking down

before after

value true false

queue  

before after

value true true

queue P 

regular up unblocking up

sem
Section A state B state C state

value Q

false   ready ready ready

A1,2,3 true  A ready ready ready

B1,2 true B A ready blocked ready

C1,2 true C,B A ready blocked blocked

A4,5 true C A-B ready ready blocked

B3,4,5 true  B-C ready ready ready

C3,4,5 false  C- ready ready ready

Px,y process P executes the instructions x,y

Synchronization methods for mutual exclusion

“binary semaphores / mutex” (4)

20

The algorithm for mutual exclusion using a binary semaphore is

A

B

R

R

Resource request

Resource release

Pi

Process running

R held by Pi

R

R

C

A

R

RR

R R

B C

e.g. three processes A, B and C considering the scheduling,

the solution is diagram

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

21

Resource allocation and management

22

A resource is any physical or virtual component of limited availability within a computer

system e.g. CPU time, hard disk, device (USB, CD/DVD, etc.), network, etc.

shareable Can be used in parallel

by several processes

e.g. read only memory

no shareable Can be accessed by a

single process at a time

e.g. write only memory, device, CPU

time, network access, etc.

R
es

o
u

rc
e

ty
p

e

Resource acquisition is related to the operation sequence to request, access

and release a no sharable resource. This is a synchronization problem for

mutual exclusion, between 2 or mores processes.

Request If the request cannot be granted immediately, then the

requesting process must wait until it can acquire the resource.

Access The process can operate on the resource.

Release The process releases the resource.

Resource management deals with the global allocation of no shareable

resource of a computer to tasks/processes being performed on that computer,

for performance or safety issues.

Access to

a resource
P1 P2

1. request 1. request

Resource

2. access 2. access

3. release 3. release

Mutual exclusion

synchronization mechanism

Global resource allocation extends the allocation of no shareable resource

to the overall processes in the operating system.

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

23

Resource-allocation graph and sequence (1)

Resource acquisition

A resource-allocation graph is a tool that helps in characterizing the allocation of resources. A resource-allocation graph is a

directed graph that describes a state of system resources as well as processes. Every resource and process is represented by a

node, and their relations (e.g. request, resource holding) by edges.

Single access

P1

request use

P1

R1R1

P1

R1

release

P1

P2

P3

R1

P1

P2

P3

R1

P3 holds R1,

P1 and P2 cannot access

When P3 releases R1,

P1 or P2 (not the both due to

mutual exclusion) can access

Pi
Process Pi (process node)

Resource of type Ri with 4

instances (resource node)
Ri

Pi

Pi is waiting for one

instance of Ri (request edge)
Ri

Pi
Pi holds one instance

of Ri (hold edge)
Ri

Notation

n
o
d

es
ed

g
es

Resource-allocation graph and sequence (2)

25

Resource acquisition

P1

R1

R2

P1

R1

R2

(1) P1 requests, uses and

releases R1

(2) P1 requests, uses and

releases R2

Multiple and disjoint access

(1) P1

R1

R2

P1

R1

R2

P1

R1

R2

(2) P1

R1

R2

Pi
Process Pi (process node)

Resource of type Ri with 4

instances (resource node)
Ri

Pi

Pi is waiting for one

instance of Ri (request edge)
Ri

Pi
Pi holds one instance

of Ri (hold edge)
Ri

Notation

n
o
d

es
ed

g
es

A resource-allocation graph is a tool that helps in characterizing the allocation of resources. A resource-allocation graph is a

directed graph that describes a state of system resources as well as processes. Every resource and process is represented by a

node, and their relations (e.g. request, resource holding) by edges.

Resource-allocation graph and sequence (3)

26

Resource acquisition

(1) P1 requests R1 and R2

in any order

(2) P1 uses R1 and R2 and

releases them in any

order

Multiple and joint access

P1

R1

R2

P1

R1

R2

(1) P1

R1

R2

P1

R1

R2

P1

R1

R2

(2) P1

R1

R2

A resource-allocation graph is a tool that helps in characterizing the allocation of resources. A resource-allocation graph is a

directed graph that describes a state of system resources as well as processes. Every resource and process is represented by a

node, and their relations (e.g. request, resource holding) by edges.

Pi
Process Pi (process node)

Resource of type Ri with 4

instances (resource node)
Ri

Pi

Pi is waiting for one

instance of Ri (request edge)
Ri

Pi
Pi holds one instance

of Ri (hold edge)
Ri

Notation

n
o
d

es
ed

g
es

Resource-allocation graph and sequence (4)

P3 requests R2

P1 requests R1

P2 requests R2

P1

P2

P3

P4

R1 R2

P1

P2

P3

P4

R1 R2

(1) (2)

(6) (5)

(3)

P1

P2

P3

P4

R1 R2

(4)

P4 releases R2

P3 accesses R2

P3 releases R1,R2

P1 accesses R1

P2 accesses R2

P1 requests R2

P2 releases R1,R2

P1 accesses R2

P1 releases R1

P1 releases R2

P1

P2

P3

P4

R1 R2

P1

P2

P3

P4

R1 R2

P1

P2

P3

P4

R1 R2

27

A resource-allocation sequence is the order by which the resources are utilized (request, use and release).

e.g. a resource acquisition sequence involving 4 processes (P1, P2, P3 and P4), 3 resources of two types (R1, R2); we

have R1, R2 accessed in a disjoint (P1) and joint (P2, P3) ways, R1 accessed in a single way (P4).

The resource-allocation

graph at t0

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

28

Resource-allocation graph, primitive and scheduling (1)

29

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 1. the needs in resources will result in a chaining blocking without deadlocking

C
R0 R1

Q0(t) U0 R0 (t) Q1(t) U1 R1(t)

P0 15 s+9 6 s+15 s+4 7 s+11

P1 12 s+5 5 s+10 Na Na Na

P2 9 Na Na Na s+3 4 s+7

- C is the capacity of a process

- s is the start date of a process

- Q(t) is the query / request time (i.e. down on the mutex)

- U is the needed time to use the resource, with

Q(t)+U ≤ s+C

- R(t) is the release time (i.e. up on the mutex) with

R(t) = Q(t)+U

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 5

Q0(t)

10

R0(t)

12

e

R0

U0=5

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P1

P0

Resource-allocation graph, primitive and scheduling (2)

30

Burst 5 6 3 4 3 3 4 6 2

Process P1 P0 P2 P1 P0 P1 P0 P2 P0

Event a b c d e f g h

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

(a) (b) (c)

(d) (e) (f)

(g) (h)

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 5

Q0(t)

10

R0(t)

12

e

R0

U0=5

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P1

P0

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 1. the needs in resources will result in a chaining blocking without deadlocking

here is chaining blocking

P2 P0  P1

Resource-allocation graph, primitive and scheduling (3)

31

C
R0 R1

Q0(t) U0 R0 (t) Q1(t) U1 R1(t)

P0 15 s+9 6 s+15 s+4 7 s+11

P1 12 s+5 5 s+10 s+9 3 s+12

P2 9 Na Na Na s+3 4 s+7

- C is the capacity of a process

- s is the start date of a process

- Q(t) is the query / request time (i.e. down on the mutex)

- U is the needed time to use the resource, with

Q(t)+U ≤ s+C

- R(t) is the release time (i.e. up on the mutex) with

R(t) = Q(t)+U

U = R(t)–Q(t)

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P1

P0

s

0 5

Q0(t)

10

R0(t)

12

R1(t), e

R0

U0=5

R1

Q1(t)

U1=3

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 2. the needs in resources will result in chaining blocking and deadlocking

9

Resource-allocation graph, primitive and scheduling (4)

32

Burst 5 6 3 4 3

Process P1 P0 P2 P1 P0

Event a b c d e

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

P1

P0

P2

R0

R1

(a) (b) (c)

(d) (e)

s

0 4

Q1(t)

9

Q0(t)

11

R1(t)

15

R0(t),e

R1

R0

U1=7
U0=6

s

0 3

Q1(t)

7

R1(t)

R1

U1=4

9

e

P2

P0

P1

s

0 5

Q0(t)

10

R0(t)

12

R1(t), e

R0

U0=5

R1

Q1(t)

U1=3

here is deadlock

The resource-allocation graph depends of the used synchronization primitives and scheduling in the system.

e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering a preemptive scheduling with mutex

Case 2. the needs in resources will result in a chaining blocking and deadlocking

9

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

33

Deadlock and necessary conditions (1)

1. Mutual

exclusion

At least one resource must be held in a no

sharable mode, that is only one process at

a time can use this resource.

2. Hold and

wait

A process must hold at least one resource

and wait to acquire additional resources

that are currently being held by other

processes.

3. No

preemption

Resources cannot be preempted; that is, a

resource can be released only voluntarily

by the process holding.

4. Circular

wait

A set {P0, P1, … Pn) of waiting process

must exit such that

-P0 is waiting for a resource held by P1

-P1 is waiting by a resource held by P2

-….

-Pn-1 is waiting by a resource held by Pn

-Pn is waiting by a resource held by P0

34

The necessary conditions are such that if they hold

simultaneously in a system, deadlocks could arise.

P1 is waiting for one instance

of R2, held by P2.

P2 is waiting for one instance

of R1, held by P1.

P1

P2

R1 R2

Deadlock refers to a specific condition when two or more

processes are each waiting for each other to release no

shareable resources, or more than two processes are waiting

for resources in a circular chain.

Deadlock and necessary conditions (2)

P

D
V

D
d
is

k
p

ri
n
te

r

2. The process P gets all the

resources in one shot.

3. The process P copies, sorts and

prints.

P

P

1. The process P has no resource,

it can make a request.

4. The process P releases its

resources.

protocol 1

with holding

Without hold and wait, whenever a process

requests resources, it does not hold any

other resources.

e.g. consider a process that

1. copy data from a DVD to disk files

2. sort the files

3. print the files on a printer

We can consider two protocols to manage this,

with and without holding.

35

Hold and wait of resources: the resource allocation is done with an hold and wait condition of resources.

Without hold and wait, resource utilization could be low, starvation probability higher and the programming task harder.

Deadlock and necessary conditions (3)

36

Hold and wait of resources: the resource allocation is done with an hold and wait condition of resources.

Without hold and wait, resource utilization could be low, starvation probability higher and the programming task harder.

P

D
V

D
d
is

k

2. The process P gets part of the

resources (DVD, disk).

3. The process P copies an sorts.

4. The process P releases its resources.

P
7. The process P releases its

resources.

P

5. P has no resource, it can make a request. It gets

part of the resources (disk, printer).

6. The process P prints.

d
is

k
p

ri
n
te

r

P
1. The process P has no resource,

it can make a request.

protocol 2

without holding

Without hold and wait, whenever a process

requests resources, it does not hold any

other resources.

e.g. consider a process that

1. copy data from a DVD to disk files

2. sort the files

3. print the files on a printer

We can consider two protocols to manage this,

with and without holding.

Deadlock and necessary conditions (4)

P1

P2

P3

P4

R1 R2

P1

P2

P3

P4

R1
R2

P1

P2

P3

P4

R1
R2

with preemption,

P3 can preempt R1 to P1 or P2

(1)

(1) (2)with preemption, the request sequence is

1. we check whether resources are available

2. if yes, we allocate them

3. if no, we check whether resources are allocated to

other processes waiting for additional resources

4. if so, we preempt the desired resources

5. if no, we wait

without preemption, the request sequence is

1. we check whether resources are available

2. if yes, we allocate them

3. if no, we wait

without preemption,

P3 waits for P1 or P2

37

Preemption of resource: the resource allocation is done with a condition of no preemption on the resources.

Some resources can be preempted in a system, when their

states can be easily saved and restored later (CPU

registers, memory, etc.)., but some others are intrinsically

no preemptible (e.g. printer, tape drives, etc.).

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

38

Resource management protocols

“Introduction”

39

A resource management protocol is the mechanism (code convention, algorithms, system, etc.) in charge of the resource

management. Main goals of such a protocol are to avoid/prevent deadlocks, to deal with resource starvation and to optimize

the resources allocation. Three main approaches exist based on prevention, avoidance and detection.

-Ostrich-like, do nothing

-Prevention ensures that at least one of the necessary

conditions cannot hold, to prevent the occurrence of a deadlock.

-Avoidance authorizes deadlocks, but makes judicious choices

to assure that the deadlock point is never reached.

-Detection and recovery do not employ prevention and

avoidance, then deadlocks could occur in the system. They aim

to detect deadlocks that occur, and to recover safe states.

Approach
Deadlocks

could exist

Deadlocks

could appear

Ostrich-like yes

Prevention no

Detection
& recovery

yes

Avoidance yes no

Resource management protocols

“The ostrich-like protocol”

The ostrich-like protocol: i.e. to ignore the problem

Cons Pros

Without management we can

have resource starvation and

deadlocks could appear.

-Regarding the systems, the frequency of deadlocks

could be low.

-Finite capacity of systems could raise in deadlocks (e.g.

job queue size, file table), deadlocks are part of OS.

-OS design is a complex task, resource management

protocols could result in bugs and hard implementation.

-Without resource management protocols, systems will

gain a lot in performance.

-Resource management protocols involve constraints for

users and impact the ergonomics of systems.

-etc.

40

Resource management protocols

“The prevention protocol” (1)

Necessary

conditions
Statute about prevention Constraint

1. Mutual

exclusion

Resources in a computer are intrinsically no shareable (printer, write-only memory,

etc), prevention protocols can’t be defined from this condition.

Not applicable.

2. Hold and wait Without hold and wait, resource utilization could be low, starvation probability higher

and programming task harder.

Applicable with severe

performance lost.

3. No preemption Some resources are intrinsically no preemptible (e.g. printer, tape drives, etc.),

prevention protocols cannot be then defined from this condition.

Not applicable.

4. Circular wait One way to ensure that deadlocks never hold is to impose total ordering of all the

resources, and to require that each process requests resources in an increasing order

of enumeration. This involves to coerce the programming of processes.

Applicable with

programming

constraints.

41

The prevention protocol ensures that at least one of the necessary conditions cannot hold, to prevent the occurrence of deadlocks.

Resource management protocols

“The prevention protocol” (2)

42

e.g. we make the condition of a circular wait

 nRRRR ,...,, 21

 nPPPP ,...,, 21
ii RoldsHP)(1

11)( ii RequestsRP

With an increasing order of enumeration,

P0 cannot access R0 as it holds R7.

P0

P6 P2

P4

P7 P1

P3
P5

R7

R0

R1

R2

R3

R4

R5

R6

Order resource numerically: one way to ensure that the circular wait condition never holds is to impose the total ordering of

all the resources, and to require that each process requests resources in an increasing order of enumeration. This involves to

coerce the programming of processes.

Resource management protocols

“The detection & recovery protocols”

43

The detection and recovery protocol does not employ prevention and avoidance, then deadlocks could occur. It aims to

detect deadlocks that occur, and to recover a safe state. If a deadlock is detected two approaches can be employed,

based on rollback and process killing.

Detection and recovery with rollback

Resource allocation: the algorithm collects the

allocation states (processes / resources) and maintains the

current allocation state.

Deadlock detection: based on different detection

methods, the algorithm searches for a deadlock. If

negative, the algorithm saves the current state, otherwise

it goes to recovery.

Recovery: if a deadlock is detected, the algorithm uses

the safe states to restore the system.

…

Sheduler

Resources
Synchroniza-

tion

Resource

allocation

re
ad

y
 q

u
eu

e CPU

q
(P

i,
R

i)

re
q
u
es

t

Deadlock

detection

Recovery

Safe states

update allocation

state

yes

restore with a safe state

no,

save stateCurrent-

allocation state

load state

Resource management protocols

“The avoidance protocols”

44

The resource-allocation denial protocol is based on avoidance, it requires additional information about how resources will

be requested. Based on the on-line requests, the system considers the resource currently available and allocated to evaluate the

future requests.

Total, available, allocated and claim

resources characterize the resource-allocation

state in the system.

A resource-allocation component maintains

on-line the resource-allocation state of the

system and the available resource instances.

…

q
(P

i,
R

i)

re
q
u
es

t

re
p

ly

Resource

allocation

ready queue

Allocated resources

Total amount of resources

Available resources

Claim resources

Scheduler

Resources
Syncroni-

zation

CPU

Foundation in synchronization

and resource management

1. Synchronization for mutual exclusion

1.1. Introduction to synchronization

1.2. Principles of concurrency

1.3. Synchronization methods for mutual exclusion

2. Resource management

2.1. Resource allocation and management

2.2. Resources-allocation graph and sequence

2.3. Resource allocation, primitive and scheduling

2.4. Deadlocks and necessary conditions

2.5. Resource management protocols

2.6. Safe and unsafe states

45

Safe and unsafe states (1)

unsafe states

safe states

deadlock

states

The goal of the safety and banker’s algorithms is to characterize the safe state of a system

-A safe state can be defined as follow, considering

1. a given set of processes S = {P0, …, Pn}.

2. we have a resource-allocation state Rs corresponding to the available resources

and the resources held by {P0, …, Pn}.

3. we have a safe state if a sequence of requests <P0, …, Pn>, that could satisfy all

the processes, exists considering the available resources and the ones than can be released by

processes.

-An unsafe state is not a safe state.

-A deadlock state is unsafe, but not all the unsafe states are deadlock states.

46

Safe and unsafe states (2)

47

The joint progress diagram illustrates the concept of safety in a graphic and easy-to-understand way, by

showing the progress of two processes competing for resources, with each of the process needing an exclusive

use of resources for a certain period of time.

e.g. deadlock with two processes P, Q and resources A, B

unsafe

region
get

B

get

A

release

B

release

A

g
et A

g
et B

re
le

as
e A

re
le

as
e B

A
 r

eq
u
ir

ed

B
 r

eq
u
ir

ed

Progress

of P

A required

B required

P and Q

want A

P and Q

want B

Progress

of Q



P and Q

finish

-Every point of a path line in the diagram represents a

joint state of the two processes.

-All the paths must be vertical or horizontal, neither

diagonal. Motion is always to the north or east, neither to

the south or west (because processes cannot backward in

time, off course).

-When a path is next to an instruction line, its request is

granted, otherwise it is blocked.

-Gray zones are forbidden regions due to mutual

exclusion.

-The light-gray area (bottom-left to mutual exclusion

zones) is referred as the unsafe region.

-The top-right corners bounded in the unsafe regions are

deadlocks.

(1)

deadlock

Safe and unsafe states (3)

48

unsafe

region
get

B

get

A

release

B

release

A

g
et A

g
et B

re
le

as
e A

re
le

as
e B

A
 r

eq
u
ir

ed

B
 r

eq
u
ir

ed

Progress

of P

A required

B required

P and Q

want A

P and Q

want B

Progress

of Q P and Q

finish

(1)

(2)

(5)

(6)

(3) (4)

(1) P acquires A and then B, Q executes and blocks on a

request for B. P releases A and B. When Q resumes

execution, it will be able to acquire the both resources.

(2) P acquires A and B, then releases A and B. When Q

resumes its execution, it will be able to acquire the both

resources.

(3,4) are inverted paths of (1,2).

(5) Q acquires B and then P acquires A. Deadlock is

inevitable, Q will block on A and P will block on B.

(6) P acquires A and Q acquires B. P blocked when

accessing B, same for Q with A. The deadlock is here.

The joint progress diagram illustrates the concept of safety in a graphic and easy-to-understand way, by

showing the progress of two processes competing for resources, with each of the process needing an exclusive

use of resources for a certain period of time.

e.g. deadlock with two processes P, Q and resources A, B



Safe and unsafe states (4)

49

The joint progress diagram illustrates the concept of safety in a graphic and easy-to-understand way, by

showing the progress of two processes competing for resources, with each of the process needing an exclusive

use of resources for a certain period of time.

e.g. no deadlock with two processes P, Q and resources A, B

get

B

get

A

release

B

release

A

g
et A

re
le

as
e A

g
et B

re
le

as
e B

A
 r

eq
u
ir

ed

B
 r

eq
u
ir

ed

Progress

of P

A required B required

P and Q

want A

P and Q

want B

Progress

of Q P and Q

finish

(1)

(2)

(5)

(6)

(3) (4)

(1) P acquires A then releases A. P acquires B, Q

executes and blocks on a request for B. P releases B.

When Q resumes execution, it will be able to acquire the

both resources.

(2) P acquires then releases A and B. When Q resumes

execution, it will be able to acquire the both resources.

(3,4) are inverted paths of (1,2).

(5) Q acquires B and then P acquires and releases A. Q

acquires A then releases B and A. When P resumes

execution, it will be able to acquire B.

(6) Q acquires B and then P acquires and releases A. Q

acquires A then releases B. P acquires then releases B.

When Q resumes execution, it will be able to release A.

When deadlocks cannot appear, unsafe states cannot

exist.



